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Abstract—Even though many games feature complex 3D
environments, 3D pathfinding remains a challenging problem.
Representing large 3D maps can require a lot of memory,
and pathfinding instances must be solved very quickly while
the game is running. In this work we develop an efficient
solution to 3D pathfinding by building a reduced, hierarchical
grid representation within which we can extend traditional 2D
navigation mesh (navmesh) pathing. Starting from an octree
representation, we merge adjacent cells while preserving their
convexity to obtain a coarser representation that greatly reduces
path computation costs. We then build a navigation graph from
this octree within which we can search for paths using the popular
A* search algorithm. To increase the quality of the paths we
obtain we implemented two forms of path refinement: a visibility-
based path pruning heuristic, and a 3D extension of the classic
“funnel” algorithm that computes minimal homotopic paths. We
further extend our work to handle dynamic environments with
local and efficient updates to the octree and the movement graph.
Experiments on a variety of scenarios show that our approach
remains fast and efficient even for very large 3D maps and could
be used for real-time pathfinding in video games. A detailed
comparison with the state-of-the-art JPS-3D algorithm shows that
our approach produces shorter path lengths while being faster on
long path instances. We implemented our work in Unity, one of
the most popular game engines, as an effort to make pathfinding
in 3D environments accessible to game developers.

Index Terms—3D pathfinding, octree, navigation mesh, dy-
namic pathfinding

I. INTRODUCTION

3D virtual environments are commonplace in modern
games. Non-Player Character (NPC) movement planning,
however, is still largely 2D, with off-plane or vertical move-
ment modeled through limited, and frequently custom con-
nections between 2D surfaces (e.g., ladders, jumping, and
climbing points), or greatly simplified by a relative absence
of obstacles, such as in traditional flight or space-simulations
or for aerial attackers that generally move well above most ob-
stacles. Even games that emphasize flying or floating enemies,
such as Marvel’s Spider-Man’s jetpack-enabled opponents, or
the various flying monsters in Elex 2 target primarily through
line-of-sight and do not tend to take advantage of the many
opportunities for more complex 3D pathing afforded by the
intricate environments in which combat takes place.

Pathfinding in 3D, however, is expensive. The extra dimen-
sion of traditional grid or voxelized models greatly increases
memory and time costs, while techniques for building and
exploiting non-grid-like representations are also complex. On
top of that, even though some tasks can be pre-computed, the
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active task of pathfinding must be done in real-time while the
game is running, with a fraction of the computing resources
available, and therefore it must be fast and cheap.

This work proposes a hybrid approach to 3D pathfinding,
building a hierarchical representation of the environment to
which we can extend traditional 2D and graph pathing using
navigation meshes. We start from an octree representation,
which is significantly more efficient than a voxel grid rep-
resentation. From this representation, we create a movement
graph (roadmap) to find short paths between two points.
We improve this straightforward method in several ways:
we use a Hertel-Mehlhorn approach [12] to merge adjacent
cells and obtain a coarser representation that greatly reduces
path computation costs, and implement two path refinement
methods to reduce path length. The first one is a visibility-
based heuristic inspired by Yang and Sukkarieh [24]. The
second and more involved technique, based on the work of
Massonnat [14], is an extension of the 2D funnel algorithm
[11] that builds a shorter, 3D homotopic path.

We also extend our pathfinding to dynamic 3D environments
containing moving obstacles. With some modifications, it is
possible to efficiently update the octree and the associated
roadmap at runtime. This creates new game design possibilities
by allowing movement planning in more diverse scenarios.

We implemented our approach in Unity3D and created a
custom set of 3D benchmarks to evaluate it, meant to be
representative of topologically and navigationally complex
environments in which 3D pathing may be useful. We also test
our work on the more challenging dataset based on the game
Warframe [4], which contains very large maps and pathing
problems for each map that can be used to compare algorithms.

The main contributions of this work are as follows:

1) We implement the traditional octree data structure in
Unity1, and vastly improve it with the Hertel-Mehlhorn
style merging and two forms of path refinement.

2) We extend this work to dynamic 3D environments with
moving obstacles.

