
Tomiko:

An Extensible OAuth 2.0 and OpenID Connect

Authorization Server

Jason Pizzuco

School of Computer Science

McGill University, Montréal

April 2023

A project report submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Computer Science

2

Contents

1 Introduction and Contributions 3

2 Background 5

2.1 OAuth 2.0, OpenID Connect, and Tomiko 5

2.2 Authorization Process . 8

3 Design and Methodology 13

3.1 Overall Architecture . 14

3.2 Tomiko . 19

3.3 Identity . 20

3.4 Identity-client . 20

4 Validations 22

4.1 Organization A (a large student organization) 23

4.2 Organization B (a decentralized internet community) 34

4.3 Organization C (a centralized community of friends) 38

4.4 Summary . 40

1

CONTENTS 2

5 Comparisons and Related Work 42

5.1 Keycloak . 42

5.2 Hydra . 44

5.3 Security Assertion Markup Language (SAML) 46

5.4 Usability, Security, and Compliance . 49

5.4.1 Hosting . 49

5.4.2 Argon2 Hashing . 51

5.4.3 Compliance . 52

6 Conclusion 54

Chapter 1

Introduction and Contributions

Tomiko is an extensible OAuth 2.0 [1] and OpenID Connect [2] authorization server and

identity provider. Tomiko is compliant with many existing software and protocol standards

and specifications in its domain, but seeks to extend the coverage of these standards by

creating general solutions to the problems they leave unspecified.

Useful standards tend to be written in ways that make their software implementations

useful in many different situations. These standards tend to be limited in scope and fit

together with other standards to build a useful system. Following this pattern, Tomiko is

designed to decompose the non-standardized “implementation detail” area of authorization

servers and identity providers into distinct concerns. To this end, Tomiko has multiple

components, each of which communicate together using new interfaces. These interfaces

(referred to throughout this report as APIs) represent the different concerns the components

are responsible for.

Unlike most existing authorization servers and identity providers which are monolithic

and can only be extended by making their codebases even larger, Tomiko is designed so that

3

CHAPTER 1. INTRODUCTION AND CONTRIBUTIONS 4

its components may be freely replaced or extended with alternate implementations so long

as they are able to communicate using the APIs expected by the other components in the

system.

In the context of this project, the Tomiko system was designed, reference implementa-

tions of components were built to help refine the design, interface definitions, and abstraction

boundaries, and those reference components were deployed into production by multiple or-

ganizations in order to ensure their functionality.

This report describes the overall space and most important specifications surrounding

OAuth 2.0 and OpenID Connect, both of which are implemented by Tomiko. A description is

given of Tomiko’s overall design and of the different components, what each one is responsible

for, and how they communicate together. A sample of 3 organizations that use Tomiko are

studied as cases justifying elements of Tomiko’s design, outlining the problems it can solve,

and the techniques used to solve them. Finally, Tomiko is compared to existing software,

its implemented protocols are compared to other protocols used to solve some of the same

problems. A brief overview of how its reference components can be hosted and scaled is also

presented.

Chapter 2

Background

This chapter describes the OAuth 2.0 and OpenID Connect specifications, their purpose and

use, and how Tomiko fits into these specifications. It later describes some of the processed

involved in carrying out an authorization according to these specifications.

The first section establishes terminology from the OAuth 2.0 and OpenID Connect spec-

ifications that are used throughout the report. The next section helps to build familiarity

with the basics of OAuth 2.0 by walking through the most commonly used authorization

grant type, the Authorization Code Grant [1].

2.1 OAuth 2.0, OpenID Connect, and Tomiko

This section describes the OAuth 2.0 and OpenID Connect specifications. Specifically, we

outline the different entities involved in an authorization and their respective responsibilities

toward the end-to-end process.

Tomiko is an extensible OAuth 2.0 and OpenID Connect authorization server and identity

5

CHAPTER 2. BACKGROUND 6

provider. In contrast to some authentication methods, where a system that wants to protect

access to a resource must implement authentication and authorization on its own, different

entities perform different roles and communicate during an OAuth 2.0 authorization process

to acquire the required authorization to access the resource. These roles are as follows.

Resource Owner An entity capable of granting access to a protected resource. When the

resource owner is a person, it is referred to as an end-user.

Resource Server The server hosting the protected resources, capable of accepting and

responding to protected resource requests using access tokens.

Client An application making protected resource requests on behalf of the resource owner

and with its authorization. In the OpenID Connect specification, this is also known

as a relying party.

Authorization Server The server issuing access tokens to the client after successfully au-

thenticating the resource owner and obtaining authorization.

OAuth 2.0 concerns itself only with authorization, not authentication. The methods

used to identify or authenticate the user are out of scope for the standard, so different

authorization servers implement that concern differently. Doing so securely, especially in a

way that allows the authorization server to be usable in different contexts or with different

configurations, is not trivial. This limitation means that the entities performing other roles

in the process do not participate in authentication in a standard way and must be prepared

to adapt to custom processes.

CHAPTER 2. BACKGROUND 7

OpenID Connect [2] is an extension to OAuth 2.0 that adds additional features, but also

adds additional constraints to implementers to simplify interoperability. OpenID Connect

identity providers (i.e., authorization servers that are compliant with the OpenID Connect

extension) are also usable to provide a means for standardized authentication alongside

authorization.

These standards define a minimal protocol for relying parties to begin the authorization

or authentication process, for authorization servers to communicate the termination of the

process and result to the requesting relying party, and for providing assertions about the

completed process to relying parties that they can present to resource servers in order to

access resources.

Many important aspects of the process are left as implementation details. Implementers

must answer design questions like: how the process will interact with other systems and com-

ponents once it has begun; how the resource owner provides access, credentials, or consent;

and how resource servers can validate authentication or authorization assertions.

Since identity providers are somewhat complex, most are purpose-built for a particular

organization, social network, or service provider. These are usually very large monolithic

systems whose components (to the extent they’re even separated into separate components

at all) are not reusable to build other providers.

Tomiko provides a fully-functional implementation of these specifications that is designed

to be extensible and reusable, and whose internal components interact using a well-defined

protocol so that they can be replaced with different implementations if necessary without

having to redesign the entire system.

CHAPTER 2. BACKGROUND 8

2.2 Authorization Process

This section describes the OAuth 2.0 Authorization Code Grant. Most applications using

OAuth 2.0 and/or OpenID Connect use this or a variation of this grant. It builds off the

previous section by describing which parts of the grant each role bearer is responsible for.

When a resource owner is using a client and would like to authorize the client to receive

a protected resource from a resource server, the client makes a request to the authorization

server to ask for access to the resource.

{

"response_type": "code",

"client_id": "my-app-id",

"redirect_uri": "https://my-app.my-org.com/callback",

"scope": "my-app-scope1 my-app-scope2",

"state": "my-app-opaque-string"

}

Figure 2.1: A simple authorization request

A standard OAuth 2.0 (potentially with OpenID Connect extension) authorization re-

quest is shown in Figure 2.1. It takes the form of a HTTP GET request to tomiko’s autho-

rization endpoint with the following parameters encoded into the query string (parameter

values containing the substring my-app are placeholders that will be filled by the client).

The response_type parameter describes the type of grant the client wishes to use. In this

example, we will describe an authorization code grant, so the parameter value is code, but

CHAPTER 2. BACKGROUND 9

the specifications define multiple different grant types which have entirely different authen-

tication flows. All grant types specified in the OAuth 2.0 and OpenID Connect specification

(as well as other extension grant types from other specifications) are supported by Tomiko.

The client_id parameter is an identifier assigned to the client by the authorization server.

The redirect_uri is a URI to which the caller will be redirected after authorization has

taken place. For security reasons, this URI must be whitelisted and associated with the

requesting client to ensure that malicious or compromised applications do not build autho-

rization code relays to untrusted endpoints. The scope parameter is a space-delimited list of

permissions that the client is requesting that the access token cover. For example, a photo

sharing application may request a scope to get access to a user’s contacts/friends and a

user’s photo library. This list is later used to display a consent screen to the user to make

them aware of what permissions they are authorizing the client to have on their behalf. The

state parameter is an opaque string carried through the request and and sent-back to the

client alongside the redirect response. The client can use this to associate information with

the authorization request (such as the action the user was trying to perform when they were

asked for authorization or authentication, so that they can continue where they left off once

the process completes successfully).

At this point something interesting must happen: the user (currently within the client

application) must be directed to the authorization server so that the authorization server may

interact with the user and establish their authorization. In order to do this, the authorization

request must happen within the user’s user agent. This places an interesting constraint on the

content of the authorization request: it cannot contain any secret data that the authorization

server might use to authorize the client, and its response cannot contain data that cannot

CHAPTER 2. BACKGROUND 10

be assumed to be intercepted by clients other than the one making the request.

