
COMP520 - GoLite Syntax Specification

Vincent Foley

January 16, 2016

1 Scanner

1.1 Source code representation

Go programs are UTF-8 encoded (http://golang.org/ref/spec#Source_code_representation),
and Go allows Unicode characters to be used in identifiers, string literals, etc. In GoLite, we’ll only ask that
you support the ASCII charset.

1.2 Keywords

Your scanner must recognize all the Go keywords:

break default func interface select
case defer go map struct
chan else goto package switch
const fallthrough if range type
continue for import return var

Although we won’t implement the semantics associated with all the keywords (e.g. interface and
select), we will make them reserved to prevent users from using them as identifiers and thus having
invalid Go code.

In addition to the Go keywords, we will add a few of our own. These GoLite keywords will make the
implementation of some parser rules easier.

int float64 bool rune string
print println append

• http://golang.org/ref/spec#Keywords

1.3 Operators

Your scanner must recognize all the Go operators:

1

http://golang.org/ref/spec#Source_code_representation
http://golang.org/ref/spec#Keywords

+ & += &= && == != ()
- | -= |= || < <= []

* ˆ *= ˆ= <- > >= { }
/ << /= <<= ++ = := , ;
% >> %= >>= -- ! :

&ˆ &ˆ=

• http://golang.org/ref/spec#Operators_and_Delimiters

1.4 Comments

Your scanner must recognize both block comment and line comments. Note that block comments do not
nest. It is an error if a block comment is opened, and never closed (i.e. reaching the end of file).

// This is a line comment

/* This is a
block comment */

/* Block comments do not nest
/* The star-slash on the right ends the above comment */
This is an error */

• http://golang.org/ref/spec#Comments

1.5 Literals

Your scanner must recognize literals for integers in decimal, octal and hexadecimal.

Your scanner must recognize literals for floating-point numbers. Note that, unlike in Minilang, the integral
part or the decimal part of the number can be left off. Your scanner does not need to support scientific
notation.

Your scanner must recognize literals for runes (chars). You should support the single-character escape
sequences listed below. You do not need to support escape sequences of character codes (e.g. ’\xa8’).

\a \b \f \n \r
\t \v \\ \’

Your scanner must recognize literals for interpreted strings and raw strings. Your string literals should
support the same escape sequences as runes. In addition, you should be able to escape a double quote in
an interpreted string by using \". In a raw string, all characters stand for themselves: there are no escape
sequences and there is no way to include a back-quote. It is an error if a string is opened, and never closed
(i.e. reaching the end of file).

/* Integer literals */
255 // decimal
0377 // octal

2

http://golang.org/ref/spec#Operators_and_Delimiters
http://golang.org/ref/spec#Comments

0xff // hexadecimal

/* Floating-point literals */
0.12 // Integral and decimal parts
.12 // Decimal part only
12. // Integral part only

/* Rune literals */
’L’ // Single character
’\n’ // Escaped character

/* String literals */
"hello\n" // Interpreted string, \n is transformed into newline
‘hello\n‘ // Raw string, \n appears as a ’\’ followed by ’n’

• http://golang.org/ref/spec#Integer_literals

• http://golang.org/ref/spec#Floating-point_literals

• http://golang.org/ref/spec#Rune_literals

• http://golang.org/ref/spec#escaped_char

• http://golang.org/ref/spec#String_literals

1.6 Identifiers

Your scanner must recognize identifiers. Identifiers in GoLite only use the ASCII charset.

• http://golang.org/ref/spec#Identifiers

1.7 Semicolons

Your scanner should insert semicolon tokens in the token streams according to semicolon insertion rule 1.
Rule 1 covers more than 95% of all semicolon insertions in Go, and 100% of cases in GoLite.

Because we have added several keywords that are identifiers in Go (i.e. the base types), you’ll need to extend
the list of tokens that trigger the insertion of a semicolon token.

You do not have to implement semicolon insertion rule 2.