3) Our approach is evaluated on a set of (non-voxelized) 3D
custom scenes inspired by modern game environments
as well as more complex 3D benchmarks. We provide a
thorough comparison of our approach and what is to our
knowledge the state-of-the-art 3D pathfinding method,
3D Jump Point Search (JPS-3D) [18]. Our approach

1Our code is available at https://github.com/Qmassonnat/octree decomp
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provides more flexibility, and shorter path lengths, while
maintaining feasible compute times.

II. BACKGROUND AND RELATED WORK

Pathfinding in video games is a rich research topic that
combines many different topics. Below we discuss specific
approaches to 2D and 3D, the use of navigation meshes, path
refinement, the use of octrees, and 3D pathfinding benchmarks.

1) Pathfinding in 2D: Most of pathfinding research focuses
on 2D environments. Abd Algfoor, Sunar, and Kolivand [1]
did a comprehensive study of pathfinding in games, mostly
for 2D environments. Cui and Shi [6] review A* approaches
for 2D pathfinding, underlining the fact that the quality and
efficiency of the underlying data representation is essential.
Sturtevant [22] creates a sparse grid representation of the
environment in 2D and 3D games, although the 3D environ-
ments consist only of 2D walking surfaces connected in a 3D
environment and therefore do not allow full 3D movement.

Botea, Müller, and Schaeffer [2] propose an improvement
to the A* algorithm: HPA* (Hierarchical Pathfinding A*) that
abstracts an environment to locally linked clusters. At a local
scale, pathfinding inside a cluster can be done with traditional
A* and at a global scale, it can be done by navigating
from cluster to cluster along pre-computed routes. Hierarchical
methods allow to store and reuse some intermediate results,
making pathfinding faster to compute.

2) Pathfinding in 3D: Due to a higher branching factor and
higher volumes, 3D pathfinding is a more difficult problem that
can only be solved approximately. Canny and Reif [5] prove
that finding the exact shortest path between 2 points in a 3D
environment with polyhedral obstacles is NP-hard. All works
for pathfinding in 3D then have to incorporate heuristics and
show a trade-off between path quality and computational cost.

Many improved versions of the A* algorithm exist for 3D.
Sislák, Volf, and Pechoucek [21] explore flight trajectory path
planning, but do not incorporate a reduced representation of
the environment such as navigation meshes. Frontera et al. [8]
propose an algorithm with good empirical running time and
solution quality, but their work is restricted to environments
where obstacles are protruding vertical polyhedra (for example
buildings in urban environments).

Li et al. [13] gives an approach to find safe paths for
drones inside cluttered buildings, but the proposed approach
uses voxels instead of a more efficient data structure and
therefore suffers from high computational cost. Octrees are a
more efficient hierarchical data structure, created from a large
cube recursively split in 8 smaller cubes while it contains an
obstacle. The work most similar to our approach is by Muratov
and Zagarskikh [17], who use octrees and a clustering method
similar to HPA*. Instead of creating clusters of a fixed size in
a voxel grid, they use the depth level in the octree to create
clusters. Each cluster has transitions to adjacent clusters. By
precomputing all paths within any given cluster, they perform
a hierarchical search similar to HPA*. Our proposed approach
goes further by reducing the number of cells in the octree,
leading to faster compute times, and incorporating non-trivial

path refinement to increase the path quality and reduce their
length. Their clustered octree search suffers significantly in
terms of path length due to the clustering process, with paths
on average 20% longer than optimal solutions.

Two works on 3D pathfinding stand out: sparse voxel
octrees (SVOs) and 3D Jump-Point Search (JPS-3D). A highly
optimized octree-based navigation is used by Brewer to per-
form real-time 3D pathfinding in the video game Warframe
[3] using SVOs, based on the work of Schwarz and Seidel
[20]. In SVOs, the data for each level of the tree is stored in a
compact way using a Morton Code order [16], which allows
for the enumeration of octree cells while keeping neighbor
cells close to each other in memory. To capture fine details
in the environment without building the octree all the way,
they use small 4x4x4 voxel grids instead of regular cells as
octree leaves when the minimum octree size is reached. Our
work approaches octree navigation differently: these storage
and implementation optimizations could be compatible with
our work, and we propose a merging method to reduce the
number of nodes in the octree, leading to faster compute times.