Somehow, in an implementation-dependent way, the user who has now been directed to

the authorization server is authenticated with the server and their authorization to grant

the client application access to the requested resources is established.

The authorization server now generates an authorization code and sends it back to the

client using the redirect_uri from the original request. An example response can be seen in

Figure 2.2 (note that values containing my-idp are placeholders chosen by the authorization

server and values containing my-app are placeholders chosen by the client). This authoriza-

tion code is a one-time-use secret that can be exchanged for an access token asserting the

user’s authorization upon the client’s successful authorization.

The client, having received the authorization code, must now make a second request

to the authorization server in order to receive an access token. Since this response to this

request will contain a token which the client must ensure does not leak, the client application

makes this request internally (not using the user’s user agent).

A sample request is shown in Figure 2.3. In this request, the grant type for this request

is specified to be authorization_code. The authorization code is transmitted in the code

parameter, and the URI the user was redirected to in order to capture the code is transmitted

in the redirect_uri parameter. Finally, since acquiring a token is a privileged action, the

client provides its own authentication in the client_id and client_secret parameters to

prove that the authorization code wasn’t stolen in transit but was actually issued to this

same client.

An example response to this request which is shown in Figure 2.4. The opaque access

token is transmitted in the access_token field, the token type (usually used when specifying

CHAPTER 2. BACKGROUND 11

the authorization scheme in the HTTP Authorization header) is specified in the token_type

field, and number of seconds for which the token is valid is transmitted in the expires_in

field.

{

"code": "my-idp-code",

"state": "my-app-opaque-string"

}

Figure 2.2: A simple authorization response

{

"grant_type": "authorization_code",

"code": "my-idp-code",

"redirect_uri": "https://my-app.my-org.com/callback",

"client_id": "my-app-id",

"client_secret": "my-app-secret"

}

Figure 2.3: A token request

CHAPTER 2. BACKGROUND 12

{

"access_token": "my-idp-token",

"token_type": "my-idp-token-type",

"expires_in": 3600,

}

Figure 2.4: A token response

Chapter 3

Design and Methodology

This chapter describes Tomiko’s design and how is components are laid out and communicate

together. Each of its first sections describe a single component and its responsibility toward

the whole, as well as which other components it communicates with in order to implement

its concerns. Finally, a description of the overall architectural design and extension patterns

is provided to convey why Tomiko is designed the way it is.

A Tomiko deployment is composed of 3 or 4 separate components depending on how it is

extended. Tomiko, while naming the entire system, is also the name of the core component.

When referring to the component specifically, it will be typeset in italics.

13

CHAPTER 3. DESIGN AND METHODOLOGY 14

Figure 3.1: Architecture block diagram

3.1 Overall Architecture

Tomiko’s overall architecture is designed to be extensible by defining and stabilizing the

APIs components use to interact with one another. Rather than being a large monolithic

system that is extended through framework-style built-in support for different functionality

or through configuration, each of Tomiko’s components have restricted scopes and encapsu-

late few different concerns as possible. This allows components to be replaced with equivalent

ones that better meet a user’s needs.

This enable this, components implement one or more HTTP-based APIs. Tomiko is

designed to assign each of these APIs a single responsibility/concern so that components do

not have to rely on knowledge of which software implements unrelated APIs or how that

software implements them.

CHAPTER 3. DESIGN AND METHODOLOGY 15

In a standard Tomiko deployment, there is minimal cross-talk between components -

each component usually communicates with one other component to implement a concern.

A block diagram indicating which components communicate together is presented in Fig-

ure 3.1. Applications relying on Tomiko’s services communicate with tomiko over a standard

OAuth 2.0 interface with standard OpenID Connect extensions. tomiko instructs the re-

lying application with where it should direct the user to complete the authorization the

application is requesting. Since the OAuth 2.0 protocol standard specifically states that the

mechanisms used to authenticate a user or establish their authorization are out of scope for

the standard, tomiko mirrors this extension point and delegates all control over authentica-

tion and authorization away, concerning itself only with presenting and processing assertions

about the authentication or authorization process after it as taken place. This means the

user, while performing their portion of the authorization process, does not have any need to

interact with the tomiko component. The user may need to present some tokens in order

to authenticate themselves at some frontend interface that a human can interact with, so

tomiko instructs the application to direct the user to identity-client.

It’s worth noting that tomiko has no particular coupling to identity-client or its imple-

mentation. Rather, tomiko encodes information about the request (in this case, a challenge

identifier) that any component that can interact with its challenge API can use. tomiko is

simply configured with a URI a requestor can use to reach a component that can perform

any authentication or authorization validation requried, and encodes the challenge identifier

into the URI’s query string. Where this URI points or what is done with the challenge

identifier is out of scope for tomiko. Likewise, for identity-client, when a request containing

a challenge identifier is received, it does not necessarily need to know which identity provider

CHAPTER 3. DESIGN AND METHODOLOGY 16

issued the challenge. Depending on how Tomiko is extended, the frontend component may be

implemented with the ability to perform authentication, authorization, or both on its own.

Whichever of these tasks it does not implement can be delegated to another component. In

either case, tomiko does not assume or have mechanism to enforce any particular behaviour.

In the standard case, identity-client interacts with the user to request tokens or consent,

but does not have any mechanism to validate them or decide which tokens are required or

in which order. identity-client also does not have any interpretation of any of the scopes

requested in an authorization request. Instead, identity-client is driven by APIs presented

by identity.

identity is responsible for identifying and authenticating the user, and any mechanisms,

directories, or requirements for doing so are configured only within identity. When a request

arrives at identity-client, this component asks identity how to proceed. identity drives a state

machine to determine which authentication tokens/factors are required, and communicates

each of these to identity-client in sequence. For example, when identity-client requests an

indication on what to do next, identity might reply signaling that a password factor is

required, and provides any information that may be required to ask for a password (such

as the user’s name to show them a greeting). identity-client receives this reply and displays

a form asking the user for a password. The user sees this form and provides a password,

which identity-client sends back to identity asking “here’s the password you asked for. what

next?”. identity may repeat this process by replying with requests for any number or sequence

of factors until it is satisfied with the user’s authentication. This process is illustrated in

Figure 3.2

Once it is satisfied, identity may reply to identity-client that it’s time to show a consent

CHAPTER 3. DESIGN AND METHODOLOGY 17

Figure 3.2: Identity login flow

screen, and provides the information (including which scopes are being requested).

The entire interaction, beginning with a user visiting an application is summarized in

Figure 3.3

CHAPTER 3. DESIGN AND METHODOLOGY 18

Figure 3.3: Tomiko Authorization Code Flow

CHAPTER 3. DESIGN AND METHODOLOGY 19

3.2 Tomiko

tomiko is the core component that implements the authorization server interface. Relying

parties interact with Tomiko by exchanging messages to tomiko almost exclusively. tomiko

aims to follow the design of the OAuth 2.0 standard [1] very closely - it is not concerned with

the answers to most of the questions implementers must answer. Instead, tomiko implements

the core OAuth 2.0 protocol in a generic but extensible way, and provides an API to inter-

act with separate and interchangeable components that handle the usually implementation-

specific portions of the authentication or authorization process.

tomiko can authenticate relying parties and resource servers using standard OAuth 2.0

methods, but cannot itself authenticate users. tomiko tracks which authorization or au-

thentication processes are currently active and what each of their states are, and provides

other components in the system with information to perform their role. When the process

is complete, it provides a response to the original requester, in a format that can later be

validated by systems that would like to.

Of course, once an authentication or authorization process has begun, the directory

against which to validate any user credentials must be known, and this will vary based on

the user of the software. While other authorization servers have a list of supported user

directories (most of the time only one option), tomiko relies upon an external component

interacting with its challenge API. In a standard Tomiko deployment, the component that

interacts with this API is called identity.

CHAPTER 3. DESIGN AND METHODOLOGY 20

3.3 Identity

identity is the component which performs authentication decisions, checks user directories

and login policies, handles multi-factor authentication mechanisms, and responds to tomiko

challenges through its API. identity supports different user directories, and each are fully

configurable. In particular it supports LDAP directories, which are the most common in

organizations seeking centralized authentication. While some other IdP LDAP plugins only

support a short list of LDAP schemas (usually only Active Directory-style schemas), identity

has an entirely configurable schema mapping. identity can either be configured through

simple configuration files or environment variables, or custom plugins can be written in Ruby

to arbitrarily extend the functionality in ways that might be more difficult with declarative

configuration.

identity interacts with tomiko’s challenge API and any external services needed to vali-

date the authenticating user against the configured directory or multi-factor authentication

systems. In order to actually interact with the user, identity directs the user-agent to a

web-based frontend, identity-client.