• http://golang.org/ref/spec#Semicolons

3

http://golang.org/ref/spec#Integer_literals
http://golang.org/ref/spec#Floating-point_literals
http://golang.org/ref/spec#Rune_literals
http://golang.org/ref/spec#escaped_char
http://golang.org/ref/spec#String_literals
http://golang.org/ref/spec#Identifiers
http://golang.org/ref/spec#Semicolons

2 Parser

2.1 Program structure

In Go, a program is divided up in three parts: a package declaration, a list of import statements, and a list of
top-level declarations. GoLite will not support packages, so we won’t implement the import statements. We
will however keep the package declaration; this will allow GoLite programs programs to be used with a Go
compiler.

• http://golang.org/ref/spec#Source_file_organization

2.2 Package declaration

A package declaration is the keywords package followed by an identifier. There must be exactly one in a
GoLite program.

• http://golang.org/ref/spec#PackageClause

2.3 Top-level declarations

Your parser must support the following top-level declarations:

• variable declarations

• type declarations

• function declarations

You do not have to support constant declarations nor method declarations.

• http://golang.org/ref/spec#TopLevelDecl

2.4 Variable declaration

Go has three forms of variable specifications:

• Specifying the type, but leaving out an expression

• Specifying an expression, but leaving out the type

• Specifying both the type and an expression

var x int // type only
var y = 42 // expression only
var z int = 1 // type and expression

In the examples above, we declared only one identifier. A variable declaration can also declare multiple
identifiers are once.

4

http://golang.org/ref/spec#Source_file_organization
http://golang.org/ref/spec#PackageClause
http://golang.org/ref/spec#TopLevelDecl

var x1, x2 int
var y1, y2 = 42, 43
var z1, z2 int = 1, 2

Finally, it is possible to "distribute" the var keyword to a list of variable specifications:

var (
x1, x2 int
y1, y2 = 42, 43
z1, z2 int = 1, 2

)

Your parser must support all both forms of variable declaration and all three forms of variable specification.

• http://golang.org/ref/spec#VarDecl

2.5 Type declaration

A type declaration in Go is the keyword type followed by an identifier (the new name for a type) followed
by an existing type.

type num int // simple type alias
type point struct { // point is a struct

x, y float64
}

Like variable declarations, it is possible to "distribute" the type keyword to a list of type specifications.

type (
num int
point struct {

x, y float64
}

)

Your parser must support both forms of type declarations.

• http://golang.org/ref/spec#TypeDecl

2.6 Function declaration

Go supports several ways to declare functions (see the link below for more information). To simpify your
parser, in GoLite we will support only two forms of function definitions. The following table describes the
major differences between Go and GoLite.

5

http://golang.org/ref/spec#VarDecl
http://golang.org/ref/spec#TypeDecl

Go GoLite
Arbitrary number of return values YES NO
Named return values YES NO
Optional body YES NO
Unnamed input parameters YES NO
Optional comma after the last parameter YES NO
Variadic input parameters YES NO

In GoLite, we have two ways of specifying input parameters that we’ll call long form and short form. In the
long form, the input parameters is a list of id+type pairs. In the short form, multiple consecutive parameters
of the same type can be accumulated in a list.

// Long form, one id with one type
func f(a int, b int, c string, d int) {

return
}

// Short form, many ids with one type
func f(a, b int, c string, d int) string {

return c
}

• http://golang.org/ref/spec#Function_declarations

2.7 Types

2.7.1 Basic types

Go supports several basic types. To keep our compiler simple, GoLite supports only five basic types: int,
float64, bool, rune, string.

http://golang.org/ref/spec#Types

2.7.2 Slices

Your parser must support slices. You do not need to support slice literals.

// A slice literal, not supported in GoLite
var x []int = []int{ 1, 2, 3 }

// In GoLite, we’ll use append()
var x []int
x = append(x, 1)
x = append(x, 2)
x = append(x, 3)

http://golang.org/ref/spec#Slice_types

6

http://golang.org/ref/spec#Function_declarations
http://golang.org/ref/spec#Types
http://golang.org/ref/spec#Slice_types

2.7.3 Arrays

Your parser must support arrays. In Go, the size can be an expression, in GoLite the size must be an integer
literal. You do not need to support array literals.