The JPS algorithm is a search algorithm like A* that
maintains its optimality and is faster by an order of magnitude
on 2D grids [9]. The same idea can be extended to 3D,
even if it results in more switch cases as a cube has 26
potential neighbors and a square only has 8. The 3D extension
of the JPS algorithm allowed Nobes et al. [18] to perform
fast pathfinding in large 3D environments, and is a state-of-
the-art method for 3D pathfinding. We will show a detailed
comparison of this method and our work in Section IV.

3) Navigation meshes: The standard method to perform
2D pathfinding in a game environment is to use a form
of navigation mesh, or navmesh. Any tiling, or partition of
the navigable (interior and non-obstacle) environment that
conforms to obstacles is a navigation mesh. Having convex
tiles is especially useful in pathfinding applications since if a
tile is convex and free of obstacles, two points in the same
tile can always be connected by a straight line that does not
intersect any obstacles.

Since moving between two points inside a free polygon can
be done by going in a straight line, path-finding is reduced
to moving from polygon to polygon, along a graph where
each polygon is represented by a node, and neighbor polygons
are connected by edges. Some tools that automatically create
navmeshes, like Recast2, are widely used in video game
pathfinding.

4) Path refinement: After a (non-optimal) path is found, it
can then be shortened or smoothed with various path refine-
ment methods. To reduce a path’s length, Yang and Sukkarieh
[24] uses path pruning to skip a subset of points in the path,
but the resulting path can be in a different homotopic class.
Some works have studied the homotopic classes of paths: a
simple characterization of these is that two paths are in the
same homotopy class if they share the same start and end point
and they can be continuously deformed to one another without

2https://github.com/recastnavigation/recastnavigation
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intersecting any obstacles. There can be multiple classes due
to the presence of obstacles. Hernandez, Carreras, and Ridao
[10] uses homotopic variants of search algorithms like A* to
find shortest homotopic paths in 2D scenarios. Hershberger
and Snoeyink [11] introduces the funnel algorithm in 2D, used
to find the shortest path in the same homotopic class. There
are several implementations of the funnel algorithm, such as
the Simple Stupid Funnel algorithm (SSFU) by Mononen [15]
which inspired the extension of the funnel algorithm to 3D
scenarios [14]. Erickson [7] uses path reduction and the funnel
algorithm to compute the shortest homotopic path to a given
path between two points in 2D environments.

5) 3D pathfinding benchmarks: Many pathfinding bench-
marks exist for 2D environments, but to our knowledge, there
are only three for 3D scenarios. Toll et al. [23] created a
benchmark to compare 2D and 3D navigation meshes, but
the 3D cases only correspond to 2D walking areas in a 3D
environment, and thus only recreate a ”2.5D” scenario.

Brewer and Sturtevant recreated 3D maps from the video
game Warframe [4], where jetpacks enable full 3D movement.
These voxel-based maps mostly consist of ships, debris, and
asteroids floating in empty space, with obstacles represented
by a list of the coordinates of all the voxels occupied by
obstacles. These maps can be extremely large, with some
containing hundreds of thousands to millions of obstacle
voxels enclosed in an overall volume of 109 cubic voxels.
Due to their very large size, they allow testing pathfinding
methods in difficult scenarios and it is challenging to do real-
time pathfinding on them. For a more diverse set of maps,
Nobes et al. [19] followed the same data structure to extend
the benchmark with maps presenting a more diverse range
of scenarios, motivated by some real-life use cases of 3D
pathfinding.

III. METHODOLOGY

In this section we will describe how our navigation mesh
is built, the pathfinding and path refinement methods we
implemented, and how dynamic environments are handled.