3.4 Identity-client

identity-client interacts with identity’s APIs, meaning it can also be switched out for any

other frontend that can interact with the user on identity’s behalf. The standard identity-

client is a dynamic in-browser single-page application that presents a rich user interface to

the user. Since different organizations might desire a different ”look and feel” or want to

present different information to users with particular organization-defined roles, identity-

CHAPTER 3. DESIGN AND METHODOLOGY 21

client is also configurable so that it does not have to be replaced for most use cases. It

provides two options for extensibility, directing users to a separate component hosted at the

same domain for a list of views, or writing custom components that are hosted within the

same single-page application. If the latter option is chosen, these components can interact

with the rest of identity-client though well-defined APIs with TypeScript annotations.

Chapter 4

Validations

Tomiko was origininally designed to meet the needs of a particular organization, and its

architecture was originally conceived to address that organization’s needs only. Initially

developed as a proof of concept, as it came into use and showed evidence that it could

address the problems it set out to solve, there was increased interest in adapting Tomiko

to work in other organizations – some of which had vastly different needs or surrounding

infrastructure to interoperate with.

Tomiko is now used in production by a variety of different organizations. With these

groups, it has been proven to work well with different OAuth 2.0 and OpenID Connect

components.

It has been integrated with commercial, free/open source, and custom relying parties.

Since OAuth 2.0 and OpenID Connect are both open standards that are designed to allow

compliant software to interoperate with each other, Tomiko’s ability to interoperate with

out-of-the-box components is an initial testament to its correctness.

Of course, these protocols seem deceptively simple, so blackbox testing at the edges of

22

CHAPTER 4. VALIDATIONS 23

the interface would not be sufficient as a single validation to show that Tomiko properly

addresses what it sets out to.

One of Tomiko’s main selling points is its extensibility model. This is precisely what al-

lows Tomiko to go beyond an organization-specific in-house identity provider to an extensible

platform for building compatible identity provider components.

To validate whether Tomiko’s extensibility points are sufficient to allow it to be used

in different ecosystems, we will analyze some case studies of different organizations using

Tomiko, and how their needs helped to shape Tomiko’s design.

This chapter describes how Tomiko came to be, and gives case studies that helped to

shape its design and help to validate that it meets its design goals. Each of its first chapters

is a case study describing an organization with specific requirements for any identity provider

they might come to use, explains how Tomiko met or was extended to meet those require-

ments, and how that organization came to use Tomiko. Each organization is pseudonymous.

4.1 Organization A (a large student organization)

The first organization to use Tomiko, which we’ll refer to as Organization A, was a student

organization at McGill University. This is an organization composed primarily of student

developers, and it makes heavy use of free/open source tools.

Control over management interface Since most of its members are highly technically

competent and would like to build many different applications that use Tomiko as an authen-

tication and authorization provider, the ease with which new integrations could be added

CHAPTER 4. VALIDATIONS 24

and with which information was available about each user in the system was an important

factor.

In addition to this, the organization had a mature governance structure surrounding

which roles should have access to change information within the system (not just anybody

could self-enroll relying parties or change their properties, it had to be done centrally through

an approval process).

The organizational governance structure surrounding changing information or adding

integrations to the system actually made the implementation simpler. In highly dynamic

environments (such as social networks that do not manually verify every third-party ap-

plication that wants to allow users to authenticate through them), authorization servers

must usually support a specification called OpenID Connect Dynamic Client Registration

[3]. This is a complex specification that allows applications to dynamically request new client

registrations/credentials and modify information about those clients. This can sometimes

be convenient, but is not useful for most organizations and can widen the security perimeter

unnecessarily. Not having to implement this standard simplied Tomiko’s requirements and

necessitated coming up with a different way to enroll and manage clients.

To do this, a command-line management interface which would be friendly to automation

tools/pipelines was developed which allowed client enrollment and management. This meant

organizations could build their own governance and processes surrounding these actions and

easily perform the actions either manually or in automated workflows when appropriate.

User Attributes This organization delegated its user directory to McGill, so it did not

have to own user information or handle user provisioning. The university used Microsoft

CHAPTER 4. VALIDATIONS 25

Active Directory to hold user information. Before Tomiko, Organization A handled authen-

tication by configuring each of their software individually to interact with Active Directory

through LDAP [12]. Since Organization A did not own the data in Active Directory, it

did not have control over the schema or format of the attributes. As a result, some of the

attribute values required filtering or processing before they were meaningfully usable by ap-

plications that were interested in them. Some attributes were not directly present in Active

Directory, but were instead derived by projecting a combination of other attributes into a

new “virtual” attribute.

Tomiko was replacing an older attempt at solving the problem of delegating LDAP au-

thentication. That older system handled both LDAP integration and token generation, but

this proved to be fragile to maintain because it required understanding both these concerns

to make any changes to the system. It also prevented the parts from being independently

reusable. That system had two components, one which handled LDAP authentication and

token generation, and another which exchanged valid tokens for information about the user

that authenticated (which also came from LDAP). Since the LDAP portion was embedded

into the first component, it was not easy to reuse it in the second component, which also

needed to perform LDAP operations. Likewise, information about how the token was gener-

ated in the first component was necessary to properly validate it in the second component,

but because the concerns were combined with the authentication logic, it was difficult to

reuse them.

This led to the decision to separate all Tomiko’s token management from its user manage-

ment. Not only did this more closely follow the OAuth 2.0 specification’s design (since user

management was not in scope of that specification), it greatly simplified and centralized the

CHAPTER 4. VALIDATIONS 26

logic for each of these concerns. Thus, the tomiko component would handle OAuth 2.0 tokens

and a second component, identity would handle user management. This meant that tomiko

could be completely independent of LDAP, so it could be used by organizations that backed

their user directory by different systems. Likewise, identity could be completely independent

of OAuth 2.0. It was built to custom abstractions that mirrored OAuth 2.0’s abstractions

(clients and scopes) but that could be backed by other protocols if needed later, and did not

require knowledge of the implementations of those abstractions to perform maintenance on

the user management. This meant that student developers who required new user manage-

ment features could feasibly add them to identity without any particularly deep knowledge

of how OAuth 2.0 works and without any fear of introducing vulnerabilities into the token

generation process.

Initially, identity was purpose-designed to be used with McGill’s Active Directory layout,

but the requirement to support “virtual” attributes meant that it would not be sufficient to

naively map known attributes to user information claims. Some of these attributes required

processing, and there may be cases where one claim comes from multiple attributes, or a

subset of the values for a single attribute. Since we had many attributes to manage, and

developers would probably need to add or modify these attribute definitions, special care was

taken to ensure that it would be simple to do so without having to know too much about

the surrounding system. To support this, a system whereby information claims could be

specified using configuration files rather than modifying the source code was developed. This

system needed to allow all claims (including the base set defined in the OpenID Connect

Core specification[2]) to be defined and mapped to LDAP attributes, but also required

relatively complex operations and projections of custom attributes. This configuration file

CHAPTER 4. VALIDATIONS 27

layout was inspired by declarative YAML CI/CD pipeline definitions, and allowed defining

attributes that came from multiple configurable sources, as well as pipelines of regex and

other transformations to derive the final value. This format proved over time to be easy to

use and extend.

Responsible data use Many factors led to concerns about responsible data use within

this organization. First, user data came from the university and could in some cases be

considered to be sensitive. Second, Organization A offered a platform for external student

developers to build applications using the organization’s APIs and integrations, and there

were concerns about how to ensure that those external developers used user information

responsibly and made users aware of which data was collected.

While generally Organization A preferred that all user information required that user’s

explicit authorization before being disclosed to an application, there were exceptional cases

where some information needed to be available even if the user was not present or had not

yet had the opportunity to authorize the disclosure. For example, organization members

who performed user support tasks might need to look at information about a user who is

having trouble authenticating (and therefore could not have performed any authorization)

to see whether there was a problem with the user’s profile.