// An array literal, not supported in GoLite
var x [3]int = [3]int{ 1, 2, 3 }

// In GoLite, we’ll use indexing
var x [3]int
x[0] = 1
x[1] = 2
x[2] = 3

http://golang.org/ref/spec#Array_types

2.7.4 Structs

Your parser must support structs. You do not need to support anonymous members. You do not need to
support tags. You do not need to support struct literals.

type point struct {
x, y, z int

}

// A struct literal, not supported in GoLite
var p point = point{ 1, 2, 3 }

// In GoLite, we’ll use field access
var p point
p.x = 1
p.y = 2
p.z = 3

http://golang.org/ref/spec#Struct_types

2.8 Statements

2.8.1 Empty statements

Your parser must support empty statements.

http://golang.org/ref/spec#Empty_statements

7

http://golang.org/ref/spec#Array_types
http://golang.org/ref/spec#Struct_types
http://golang.org/ref/spec#Empty_statements

2.8.2 Expression statements

Your parser must support expression statements. (See next section to know which expressions are sup-
ported.)

http://golang.org/ref/spec#Expression_statements

2.8.3 Assignment statements

In Go and GoLite, assignment is not an expression, but a statement. Your parser must support assignment
statements.

As described in the specification, if the assignment operator is the equal sign (=), the left-hand side and
right-hand side can be lists. Because we will not support multiple return values, in GoLite the number of
identifiers must match the number of expressions.

For op-assign statements, only a single id and single expression can be on either side of the assignment
operator.

Hint: the reference says that the left-hand side is an expression list, however you should make sure that the
expression on the left is a lvalue (i.e. an identifier, an array indexing expression, etc.)

http://golang.org/ref/spec#Assignments

2.8.4 Declaration statements

Variable declarations and type declarations are statements and can occur in a block. Function declarations
are not statements and cannot occur inside a block. Your parser must support declaration statements.

http://golang.org/ref/spec#Declaration

2.8.5 Short declaration statements

Your parser must support short declaration statements.

http://golang.org/ref/spec#ShortVarDecl

2.8.6 Increment and decrement statements

Your parser must support the post-increment and post-decrement statements. In Go, only the postfix form is
allowed, and an increment/decrement is a statement, not an expression like in C.

Hint 1: you can reuse the += and -= nodes of your AST to support these statements. This will reduce the
number of cases you need to handle when traversing the AST.

Hint 2: like with assignment, you should make sure that the left-hand side is a lvalue.

http://golang.org/ref/spec#IncDecStmt

8

http://golang.org/ref/spec#Expression_statements
http://golang.org/ref/spec#Assignments
http://golang.org/ref/spec#Declaration
http://golang.org/ref/spec#ShortVarDecl
http://golang.org/ref/spec#IncDecStmt

2.8.7 Print and println statements

These two statements are specific to GoLite, and allow the programmer to display a list of expressions.

print_stmt ::= ’print’ ’(’ expr_list ’)’
println_stmt ::= ’println’ ’(’ expr_list ’)’
expr_list ::= /* empty */

| expr_list ’,’ expr

print should print all its argument on a single line, with no space separating the elements. println
prints its arguments separated by one space, and also prints a newline character after the last expression.

2.8.8 Return statements

Your parser must support return statements. In GoLite, return only accepts zero or one expression.

http://golang.org/ref/spec#Return_statements

2.8.9 If statements

Your parser must support if statements. You should be able to parse an if statement with no else part, an
if/else statement and if/else if/else statements. You should also be able to parse the optional initialization
statement that can come before the condition expression.

// single if
if expr {

// statements
}

// if/else
if expr {

// statements
} else {

// statements
}

// if/else if/else
// note that no brace comes between the else and the if
if expr1 {

// statements
} else if expr2 {

// statements
} else {

// statements
}

9

http://golang.org/ref/spec#Return_statements

http://golang.org/ref/spec#If_statements

2.8.10 Switch statements

Your parser must support expression switch statements.

Hint: you’ll need a weeding phase to make sure that there is only one default case.

GoLite does not support type switch statements.

http://golang.org/ref/spec#ExprSwitchStmt

2.8.11 For statements

Your parser must support the for statement, but not under all its forms. In GoLite, we will support the infinite
loop for, the while loop and the three-part loop.