A. Building the Navigation Mesh

The simplest 3D navigation mesh is a voxel decomposition
where paths can only go through obstacle-free voxels, which
we call valid voxels. Octrees are much more efficient since
large open spaces can be represented with only one cell. We
build the octree recursively, starting from a single cubic cell
that encompasses the whole level. If an obstacle intersects
the cell, we split it into 8 cubes half the size of the cell in
each dimension that will be stored as the children of the main
cell. We recursively continue this process of splitting invalid
cells until the cells have reached a specified minimal size,
which we define as granularity. We call children the set of
cells that was obtained from splitting one parent cell. With
this analogy in mind, we call siblings two cells that share the
same parent. A valid cell without any obstacle or one that has
reached the minimal size is called an octree leaf. Increasing
this granularity gives a more accurate decomposition of the

environment, but at the cost of more compute time, as in a
worst-case scenario, halving the granularity can multiply the
number of octree leaves by 8. The main advantage of the
octree is that it requires many fewer nodes than a voxel-based
approach, as a large obstacle-free space can be represented as
a single octree leaf. By definition, a leaf is free of obstacles
and as a convex space (cube) the shortest path between two
points in a leaf is just a straight line.

As we will discuss in Section IV, the computing time of the
pathfinding algorithm is directly linked to the number of valid
octree leaves, so we are interested in lowering this number.
On many occasions, adjacent cells can be merged while
maintaining convexity. We implemented a greedy merging
procedure inspired by the Hertel-Mehlhorn algorithm [12],
which computes a convex partitioning within 4× optimal by
merging cells starting from a 2D polygon triangulation, as long
as the merged area remains convex. In our case we check for
adjacent cells that would remain convex after merging, which
happens if the transition surface covers the entire side of both
octree leaves. When two cells are merged, this can create new
merging opportunities for neighboring cells, so we check again
if the new cell can be merged with any of its neighbors. This
heuristic we use for merging the octree is not guaranteed to be
optimal (in terms of the total number of cells after merging),
but in practice gives good results and still consistently leads
to a significant decrease in the number of octree cells.

B. Path Finding and Path Refinement

All valid octree cells by definition are free of obstacles.
Because they are convex cells, the shortest path between two
points within the same cell is just a straight line. With this in
mind, we just need to know how to navigate from cell to cell.
We define as transition surfaces the surfaces connecting two
adjacent valid cells. Using the environment decomposition, we
create a graph, where nodes are in the middle of transition
surfaces, and two nodes are connected if their associated
transition are sides of the same octree cell. We connect them
with an edge of weight d(t1, t2) where d is the Euclidean
distance and t1 and t2 are the middle of the two transitions. We
then add the start and target points in the graph and temporarily
connect them to all the transitions of the cell they belong to.
The voxel decomposition can also be used as a baseline for
pathfinding. It can be seen as a fully split octree with all cells
of size 1, and the same pathfinding techniques apply.

With this graph, the task of finding the shortest path in a
3D environment is reduced to finding the shortest path on this
weighted graph. We use the A* algorithm to perform this task
due to its simplicity and flexibility in solving point-to-point
shortest path problems [25]. We use the A* algorithm and the
Euclidean distance as the associated heuristic for estimating
the remaining distance between a node and the target.

Even though paths found with A* are optimal within the
graph, heuristics such as the placement of transitions can
make paths sub-optimal in the 3D environment itself. A first
approach to reduce path length is a simple path pruning
following a visibility-based heuristic. We say that two points



Algorithm 1 Pseudocode for the path pruning algorithm
Input: A path between two points s and t (s = x0, x1, ..., xk−1, xk =
t)
Output: The pruned path

Let anchor = t and prunedPath = [t]
for i decreasing from k − 1 to 0 do

if xi is visible from anchor then
Discard the node xi

else
Add the node xi+1 to prunedPath and let it be the new anchor

end if
end for
Add s to prunedPath
return prunedPath in reverse order

are visible from one another if there are no obstacles between
them. Following the idea of Yang and Sukkarieh [24], the idea
is to keep a subset of the points of the original path to create
a shorter path that still does not intersect obstacles. Starting
from the target, we add the last node visible from it and restart
the process from this node, as described in Algorithm 1.

We recall that two paths are in the same homotopic class if
one can be smoothly deformed to the other without touching
any obstacles. One important characteristic of path pruning is
that unlike the method we will discuss next, homotopicity may
not be preserved. If there is a game design motivation to go in
between specific obstacles, for example staying behind cover
in a stealth game, the path pruning can create a very different
path and compromise certain qualities of the path.