Concerns over responsible data use led to special emphasis on authorization of user

information release. It was important to design a system that allowed uses to understand

which information was being required of them, who was requesting it, and decide whether

they wanted to authorize it. These pieces of data are linked to OAuth 2.0 scopes. If an

application requires a user’s email address, it can request the “email” scope as part of the

CHAPTER 4. VALIDATIONS 28

authorization request. Handling these scopes is tricky, because it must necessarily involve

multiple components. Since scopes are requested in the authorization request, which goes to

tomiko, that component must be aware of scopes. Since tomiko will eventually issue the token

if appropriate, and the token contains the list of authorized scopes, it must ensure that the

list of scopes in the token is really the same list the user actually authorized. However, tomiko

does not interact with the user in any way, so it has no way to directly inform or ask the user

to authorize. Instead, identity-client, the only component that directly interacts with the user

must accurately display the scopes and capture the user’s authorization assertion. However,

identity-client does not speak directly to tomiko, only to identity. This raises a question about

which component owns the responsibility to ensure the scopes are well-handled. Tomiko’s

solution to this problem is for identity to own this responsibility. The identity component

is configured with the definition of each regular scope a user can authorize. This definition

includes any criteria that may disallow a user from authorizing a particular information

release (for example, they cannot authorize information relating to services they have not

paid for), the name of the scope, and a user-facing description of the scope that users

will see when the scope is requested. When a regular scope is present in an authorization

request, tomiko treats the requested scopes as an opaque set of strings and makes them

available in the authorization request context that identity can consume later. When a user

is directed to identity-client to authorize the requested information, identity-client acquires

the information about the request from identity. In turn, identity gets the information from

tomiko’s request context and validates and processes it according to the scope definitions it

owns. After trimming away scopes that the user cannot authorize, the description of each

scope is pulled from the definition and forwarded to identity-client for user interactions. Once

CHAPTER 4. VALIDATIONS 29

the authorization decision is made, the set of authorized scopes is eventually sent back to

tomiko, which after performing some security trimming (checking that the final set of scopes

is a subset of the original requested scopes to prevent an escalation attack) treats each value

in the set of scopes as opaque again when issuing the token. This architecture ensures that

scope definitions can easily be modified in a single place, with a single component owning

the responsibility to manage them.

In the previous paragraph, the qualifier “regular” was used to describe some scopes. This

organization required that in some special cases, some user information could be available

to an application even if a user was not present or did/could not consent. To support

this behaviour, a separate set of scope definitions is present. These are called “privileged

scopes”, and permission to use a privileged scope must be explicitly granted to a client.

A client must request these scopes as itself, not request them from a user. For example,

Organization A defines a privileged scope priv::all_users:ro, which allows read-only

access to all information about any user. This scope cannot be requested using the regular

kind of authorization request that has been described so far, because that process is for

allowing a user to delegate its ability to access resources relating to a certain scope to a

client. At the end of that process, an access token whose subject is the user who authorized

is generated.

In the case of a privileged scope, the semantics are different. An authorization request is

not asking a user to delegate a permission to the client, but rather asking the authorization

server to provide an assertion that the client itself inherently has a permission. In OAuth 2.0,

the standard “client credentials” grant type is used for these kinds of authorization requests,

and therefore in Tomiko privileged scopes are only available during “client credentials” grants.

CHAPTER 4. VALIDATIONS 30

The set of privileged scopes a client is entitled to is part of the client’s metadata in tomiko,

and since no human user is required to authorize them, descriptions of these scopes are not

necessary. Since, while the notion of privileged scopes is an abstraction provided by Tomiko

and not by OAuth 2.0, but the process to issue them is covered by the OAuth 2.0 standard

and does not require external interaction, the responsibility to manage these scopes belongs

to tomiko, not identity. It would not be possible for identity to manage them because identity

is never involved in client credentials grants, since those grants do not involve users. When

a client requests a privileged scope during an authorization request to tomiko, its permission

to use that scope is checked but the scope itself is opaque and carries no inherent meaning.

If all the requested privileged scopes are allowed for the client, they will be present in the

authorization token that will be generated with the client itself as its subject.

This allows Organization A’s example use case of having some applications see user

information even if they are not authorized. If there is a support application to look up user

profiles to check for problems, that application would ask for a token to be issued to assert

that it is entitled to the priv::all_users:ro scope. A resource server acting as a user

information service which normally only grants access to a user’s information if an access

token with that user as a subject covering the resource is presented alongside the request

could offer the ability to bypass this check and release information about any user if the

request is being made by a client which presents an access token asserting that they are

entitled to the priv::all_users:ro scope.

LDAP software support and bind credentials The organization’s existing use of Ac-

tive Directory through LDAP imposed a hard requirement that any software built or deployed

CHAPTER 4. VALIDATIONS 31

(commercial, free/open source, custom, or otherwise) supported LDAP authentication. Since

LDAP integration is almost always used by large organizations, lots of free/open source soft-

ware that also offer additional (usually paid) proprietary features do not provide LDAP

support gratis or under the usual free license the rest of the software is available under. On

the other hand, OAuth 2.0 and OpenID Connect are used for social integrations (such as

with Microsoft, Google, Twitter, GitHub, GitLab, etc.) which are very commonly used even

in small software deployments, not exclusively used by large commercial organizations, so

these features are generally available both free of charge and also under the same free license

as the rest of the software.

A minimal LDAP integration was not sufficient, since there was a need to have specific

bind credentials and user filters. In order to handle all attributes, the software also required

the ability to re-process or re-format data it received via LDAP before using it in a user’s

profile.

Some user information was available to this student organization that is not generally

available to all users at the university, so a special LDAP binding account was used in all of

these systems to retrieve access to this information rather than binding to Active Directory

using a potential user’s credentials as they present them for authentication.

As a result, each application had to be configured with global sensitive bind credentials

and had to be strongly coupled to the object schema in Active Directory, and each had

to separately implement any logic for processing or deriving “virtual” attributes from the

LDAP information. Any security vulnerability in any of these applications that could allow

the bind credentials to leak would immediately grant unregulated access to all student in-

formation present in Active Directory that that bind account had access to, which includes

CHAPTER 4. VALIDATIONS 32

user information that was not generally otherwise available. As a result, bind credentials

had to be frequently rotated “just in case”, which required changing the credentials in every

system’s configuration separately.

Tomiko’s use of OAuth 2.0 and OpenID Connect as identity federation protocols rather

than LDAP, and its identity component’s flexible and centralized configuration of attribute

mappings fully addresses these problems. Furthermore, since identity is the only component

that requires any access to the user directory, it is the only component that ever needs access

to the organization’s sensitive LDAP bind credentials.

Login restrictions and authentication factors Due to the difficulty of retrieving user

authorization when using an LDAP-based authentication system, only a very limited form

of authorization was used – the organization’s authorization for a user to access a particular

system.

To validate this, LDAP groups were created within Active Directory for systems which

needed this sort of authorization, and users who were authorized to use systems were put

into these groups.

At authentication time, after binding to LDAP with the privileged account, the LDAP

user whose authentication credentials to test against against those the human user supplied

would be found by restricting the search to these authorization groups. If a user was not

in the authorization group for that system, they could not be authenticated. The existing

system had many problems supporting these use cases.

Second, using base LDAP in this way does not generally allow for multi-factor authen-

tication, since there is no agreed-upon way for all software to determine and process non-

CHAPTER 4. VALIDATIONS 33

password authentication tokens, which the organization was interested in implementing.

These problems were some of the motivating factors for building Tomiko, so care was

taken to make sure they could all be addressed with its design. To address the need that

the organization be able to control which users could perform which interactions on which

resources across systems, the OAuth 2.0 “scopes” concept was used. OAuth 2.0 clients are

already required to specify in their authorization request the list of scopes they’d like to

be granted through an eventual access token. While some of these scopes could be regular

scopes (as mentioned earlier) that allow users to decide whether they would like the client to

have access on their behalf, some scopes could also be automatically derived based on user

attributes or group membership.

For example, Organization A offers some services with quota restrictions whereby each

“use” of the service by a user will consume some of the user’s allocated quota to use a func-

tionality of that service. Since all software eventually has issues, some of the organization’s

members had special permissions to investigate issues with the service and “refund” user

quota if there was an error somewhere. When the software that allows management of quota

asks a user to log in, the software could request in its authorization request that it would

like an access token with a scope that covers the ability to refund quota. When this autho-

rization request is processed, that scope entry can be automatically derived based on any

combination of user profile attributes (are they a member of Organization A? are they part

of the group of production operators of this service?).

The OAuth 2.0 specification specifically allows for the authorization server to issue an

access token with only a subset of the requested scopes, so OAuth 2.0 compliant clients should

already be equipped to handle the case that the scope they asked for (in this case, the ability

CHAPTER 4. VALIDATIONS 34

to refund quota) is not present (either because the user didn’t authorize it in identity-client

or because it was automatically established by identity that the user themselves does not

have this permission and therefore cannot delegate it) and handle it meaningfully within the

application.

To support use of non-password authentication factors, an API was defined between

identity and identity-client to flexibly support prompting for custom authentication factors.

As part of identity’s authorization state machine, there is a loop over all the configured and

eligible authentication factors for the user, and identity-client is configured to handle each

iteration of this loop by asking for details of the factor and interact with the user to collect

the required information.