// Infinite loop
for {
}

// "While" loop
for x < 10 {
}

// Three-part loop
for i := 0; i < 10; i++ {
}

GoLite does not support the for/range statements.

http://golang.org/ref/spec#For_statements

2.8.12 Break and continue statements

Your parser must support the break and the continue statements. In GoLite, we will only support the unla-
belled form of these statements.

Hint: break and continue must only appear withing a loop, however this is not something that can be
expressed (easily) in a context-free grammar. You will need a weeding pass to make sure all breaks and
continues are properly used.

• http://golang.org/ref/spec#Break_statements

• http://golang.org/ref/spec#Continue_statements

10

http://golang.org/ref/spec#If_statements
http://golang.org/ref/spec#ExprSwitchStmt
http://golang.org/ref/spec#For_statements
http://golang.org/ref/spec#Break_statements
http://golang.org/ref/spec#Continue_statements

2.9 Expressions

2.9.1 Parenthesized expressions

Your parser must support parenthesized expressions.

http://golang.org/ref/spec#Operands

2.9.2 Identifiers

Your parser must support identifiers as expressions.

• http://golang.org/ref/spec#Operands

• http://golang.org/ref/spec#identifier

2.9.3 Literals

Your parser must support literals (integers, floating-point, runes and strings) as expressions.

http://golang.org/ref/spec#BasicLit

2.9.4 Unary operations

Your parser must support unary operations as expressions. All unary operators have the same operator
precedence.

GoLite supports the following four unary operators:

+ - ! ˆ

http://golang.org/ref/spec#Operators

2.9.5 Binary operations

Your parser must support binary operations as expressions. Your parser must also support the correct prece-
dence and associativity of the operators.

GoLite supports all the Go binary operators.

• http://golang.org/ref/spec#Operators

• http://golang.org/ref/spec#Operator_precedence

11

http://golang.org/ref/spec#Operands
http://golang.org/ref/spec#Operands
http://golang.org/ref/spec#identifier
http://golang.org/ref/spec#BasicLit
http://golang.org/ref/spec#Operators
http://golang.org/ref/spec#Operators
http://golang.org/ref/spec#Operator_precedence

2.9.6 Function calls

Your parser must support function calls as expressions. The syntax of function calls in GoLite is simpler
than the one in Go; in particular, we will not allow a trailing comma after the last, and we cannot use the
ellipses to pass variadic paramaters (since we don’t support those functions).

http://golang.org/ref/spec#Calls

2.9.7 Append

In Go, append is a builtin because its semantics cannot be implemented under the go type system. In
GoLite, we’ll implement a simpler version of append.

append_expr ::= ’append’ ’(’ ID ’,’ expr ’)’

The first argument to append is the name of a slice to append to, and the second expression is the element
to add. In GoLite, we don’t allow the first argument to be a subslice.

http://golang.org/ref/spec#Appending_and_copying_slices

2.9.8 Type casts

In GoLite, we’ll support a very primitive form of type casting: only base types (except strings) and aliases
of base types (except aliases of strings) can be used for type casting.

The syntax of type casting looks like the syntax for function calls.

type num int
var x int = 3
var y num = num(x)
var z float64 = float64(x)

Hint: casts to base types (e.g. float64(x)) can be syntactically distinguished because they use a reserved
keyword and have their own AST node. However, aliases (e.g. num(x)) will likely be represented as
function calls in the AST after parsing. We can fix the AST (i.e. switch from a function call to a type cast
node) in a later phase of the compiler.

12

http://golang.org/ref/spec#Calls
http://golang.org/ref/spec#Appending_and_copying_slices

	Scanner
	Source code representation
	Keywords
	Operators
	Comments
	Literals
	Identifiers
	Semicolons

	Parser
	Program structure
	Package declaration
	Top-level declarations
	Variable declaration
	Type declaration
	Function declaration
	Types
	Basic types
	Slices
	Arrays
	Structs

	Statements
	Empty statements
	Expression statements
	Assignment statements
	Declaration statements
	Short declaration statements
	Increment and decrement statements
	Print and println statements
	Return statements
	If statements
	Switch statements
	For statements
	Break and continue statements

	Expressions
	Parenthesized expressions
	Identifiers
	Literals
	Unary operations
	Binary operations
	Function calls
	Append
	Type casts