The funnel algorithm is a path refinement algorithm that,
given a 2D convex decomposition (e.g. a triangulation) of a
polygon with holes and a path between two points, returns
the shortest path belonging in the same homotopic class. We
extended one of its 2D implementations by Mononen [15] to
3D environments by using the octree as the convex decom-
position. Due to space limitations, we will not discuss this
further, but detailed explanations can be found in Massonnat’s
thesis [14].

C. Path Finding in Dynamic 3D Environments

Finally, all of the work presented above can be adapted to
dynamic environments, where obstacles can move, appear, or
disappear. One of the main advantages of our work is that the
octree can be pre-computed, and loaded quickly during run-
time, which makes real-time pathfinding feasible. While this
works well for static environments, if the map is updated or
if obstacles move during the execution, the octree no longer
reflects the environment accurately.

Re-building the octree from scratch every time the envi-
ronment changes would be way too expensive, but since the
octree is a hierarchical structure, most of the time a local
change in the environment will only affect a small part of the
octree. Because of that, we want to update the octree with local
methods as much as possible. To do so, we keep track of the
position and scale of dynamic obstacles in the level. Changes
in the environment can only lead to two update scenarios:

• If an obstacle moves into a cell that was previously free
(valid), this cell becomes invalid. If this cell is larger than
the octree granularity, we have to split the cell further.
This can potentially cause several sequential splits until
the octree granularity is reached.

• If obstacles move out of an invalid cell and it no longer
contains any obstacle, it becomes valid. It may then be
possible to merge octree cells that were previously split.

Naively merging cells dynamically with the previously de-
scribed greedy method causes an increase over time in the
number of cells, as arbitrary choice of fine-grain cell merges
can restrict higher level merging opportunities. To ensure the
stability of the octree over time, we adopt a new merging
strategy. When a cell is updated and becomes valid, if all of the
children of the cell’s parent are valid, it is possible to repair the
split parent by merging the 8 valid children as a single merge
operation. It might then be also possible to repair the parent’s
parent, and so on, going as high as possible in the hierarchy.
With this merging strategy, even after many updates, the total
number of cells remains stable and the octree is still efficient.

After the octree is updated, we must reflect these changes
in the movement graph to finalize the update process. A naive
way to do this would be to delete the old graph and recompute
the new graph from scratch. This approach, however, espe-
cially on larger maps, quickly becomes inefficient and slow.
Because updates in the octree are very localized (an obstacle
moving will only affect a few cells at a time for instance), the
number of octree cells that are updated at one moment in time
is much smaller than the total number of cells in the octree.
To be more efficient, we instead devise local graph update
methods, that update only the nodes in the graph affected by
changes in the octree.

The two types of graph updates needed are the creation
and deletion of transition points. When creating a transition
point between two cells, we also have to connect it to all of
the other transition points starting from one of the two cells.
Likewise, when deleting a transition point, it is important to
delete all the edges pointing to it. With these two types of
updates in mind, after each update in the octree, we update
the surrounding transitions accordingly:

• If a cell was invalid and becomes invalid, we delete all
transitions that started from this cell.

• If a cell was invalid and becomes valid, we create
transition points between this cell and all of its valid
neighbors.

• When splitting a cell, we delete all transitions that started
from this cell and create the necessary transitions between
the children and the neighbors, and between the children
themselves.

• When restoring a parent, we delete all the transitions
involving its children and add connections with all of
the parent’s neighbors.

With these rules in mind, we successfully reduce the number
of operations on graph nodes and edges required for a given
octree update, making the graph update process faster, as we



will show in Section IV.

IV. EXPERIMENTS AND RESULTS

In this section, we will give visual examples of important as-
pects of our work, evaluate the benefits of merging octrees and
doing path refinement, and show a detailed comparison of our
algorithm against the state-of-the-art JPS-3D algorithm [18].