In Organization A’s deployment, identity is configured to sometimes require an email

confirmation code to be entered when logging in.

4.2 Organization B (a decentralized internet commu-

nity)

Another organization using Tomiko is Organization B. This is a decentralized internet com-

munity of hobbyists, developers, and collaborators that share many self-hosted internet ser-

vices. Among these services are collaboration platforms, chat platforms, file sharing plat-

forms, federated social software, a source code repository, and a few other pieces of custom

and out-of-the-box software. Some members have shared access to the infrastructure that

the services are hosted on. Some of this access is via SSH, and other access is through a

CHAPTER 4. VALIDATIONS 35

secrets broker that requires members to identify themselves before issuing temporary secrets

or tokens.

Organization B was the second major user of Tomiko, and supporting it meant updating

parts of Tomiko to make it more closely match its goal of being usable and easy to adapt.

Before Organization B, some pages inside identity-client were hard-coded to make some

assumptions about the kind of uniqueness constraints that existed between attributes on

a user’s profile. The LDAP queries used to query profile information in the LDAP con-

nector also used Active Directory-specific extensions (such as 1.2.840.113556.1.4.1941,

LDAP_MATCHING_RULE_IN_CHAIN). Organization B also had an existing LDAP server which

contained its users, but used OpenLDAP rather than Active Directory. These changes led to

Tomiko having a completely configurable set of LDAP mappings and queries in identity.

Since Organization B managed its own users (unlike Organization A), more functionality

was needed for users to manage their profile details, such as changing passwords or display

names. These were easily integrated into identity and identity-client by adding the

ability to specify “mutable” attributes in the user directory specification and validators for

those attributes. An option was added to allow the ability to change passwords for LDAP-

backed users on the authentication factors page, which meant refactoring the portion of the

authentication stack that previous treated password factors as a special case.

For more complex modifications (such as changing profile photos), identity exposed an

API to send arbitrary base64-encoded bytes, which meant identity-client (or any custom

client components mounted by identity-client) could perform custom logic to encode any

data the user uploaded (such as: in this case, profile photos) before saving them to the user

directory.

CHAPTER 4. VALIDATIONS 36

Organization B offered its members the ability to associate SSH keys with their user

profile so that members with infrastructure access could be granted access via their keys.

Some members thought it would be interesting to use ownership of their SSH private key as an

authentication factor. Since identity only supported a single non-password authentication

factor at the time (TOTP codes sent via email), implementing an SSH-based authentication

factor came to be a way to measure the flexibility of identity’s API.

Implementing this required a simple extension to identity (the ability to read authen-

tication factor data from the user’s profile) and for a microservice to be written implement-

ing the authentication factor’s logic which interacts with identity’s API. This microservice

(called SSHAFT, SSH authentication factor) [10] was written in Go (any language could

have been chosen, but Go was chosen as a testament to the flexibility of writing extensions

in languages no other part of Tomiko is written in) and required only 200 lines of code to be

in a production-usable state.

When SSHAFT is enabled and an SSH key is provisioned for a user, the user will have the

option to use SSHAFT as a secondary authentication factor after providing their primary

factors (username or email and password). If the user chooses this option, a unique identifier

is generated for the challenge, the challenge is recorded in identity’s database containing

a hash of the generated identifier and the user is directed to use their SSH client to attempt

to create a connection for <identifier>@<SSHAFT hostname>. At this point, identity-

client would use a WebSocket to wait for new events from identity about the status of

the challenge.

Meanwhile, the user attempts to create the requested SSH connection. OpenSSH allows

a custom command to be run to generate the authorized_keys file and passes information

CHAPTER 4. VALIDATIONS 37

about the connection attempt to this command. The command in this case, is an invocation

of SSHAFT which connects to identity to get the challenge information, tests the user’s

key against the ones in the user’s profile, and instructs identity to either accept or reject

the challenge. When the result is known, the status is sent to identity-client over the

open WebSocket to continue or abort the authentication process.

An interesting property of the API between identity and authentication factors is that

this API requires authorization using OAuth 2.0. The communication between different

components uses the same authentication and authorization protocols that the entire system

works to provide.

Organization B also provides an email service to its members, authentication to which was

traditionally restricted to plaintext passwords via plaintext IMAP and SMTP authentication.

The group used to connect their mail servers directly to their LDAP server to verify users’

passwords when needed. Since the group was moving to OAuth 2.0 + OpenID Connect

based authentication and authorization instead, their mail server and their members’ clients

had to be reconfigured for the new protocol. Luckily, the mail server software they were

using (Postfix and Dovecot, with Postfix delegating authentication to Dovecot via SASL)

supported the XOAUTH2 and OAUTHBEARER SASL mechanisms, which allow clients to

acquire their own tokens with the required permissions via standard OAuth 2.0 grants and

supply the resulting token when connecting to IMAP or SMTP service. Integrating their

instance of Tomiko with Dovecot only required a small configuration change to their Dovecot

instance. Unfortunately, client support for XOAUTH2 and OAUTHBEARER is not perfect

yet. Since clients must acquire their own tokens, they need a way to get client IDs and

client secrets and register redirect URIs with the authorization server. Some major clients

CHAPTER 4. VALIDATIONS 38

do not support custom OAuth 2.0 providers but come with built-in client IDs and client

secrets corresponding to registrations with major mail providers (such as Gmail, Outlook,

etc). Mozilla Thunderbird is an example of such a client [11]. To try to make support client

support as wide as possible, Tomiko supports OpenID Connect Dynamic Registration [3] for

a few mail-related scopes, so that clients also supporting this standard can automatically

register themselves when the user tries to connect the application to their mail account.

The entire process to customize Tomiko to allow custom LDAP schemas, extend the

authentication factor API to allow different factor data sources, and even build SSHAFT

took one developer less than one week. Using Tomiko with all the software Organization

B wanted required no modifications due to Tomiko’s standard-compliant implementation of

OAuth 2.0 and OpenID Connect.

4.3 Organization C (a centralized community of friends)

Organization C is a much smaller organization than the other 2, having only about 15 users.

Its contribution to Tomiko’s design is helping to ensure that Tomiko remains very easy

to host and configure. While the other two organizations had robust containerized hosting

infrastructure, Organization C wanted to run Tomiko on simple multi-purpose shared servers

without any container runtime, orchestration, or deployment tool.

This meant Tomiko could not be distributed exclusively as OCI container images, and

that the environment setup should be simplified to the extent possible. Previously Tomiko

required a setup script that would be run when the container started up to run some sanity-

checks and prepare a directory structure before starting the components.

CHAPTER 4. VALIDATIONS 39

With feedback from Organization C, Tomiko’s reference components’ startup sequences

were modified to bootstrap themselves in a single step on first startup, and multiple config-

uration files were coalesced into a single configuration file with annotated sections for values

that should be changed to customize the components’ functionality. Where possible configu-

ration values are read from environment variables rather than configuration files to simplify

configuration even further and protect sensitive values.

Organization C also did not use an LDAP directory to house its user information. Users

are managed through a manual process and their metadata is read from a text file at startup.

This required configuration in identity, but did not require modifying the software since

reading JSON data and mapping it to attributes was already supported by identity.

Members of Organization C all had hardware authentication devices and wanted to use

them as secondary authentication factors. With their existing setup based on text files and

custom plugins for each piece of software that integrated with authentication or authoriza-

tion services, this would have been completely impractical. With Tomiko, an authentication

factor microservice using already existing APIs in identity was built to support hardware

authentication devices via the WebAuthn standard[13] (written in Rust in less than 300

lines). identity-client was configured to mount a custom JavaScript user interface com-

ponent to handle the user interaction and the tokens were ready to be used across all their

services.

Aside from this, Tomiko was able to be configured and used by Organization C without

modifications, and integrated with all the software the organization required.

CHAPTER 4. VALIDATIONS 40

4.4 Summary

As Tomiko was developed and came to be used by organizations A, B, and C, among others,

various aspects of its design were decided or improved upon.

The main contributions toward Tomiko’s design linked to Organization A are its manage-

ment API and tooling, its decoupled user-management and token-management components,

its LDAP-based user directory functionality and the configurable attribute and virtual at-

tribute processing pipelines that facilitate its use, its ability to collect and aggregate user

information to define OpenID Connect claims and other attributes, its configurable user

consent interface and consent-trimming functionality, its concept of “privileged scopes” for

client credentials grants, its ability to perform per-client and/or per-resource/scope autho-

rization restrictions on the basis of user information such as LDAP or other directory group

membership, its ability to have the authorization server automatically derive scope autho-

rization or non-authorization, its API for configuring non-password authentication factors,

and its optional email-based authentication factor.

As for Organization B, the main contributions toward Tomiko’s design were its ability to

replace or modify user interaction pages, interfaces, and components, its ability to complete

configure or replace LDAP queries so that they are not reliant on any particular LDAP

implementation or protocol extensions, its ability to offer user-driven profile attribute man-

agement and password (and password policy) management, its ability to allow the processing

of non-textual profile attributes such as profile images, its generic extensions to support mul-

tiple authentication factors, its API and authentication mechanism to support the creation

of external authentication factors, its reference SSH-based authentication factor, its abil-

CHAPTER 4. VALIDATIONS 41

ity to use WebSockets for server-driven authentication factor events (such as rolling TOTP

codes or waiting for an SSH connection to be made), and its implementation of the OpenID

Connect Dynamic Registration [3] specification to support mail clients wanting to make use

of SASL mechanisms like OAUTHBEARER or XOAUTH2 for authentication.

Organization C’s contributions include the simplification of Tomiko’s deployment and

hosting model (and the ability to make the previously hard dependency on an OCI-container

runtime optional), its non-reliance on any particular shell or shell script to install or boot-

strap, its ability to be configured by either configuration file or environment variables de-

pending on the hosting method chosen, its JSON-file based user directory support, and a

reference implementation of an external WebAuthn authentication factor.

Chapter 5

Comparisons and Related Work

This chapter compares Tomiko to existing software in the same space (authorization servers,

identity providers, and similar software). For each comparison, a brief description of the

software is given alongside some of the software’s limitations and how Tomiko addresses those

limitations is explained. Such comparisons are relevant because before developing Tomiko,

a search was conducted for a piece of software that could flexibly meet the requirements of

Organizations A and C and none were found to be satisfactory.

Later, the chapter describes why Tomiko uses OAuth 2.0 and OpenID Connect rather

than other available protocols and additional usability features that influenced Tomiko’s

overall design.

5.1 Keycloak

Keycloak[16] is a popular free authorization server and identity provider currently maintained

by Red Hat. The software is written in Java and currently contains about 85,000 lines of

42

CHAPTER 5. COMPARISONS AND RELATED WORK 43

code. Keycloak supports both OAuth 2.0 and OpenID Connect and SAML, is configurable

both at runtime through a web interface and via configuration files. It can be extended by

writing and loading Java extensions.

Keycloak is a very competent piece of software and could likely have met the organiza-

tions’ needs. Unfortunately, a few aspects of Keycloak made is inconvenient to use. The

most limiting aspect is that Keycloak is completely monolithic. The user interface, the

user directories, the attribute mappings, the authentication factors and all configuration are

within the Keycloak application. While it’s possible to extend the Keycloak application with

custom behaviours, these behaviours must be implemented in Java and loaded into Keycloak

into predefined hooks.

Organization A would have required many extensions to support its workflow (custom

attributes, multiple user data sources, special client privileges, protected scopes, etc). Im-

plementing all of these in Keycloak would have required, for each extension, each contributor

to have a significant understanding of OAuth 2.0 and OpenID Connect and its vulnerabili-

ties and best practices. Some extensions (such as custom secondary authentication factors)

would either been impossible to implement or required using such low-level APIs that it

would have been more difficult to implement them in Keycloak than outside Keycloak.

Keycloak supported the WebAuthn standard used by Organization C, but did not support

the format of their existing key enrollments or support exporting key enrollments to other

systems in the future. Keycloak also did not support reading user profiles from JSON files

without building this feature in an extension, and even with an extension disabled much of

Keycloak’s functionality in unpredictable ways.

CHAPTER 5. COMPARISONS AND RELATED WORK 44

5.2 Hydra

Hydra[17] is a popular free OAuth 2.0 and OpenID Connect authorization server/identity

provider developed by Ory. Hydra’s implementation of OpenID Connect is certified by the

OpenID Foundation. Hydra supports a similar extensibility model to Tomiko, where an

intermediary API is used to develop custom “endpoints” for login and consent.

Like Tomiko, Hydra partly processes authorization requests, then generates a challenge

and redirects the user to an endpoint of their choosing with a challenge ID in as a query

parameter. The custom application at that endpoint extracts the query parameter and gets

challenge information from Hydra using an alternate channel. It authenticates the user in

any way, then instructs Hydra to accept or reject the authorization request and continue the

login flow. Hydra then redirects the user to a consent endpoint which works in a similar way.

This structure is similar to the way Tomiko’s components are connected, but with a few

key differences. When using custom login or consent endpoints, Hydra leaves almost every

aspect of authorization entirely up to the implementation. This is extremely flexible, but

means that between similar but non-identical implementations, everything must be entirely

re-implemented or shared via custom libraries. There is no inherent imposed or even recom-

mended structure to the implementation of these endpoints, which means developers again

need a deep understanding of OAuth 2.0 and OpenID Connect, their vulnerabilities, and

current best practices in order to implement them in a safe way. Since the APIs for integrat-

ing these pages are so simple, there’s no straightforward way of sharing “building blocks”

for these pages with the community either. Unlike Tomiko which has a standard API for

authentication factors, Hydra only has a simple API to accept or reject an entire grant, so

CHAPTER 5. COMPARISONS AND RELATED WORK 45

factors must be implemented from scratch for each implementation. Tomiko components’

APIs are much finer-grained and, while entire major components are designed so that they

can be entirely replaced if necessary like Hydra endpoints, for more standard cases they also

offer a safe basic structure with simpler extension points that can be used without knowledge

of the entire system and ecosystem.

Another strange design decision in Hydra is the way of accessing its API sockets. tomiko

binds a single socket to host both the “internal” and “external” parts of its API, but Hy-

dra binds two sockets. One socket is meant for external use by clients and contains the

usual OAuth 2.0 based access control for its endpoints/actions. The other socket is its ad-

ministrative API, meant for internal use by custom endpoints accessing its API to address

challenges. This socket does not have any access control and it meant to be protected at the

network layer by a firewall or by an external API gateway adding a separate level of custom

access control policies. Some portions of the internal and external API require the use of

authentication in the form of custom static API keys, but this is a very strange choice for a

piece of software whose entire purpose is issuing authorization tokens according to standard

OAuth 2.0 mechanisms. This seemed to suggest that in the design of Hydra, its own token

issuing and validation process were in some way considered insufficient for use between its

own components. In contrast, Tomiko uses a single socket protected by its own standard

OAuth 2.0 mechanism between all its components, usually in the form of standard client

credentials grants with protected scopes.

CHAPTER 5. COMPARISONS AND RELATED WORK 46

5.3 Security Assertion Markup Language (SAML)

While Tomiko is built to be an identity provider to be used with OAuth 2.0 and/or OpenID

Connect compliant software, these are not the only standard federated identity protocols in

use today by organizations. The other main standard is Security Assertion Markup Language

(SAML) 2.0, a protocol for authentication and authorization standardized by OASIS in 2005

[20].

In order to ease adoption and support as much software as possible, many identity

providers support both OAuth2.0/OpenID Connect and SAML 2.0. Tomiko explicitly does

not and will never implement SAML 2.0 for a few reasons.

Issues SAML 2.0 is a notoriously difficult standard to implement correctly and securely.

Since its inception in 2005, there have been a plethora of vulnerabilities found with im-

plementations of SAML 2.0, many of which were so bad that they completely broke the

protocol. While the core SAML 2.0 standard is not all that complicated, it builds on some

previous standards that are very problematic.

In SAML 2.0, messages between parties are signed and (optionally) encrypted by the

sender according to a specific algorithm or standard. Because the message format and

content as well as the format and content of the signatures and encryption methods must

be carefully controlled, these typically transport-layer concerns must be handled at the

application layer, which means there is a very large potential security vulnerability surface

that every application participating in a SAML 2.0 exchange must carefully cover.

Messages are transmitted in XML, and signed according to the W3C’s XML Signature

specification from 2002, also known as XML-DSig [14]. Despite SAML 2.0’s ubiquity, the

CHAPTER 5. COMPARISONS AND RELATED WORK 47

degree to which the correctness of XML-DSig is crucial to the utility of SAML 2.0, and XML-

DSig existing for over 20 years, the W3C’s interoperability report on XML-DSig reveals that

among all known implementations of the standard, only two of them even have enough over-

lap in feature coverage to be even theoretically interoperable with each other [15]. The reason

for this is that XML-DSig is extremely complicated to implement, extremely complicated to

use correctly, and fundamentally flawed in design due to complected layers of the OSI model

being mixed together.