To evaluate our work, we first created a series of 6 smaller
maps directly in Unity3D that represent common structures
and navigational challenges encountered in video games. To
simulate more challenging scenarios on much larger maps,
we used the 3D benchmark by Brewer and Sturtevant [4]
recreating maps from the game Warframe published by Digital
Extremes. Snapshots of maps from these datasets can be found
in Figure 1. We excluded from this dataset the C-named maps
that feature many more obstacles than other maps and are
also excluded by other works using this dataset, and also
excluded for space reasons some maps that were just very
similar variants of another map, resulting in 19 maps. Each of
these maps comes with 10,000 “test scenarios”, consisting of
a start and a target point. The task is finding the shortest path
between them. Because results, especially compute time, tend
to vary drastically with path length, we bucketed these points
according to path length, splitting them into 10 evenly-sized
buckets. Testing different algorithms on the same scenarios
makes it possible to compare their performance. We are mainly
interested in two factors in our experiments. Of course, the
length of the path connecting two given points is important, as
finding exact shortest paths in 3D is NP-hard [5] and although
some compromises can be made, it is desirable to find a path
with a length close to the optimal one. The other deciding
factor, potentially even more important, is the compute time.
Because we are interested in 3D pathfinding in video games,
queries will be made in real-time and it is essential for a
smooth player experience that finding a path is as fast as
possible. Pathfinding costs should not exceed a second, and
ideally should remain in the hundreds or tens of milliseconds.
All experiments were done using Unity3D v.2021.3.13f1 on a
medium-range laptop (Intel Core i7-12700H with a 2.30 GHz
clock speed and 16 GB of RAM).

A. Impact of Merging and Path Refinement

To illustrate the octree decomposition and how merging
affects the structure of the octree, a visualization of a finished
octree in its regular and merged version on a small map can
be found in Figure 2. It is clear that merging the octree greatly
reduces the number of cells. The number of valid cells in the
octree is crucial, as it is proportional to the number of nodes
in the movement graph and therefore is the main cost of the
pathfinding using A*. To assess in greater detail the impact
of merging on the number of cells and compare it with the
voxel baseline, we report the number of valid cells on several
maps in Table I. The octree is as expected much more efficient
than a simple voxel decomposition, and merging the octree
reduces the number of cells even further. As can be seen in
Figure 3, this reduction in the number of octree cells lowers

TABLE I
COMPARISON OF THE NUMBER OF VALID CELLS ACROSS SEVERAL MAPS

USING EITHER THE VOXEL BASELINE, THE REGULAR, OR MERGED
OCTREE.

Map name Voxel Unmerged Merged
Building 1 28,190 4,226 303
Building 2 28,628 3,975 147
Building 3 29,816 4,243 182

Cave 29,510 8,190 316
Industrial 31,833 1,671 157

Zigzag 31,488 2,130 52
Complex (Warframe) 8.3M 41,385 10,552

in turn the pathfinding time (similar trends can be observed
on all handmade maps but were omitted for space reasons).
One last thing to discuss is the increase in compute times with
the voxel baseline that can be seen for paths between 10 and
15 units long. We attribute this to the level geometry: short
paths are easier to compute as the A* algorithm will explore
fewer cells, and long paths tend to be in large open parts of
the maps. The characteristic length in between (about half of
the map size) could correspond to the typical length of more
challenging paths that weave in between obstacles.

We illustrate how path refinement works in Figure 4. In
this example, we use an octree to find a path between the
start (green sphere) and the target (blue sphere) that avoids
stalactites in a cave-like environment. The red path is the
“default” path found by executing the A* algorithm on the
movement graph, but because nodes are always at the center
of the transitions between cells, there can be some superfluous
movement. The yellow path shows the result of the funnel
algorithm, which makes the path more direct. Path pruning can
then be applied to make the path even shorter, as shown with
the green path. Testing on 10,000 points for all 6 maps showed
a 5-10% decrease in average path length after performing
path refinement, and the most improvement by combining path
pruning and the funnel algorithm.

Let us now discuss the variance of the results obtained.
For all the experiments in this section, the observed variance
is similar. By sampling a large number of pairs of points
and especially by bucketing these points according to path
length, we aim to reduce the variance. Within a single bucket,
the variance in path length is very small. When it comes
to compute time, the variance is larger. The first and third
quartiles for a given bucket are generally 30% lower and higher
than the median. Even if computing the same path over and
over would give nearly identical compute times, within a single
bucket, paths of similar length can be of varying complexity,
with some paths being straight lines in large open spaces and
others weaving between obstacles.