As a result, even a completely correct identity provider implementation, with 100% test

coverage, and 100% security audit coverage fails completely to provide secure authentication

and authorization when any participant in a SAML 2.0 exchange has an incorrect or vul-

nerable implementation. This is of course not a desired property of the central piece of an

organization’s identity and security infrastructure. To partially mitigate this, most identity

providers “supporting” SAML 2.0 today actually only support a loosely/informally defined

subset of SAML 2.0, opting out of many of its core features for the sake of interoperabil-

ity. Even so, most software does not work particularly well together unless both sides of

an exchange are using the de-facto “standard” implementation of XML-DSig, libxmlsec1

[18]. Since this is a C library, this also requires that these applications or their dependencies

eventually interoperate with C somehow, which opens up a whole other avenue for security

vulnerabilities if memory is managed unsafely somewhere in the process. Using ‘libxmlsec1‘

also requires using a specific XML serialization and deserialization library, because XML-

DSig relies on “canonically” representing XML documents.

CHAPTER 5. COMPARISONS AND RELATED WORK 48

Obsoleteness Related to the previous point, if identity providers are extending their pro-

tocol offerings to SAML 2.0 in order to be more interoperable with software relying on

identity assertion, and the safest bet at an interoperable implementation of SAML 2.0 is to

use a stripped down subset of it and hope the software you exchange messages with makes

the same implementation choices you did, then perhaps SAML 2.0 (as implemented by most

software) does not meet its design goals by actually offering any particular reason to actually

use most of its features.

Being more recently standardized protocols, OAuth 2.0 and OpenID Connect have had

the opportunity to learn from many of the weaknesses of SAML 2.0’s design. The OAuth 2.0

standard wisely relies on the underlying transport and network layers to provide encryption

of messages in transit and authentication of participants and instructs implementors to treat

tokens as opaque strings to avoid being dependent on a particular format or encoding.

The OpenID Connect protocol does include encryption for some components in the form

of JSON Web Tokens[21], but the JSON Web Token standard is far simpler and more widely

implemented than XML-DSig because it does not require canonicalization and does not store

signatures inline with signed data and therefore does not require any particular parsers.

Together, both these standards offer all the promised functionality of SAML 2.0 in a way

that can actually be relied upon to be interoperable, and the OpenID Connect Discovery

and JSON Web Key specifications allow software that do not make the same implementation

choices and cannot work together to detect these circumstances and decide whether to refuse

to work together or negotiate a useful common subset.

CHAPTER 5. COMPARISONS AND RELATED WORK 49

5.4 Usability, Security, and Compliance

5.4.1 Hosting

Tomiko was designed to be simple to host, so it was an important design constraint that the

process of getting a Tomiko instance up and running (with all the reference components) was

a frictionless process. Commercial identity providers either cannot be self-hosted (they are

available as SaaS offerings only) or have long and complex setup processes. For organizations

that expect many users or requests to the identity provider, those offerings also become

difficult to scale. SaaS solutions might slow down or require more expensive service plans to

accommodate additional request volume, and self-hostable offerings might only be vertically

scalable by upgrading the hardware or virtual resource allocations.

In contrast, Tomiko can be deployed with a single command using docker-compose or

Kubernetes manifests distributed with the software. If the default deployment layout (con-

sisting of a single instance of each of the reference components) does not meet your needs,

the manifests can be modified/configured to add additional replicas or an entirely custom

deployment can easily be planned since each component can also be deployed in isolation

with a single command. Each component has default configurations where possible, and

does not require a setup wizard or configuration step – they are ready to serve requests as

soon as they are up and running.

The ability to scale out horizontally by adding replicas required Tomiko’s reference com-

ponents to be designed in a way that allows sequential requests to components to go to

different instances or have instances be removed or restarted without impacting the overall

state of the system. To achieve this, Tomiko components do not store transaction or coordi-

CHAPTER 5. COMPARISONS AND RELATED WORK 50

nation information in memory and communicate through HTTPS (which can be transpar-

ently load-balanced and has well-defined caching and request-retrying semantics) or MQTT

message queues which have well-defined delivery semantics.

If caches or message queues are used, the management of consistent system state via co-

ordinated message-passing and the management of coordinated caches are both handled by

robust existing components outside the Tomiko system (a reference deployment with these

features uses Redis and RabbitMQ) so that organizations that have already operational-

ized such software and understand their behaviours can reuse their instances, tooling, or

institutional knowledge.

As for persistent state, instances of Tomiko reference components do not store data that

is expected to be referenced between multiple different requests in-memory. Such state is

persisted using the configured persistence connectors (in most cases, to a relational SQL

database). This allows the underlying persistence layer (which, again, organizations might

have already operationalized) to ensure that all component instances see a consistent view

of the system’s state at all times. Modifications to this state are designed to be free from

data races that might affect correctness (such as allowing an access code to be reused on

two different component instances, or allowing an expired refresh token to be used while or

before a different component instance invalidates expired tokens in the database).

These design decisions mean that it is always safe to add or remove instances of any

reference component instance without reconfiguring the system or causing downtime or ser-

vice interruptions. Even for smaller organizations with simple deployments where this is

not needed, ensuring that these properties are present within the system still allows for

straightforward hosting of Tomiko components using cloud-native technologies (such as con-

CHAPTER 5. COMPARISONS AND RELATED WORK 51

tainerization, Kubernetes, and for some components even serverless platforms) which make

Tomiko easier to host.

For each component where it makes sense to, the reference implementations expose health

and readiness endpoints as part of their APIs, which monitoring and orchestration software

can use to manage deployments and instance lifecycles, and backend components use instru-

mentation and logging according to OpenTelemetry specifications, which allow for metric

collection and behavioural observability in most third-party monitoring tools.

Tomiko is also designed to not require any particular network topology and does not

make any assumptions about reachability, segmentation, network policies, or firewalling to

maintain its correctness guarantees. This is in contrast with other identity providers that

expose unprotected management APIs that other network layers must restrict the use of in

order to secure the system.

5.4.2 Argon2 Hashing

As security software, Tomiko must take great care to not introduce unnecessary vulnera-

bilities into the authentication or authorization processes. Tomiko’s reference components’

stateful features are carefully designed so that even if an attacker gained access to a copy of

tomiko’s database, they could not undermine Tomiko’s overall security guarantees.

A large part of this protection is based on the fact that no secrets are stored in tomiko’s

database. All secrets (including transient/temporary ones) are verified through salted hash

matching. This means a copy of the database could not cause client secrets, refresh tokens,

token revocation secrets, or even pending authorization codes to be discovered. The private

CHAPTER 5. COMPARISONS AND RELATED WORK 52

keys used to encrypt and/or sign tokens and the secrets for decrypting those private keys

are not stored in a database and the decrypted key is only ever stored in memory for the

lifetime of the process.

Tomiko’s reference components use the Argon2 hashing algorithm[19]. This algorithm

won the 2015 Password Hashing Competition and is designed to be resilient to GPU cracking

attacks and various side-channel attacks. Since the Argon2 hashing algorithm has config-

urable parameters, tomiko configuration options are available to choose the values for these

parameters (such as the number of memory passes). If left unconfigured, tomiko uses safe

defaults for most parameters and performs a short calibration to determine a suitable value

for the number of hash iterations. Since most interactions with Tomiko involve authenti-

cation (with client authentication, token authentication, or the exchange of authentication

codes for tokens), secret hashing is also used as a form of rate limiting. tomiko’s startup

calibration routine tries to find a value for the number of hash iterations that makes hash

checking for values of approximately the same length as the secrets the system is expected

to receive and check take between 250 and 1000 milliseconds on the system it is running on.

5.4.3 Compliance

The reference Tomiko components are compliant with (at least) the following (non-exhaustive)

list of specifications

• IETF RFC 6794: The OAuth 2.0 Authorization Framework [1]

• IETF RFC 8252: OAuth 2.0 for Native Apps [22]

• IETF RFC 7636: Proof Key for Code Exchange by OAuth Public Clients [23]

CHAPTER 5. COMPARISONS AND RELATED WORK 53

• IETF RTC 7519: JSON Web Token (JWT) [21]

• IETF RFC 8707: Resource Indicators for OAuth 2.0 [24]

• IETF RFC 9207: OAuth 2.0 Authorization Server Issuer Identification [25]

• IETF RFC 9068: JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens [26]

• IETF draft-ietf-oauth-v2-1-08: The OAuth 2.1 Authorization Framework *(partial)*

[27]

• IETF draft-ietf-oauth-rar-23: OAuth 2.0 Rich Authorization Requests *(partial)* [28]

• IETF draft-ietf-oauth-security-topics-22: OAuth 2.0 Security Best Current Practice

[29]

• OpenID Connect: Core [2]

• OpenID Connect: Discovery [4]

• OpenID Connect: Dynamic Registration [3]

• OpenID Connect: OAuth 2.0 Multiple Response Types [5]

• OpenID Connect: RP-Initiated Logout [6]

• OpenID Connect: Session Management *(with some non-standard modifications)* [7]

• OpenID Connect: Front-Channel Logout [8]

• OpenID Connect: Back-Channel Logout [9]

Chapter 6

Conclusion

In conclusion, Tomiko is a safe, modern, and extensible OAuth 2.0 and OpenID Connect

authorization server/identity provider that has been demonstrated to interoperate with a

large number of pieces of third-party software that use these protocols for delegated or

federated authentication and/or authorization.