To summarize our findings in this section, studying the
baseline shows that naive voxel grids are not suitable for
3D pathfinding. Octrees allow for faster pathfinding, and our
merging algorithm vastly improves performance. If there is
a special motivation to respect homotopy classes, the funnel
algorithm is relatively cheap and reduces path length, and if



Fig. 1. Snapshot of the Industrial map from our handmade dataset (left), and the Complex (middle) and Full4 (right) maps from the Warframe dataset.

Fig. 2. Example of an Octree decomposition before (left side) and after
(right side) merging. Invalid cells are represented in red, and the black frames
indicate the location of valid octree leaves.

Fig. 3. Average pathfinding times on the Building 1 map with the voxel
baseline, the regular and merged octree. Test scenarios are split into 10 buckets
according to path length to reduce variance.

the main concern is path length, combining path pruning and
the funnel algorithm gives the best results. On larger maps
especially, path pruning only represents a fraction of the total
pathfinding cost, with the main cost originating from the A*
algorithm. From these results, we gather that using merged
octrees along with both path pruning and the funnel algorithm
gives the best results, and it is this approach that we will
evaluate on larger maps in the rest of this section.

B. Experiments on the Dynamic Octree

Although no benchmark exists for 3D pathfinding in a
dynamic setting, we can reuse our previous dataset and add
randomly moving obstacles while maintaining and updating a
given path. Table II shows average update costs over 1,000

Fig. 4. Shortest path between two points found using the octree structure
(red), after applying the funnel algorithm (yellow), and after funnel and path
pruning (green).

TABLE II
AVERAGE COST OF THE OCTREE UPDATE, GRAPH UPDATE, AND PATH

RECOMPUTING IN MILLISECONDS OVER 1,000 UPDATES ON THE
INDUSTRIAL MAP, USING EITHER REGULAR (O) OR MERGED OCTREES

(MO), AND LOCAL GRAPH UPDATES (LGU) OR REBUILDING THE GRAPH

Update method Octree
update

Graph
update

Path
recomputing

Total
time

O + no LGU 1.36 0.92 1.82 4.10
O + LGU 0.22 0.03 1.26 1.51
MO + no LGU 0.44 0.34 0.72 1.50
MO + LGU 0.39 0.03 0.55 0.97

updates with 3 moving obstacles on the Industrial map.
Updating a merged octree is faster since it contains fewer cells,
and locally updating the graph is much faster than recomputing
it entirely. Using local methods, updates can be made in just
one millisecond on average, making real-time updates to the
octree and pathfinding in dynamic environments feasible.

C. Comparison with JPS-3D

To test our approach in more realistic settings, we will now
run experiments on the 19 maps selected from the Warframe
dataset and compare our results against the JPS-3D algorithm.
The median and average compute times on all maps can be
found in Figure 5. The results obtained vary with the maps,
mainly because of their size and the number of obstacles they
contain. On most maps, the average compute time remains



Fig. 5. Average and median compute time of merged octrees (in blue) and
JPS-3D (in orange) on the 3D benchmark Warframe.

under 150 milliseconds, which remains feasible for real-time
applications.

Our path refinement consistently produces shorter paths than
those obtained with JPS-3D and leads to a 5% decrease in the
average path length.

The JPS algorithm is faster on most maps. We can compare
these average times in terms of speed-up factor of JPS over
our work, and the geometric mean over all 19 maps is 2.05
for average and 2.77 for median times. Although tested on
the same machine, JPS is implemented in C++ and our work
in Unity, so overhead and rendering costs could affect the
octree performance. We chose Unity to promote applicability
in video game development. We will now give more details
about these results to gain more insight into the behavior of
these two algorithms.