Tomiko implements various IETF and OpenID Foundation standards, best practices

from currently accepted and draft recommendation documents and specifications, and is

even already compliant with the current draft of the OAuth 2.1 specification.

Though its production use by different organizations, it has shown that it is usable and

useful in a variety of different situations and to different populations with different use-cases.

It is significantly different from existing authorization servers/identity providers, ad-

dresses many of their limitations, and is freely licensed under the GNU General Public

License v3.0 so that its contributions may be freely used directly or as inspiration for im-

provements in existing or new systems in the future.

54

Bibliography

[1] Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. Oct. 2012. doi:

10.17487/RFC6749. url: https://www.rfc-editor.org/info/rfc6749.

[2] N. Sakimura. OpenID Connect Core 1.0. url: https://openid.net/specs/openid-

connect-core-1_0.html.

[3] N. Sakimura. OpenID Connect Dynamic Client Registration 1.0. url: https : / /

openid.net/specs/openid-connect-registration-1_0.html.

[4] N. Sakimura. OpenID Connect Discovery 1.0. url: https://openid.net/specs/

openid-connect-discovery-1_0.html.

[5] B. de Medeiros. OAuth 2.0 Multiple Response Type Encoding Practices. url: https:

//openid.net/specs/oauth-v2-multiple-response-types-1_0.html.

[6] M. Jones. OpenID Connect RP-Initiated Logout. url: https://openid.net/specs/

openid-connect-rpinitiated-1_0.html.

[7] B. de Medeiros. OpenID Connect Session Management. url: https://openid.net/

specs/openid-connect-session-1_0.html.

55

https://doi.org/10.17487/RFC6749
https://www.rfc-editor.org/info/rfc6749
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-rpinitiated-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html

BIBLIOGRAPHY 56

[8] M. Jones. OpenID Connect Front-Channel Logout. url: https://openid.net/specs/

openid-connect-frontchannel-1_0.html.

[9] M. Jones. OpenID Connect Back-Channel Logout. url: https://openid.net/specs/

openid-connect-backchannel-1_0.html.

[10] J. Pizzuco. SSHAFT. url: https://gitub.com/toshokan/sshaft.

[11] Mozilla Thunderbird Contributors. Thunderbird:Autoconfiguration:ConfigFileFormat.

url: https://wiki.mozilla.org/Thunderbird:Autoconfiguration:ConfigFileFormat#

OAuth2.

[12] Jim Sermersheim. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC

4511. June 2006. doi: 10.17487/RFC4511. url: https://www.rfc-editor.org/

info/rfc4511.

[13] W3C. Web Authentication: An API for accessing Public Key Credentials. webauthn.

url: https://www.w3.org/TR/webauthn/.

[14] W3C. XML Signature Syntax and Processing Version 1.1. xmldsig-core-1. url: https:

//www.w3.org/TR/xmldsig-core1/.

[15] W3C. XML-Signature Interoperability. url: https://www.w3.org/Signature/2001/

04/05-xmldsig-interop.html.

[16] Red Hat. Keycloak. url: https://www.keycloak.org/.

[17] Ory. Hydra. url: https://www.ory.sh/hydra/.

[18] Aleksey Sanin. XML Security Library. url: https://www.aleksey.com/xmlsec/

index.html.

https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-frontchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html
https://openid.net/specs/openid-connect-backchannel-1_0.html
https://gitub.com/toshokan/sshaft
https://wiki.mozilla.org/Thunderbird:Autoconfiguration:ConfigFileFormat#OAuth2
https://wiki.mozilla.org/Thunderbird:Autoconfiguration:ConfigFileFormat#OAuth2
https://doi.org/10.17487/RFC4511
https://www.rfc-editor.org/info/rfc4511
https://www.rfc-editor.org/info/rfc4511
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/xmldsig-core1/
https://www.w3.org/TR/xmldsig-core1/
https://www.w3.org/Signature/2001/04/05-xmldsig-interop.html
https://www.w3.org/Signature/2001/04/05-xmldsig-interop.html
https://www.keycloak.org/
https://www.ory.sh/hydra/
https://www.aleksey.com/xmlsec/index.html
https://www.aleksey.com/xmlsec/index.html

BIBLIOGRAPHY 57

[19] Jean-Philippe Aumasson. Password Hashing Competition and our recommendation for

hashing passwords: Argon2. url: https://www.password-hashing.net/.

[20] Organization for the Advancement of Structured Information Standards. Security As-

sertion Markup Language (SAML) v2.0. 2005.

[21] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Token (JWT). RFC

7519. May 2015. doi: 10.17487/RFC7519. url: https://www.rfc-editor.org/

info/rfc7519.

[22] William Denniss and John Bradley. OAuth 2.0 for Native Apps. RFC 8252. Oct. 2017.

doi: 10.17487/RFC8252. url: https://www.rfc-editor.org/info/rfc8252.

[23] Nat Sakimura, John Bradley, and Naveen Agarwal. Proof Key for Code Exchange by

OAuth Public Clients. RFC 7636. Sept. 2015. doi: 10.17487/RFC7636. url: https:

//www.rfc-editor.org/info/rfc7636.

[24] Brian Campbell, John Bradley, and Hannes Tschofenig. Resource Indicators for OAuth

2.0. RFC 8707. Feb. 2020. doi: 10.17487/RFC8707. url: https://www.rfc-editor.

org/info/rfc8707.

[25] Karsten Meyer zu Selhausen and Daniel Fett. OAuth 2.0 Authorization Server Issuer

Identification. RFC 9207. Mar. 2022. doi: 10.17487/RFC9207. url: https://www.

rfc-editor.org/info/rfc9207.

[26] Vittorio Bertocci. JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens. RFC

9068. Oct. 2021. doi: 10.17487/RFC9068. url: https://www.rfc-editor.org/info/

rfc9068.

https://www.password-hashing.net/
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://doi.org/10.17487/RFC8252
https://www.rfc-editor.org/info/rfc8252
https://doi.org/10.17487/RFC7636
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7636
https://doi.org/10.17487/RFC8707
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://doi.org/10.17487/RFC9207
https://www.rfc-editor.org/info/rfc9207
https://www.rfc-editor.org/info/rfc9207
https://doi.org/10.17487/RFC9068
https://www.rfc-editor.org/info/rfc9068
https://www.rfc-editor.org/info/rfc9068

BIBLIOGRAPHY 58

[27] Dick Hardt, Aaron Parecki, and Torsten Lodderstedt. The OAuth 2.1 Authorization

Framework. Internet-Draft draft-ietf-oauth-v2-1-08. Work in Progress. Internet Engi-

neering Task Force, Mar. 2023. 88 pp. url: https://datatracker.ietf.org/doc/

draft-ietf-oauth-v2-1/08/.

[28] Torsten Lodderstedt, Justin Richer, and Brian Campbell. OAuth 2.0 Rich Authoriza-

tion Requests. Internet-Draft draft-ietf-oauth-rar-23. Work in Progress. Internet Engi-

neering Task Force, Jan. 2023. 45 pp. url: https://datatracker.ietf.org/doc/

draft-ietf-oauth-rar/23/.

[29] Torsten Lodderstedt et al. OAuth 2.0 Security Best Current Practice. Internet-Draft

draft-ietf-oauth-security-topics-22. Work in Progress. Internet Engineering Task Force,

Mar. 2023. 60 pp. url: https://datatracker.ietf.org/doc/draft-ietf-oauth-

security-topics/22/.

https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/08/
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/08/
https://datatracker.ietf.org/doc/draft-ietf-oauth-rar/23/
https://datatracker.ietf.org/doc/draft-ietf-oauth-rar/23/
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/22/
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/22/

	Introduction and Contributions
	Background
	OAuth 2.0, OpenID Connect, and Tomiko
	Authorization Process

	Design and Methodology
	Overall Architecture
	Tomiko
	Identity
	Identity-client

	Validations
	Organization A (a large student organization)
	Organization B (a decentralized internet community)
	Organization C (a centralized community of friends)
	Summary

	Comparisons and Related Work
	Keycloak
	Hydra
	Security Assertion Markup Language (SAML)
	Usability, Security, and Compliance
	Hosting
	Argon2 Hashing
	Compliance

	Conclusion