The median times are much lower than the average times,
meaning that the compute time distribution is skewed to the
right. Certain path instances are very long or complex and
can cause very high compute times. If we look at maximum
compute times, certain instances can take over a second to
solve with octrees, and up to 10 seconds with JPS. As we
saw on the handmade dataset, pathfinding times can vary
significantly with path length. We order the data points by
path length and report the average compute time for each
10-percentile on two maps from the Warframe dataset in
Figure 6. The octree is on average two times faster than JPS
on the BA1 map and two times slower on the Full4 map,
but both maps show the same trend. As expected, pathfinding
times increase with path length, but this increase is much less
noticeable with merged octrees than with JPS. On the longest
instances especially (paths in the last quartile), compute times
significantly increase with JPS, which is not the case with

Fig. 6. Evolution of the compute time with path length on the BA1 and Full4
maps.

octrees.
To conclude, our work produces very consistent results,

regardless of the path length or the environment, and finds
paths in a few hundred of milliseconds, which is viable for
many real-time video game applications. While the JPS-3D
algorithm is faster on average, merged octrees and the addition
of path refinement produce shorter paths and are faster in
certain scenarios, mainly for finding longer paths. A more
optimized implementation of our work in C++ would likely
also greatly reduce the performance gap.

V. CONCLUSION AND FUTURE WORK

3D pathfinding is crucial for NPC path planning in games
and being able to exploit the full range of 3D movements
can open many new possibilities in game development. How-
ever, it remains computationally expensive compared to 2D
pathfinding. Efficient representation of 3D environments is
key, leading us to develop a hierarchical octree approach with
a successful greedy merging method, reducing the number of
valid cells in the octree by up to an order of magnitude. Since
the octree and the graph can be computed and saved offline,
and loaded at run-time, we achieve very fast compute times.
On smaller maps paths can be found in just a few milliseconds,
and even on very large maps such as maps from the Warframe
dataset compute times typically range only in the hundreds of
milliseconds.

The visibility-based path pruning approach and the 3D
extension to the 2D funnel algorithm lower path length by
5 to 10% on average while being cheap to compute compared
to the A* algorithm, and in the case of the funnel algorithm
also maintains the homotopy class of a path.

A detailed comparison with the state-of-the-art JPS-3D
algorithm [18] shows that, even if our approach is slower



on average, our compute times remain in the same order of
magnitude and are faster for longer paths. Our path refine-
ment methods also produce shorter paths and provide more
flexibility.

We extended all of this work to dynamic environments by
locally updating the octree and the graph as changes in the
environment are detected. By changing the dynamic octree
method to a cell-repairing approach instead of the greedy
merging we ensure a stable representation and number of
octree cells even after many updates. Thanks to its locality
the update process remains fast, with average costs of less
than a millisecond.

We identified several interesting directions that future work
on this subject could take. First, we used an axis-aligned
bounding box representation for obstacles, mainly because it
suited the existing voxel benchmarks. Other, more involved
forms of obstacle representation could also be considered. In
some 3D benchmarks, for example, maps require extremely
large numbers of voxels to be represented, and a less con-
strained representation, polyhedral representation, even if still
discretized, may reduce the cost of initially building the octree.

Our design is also limited by the way the octrees most
naturally fit a cubic volume with each dimension a natural
power-of-2. Some maps in the Warframe dataset were very
elongated, and in general, game environments may not easily
fit in a large octree cube. One way to address this would
be to start the octree building process with a rectangular cell
instead of a cube, and split the first rectangular cell into evenly-
sized cubes, which can then be individually built like a regular
octree. This method would also add another form of hierarchy,
in which different octrees can be built for different regions,
and in very large game environments one could only load the
local octree relevant to the region the player is in.

While we focused on the shortest path problem, in many
games other constraints should be taken into account. If
the moving agent is a spaceship for example, paths should
incorporate dynamic constraints such as inertia or a limited
turning radius and smoother changes of direction to allow
vehicle movement. The graph initially constructed based on
partition transitions in the octree may provide some flexibility
to consider agent volume or turn radius, with some additional
limitations on granularity and connectivity. Extensive research
has already been conducted on this subject, and an approach
such as using Bezier curves to obtain smoother paths [24]
could also be used, although additional work would be needed
to ensure that smoothed paths do not collide with obstacles.
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