
COMP 520 Winter 2016 Native Code Generation (1)

Native Code Generation
COMP 520: Compiler Design (4 credits)

Professor Laurie Hendren

hendren@cs.mcgill.ca

WendyTheWhitespace-IntolerantDragon

WendyTheWhitespacenogarDtnarelotnI



COMP 520 Winter 2016 Native Code Generation (2)

JOOS programs are compiled into bytecode.

This bytecode can be executed thanks to either:

• an interpreter;

• an Ahead-Of-Time (AOT) compiler; or

• a Just-In-Time (JIT) compiler.

Regardless, bytecode must be implicitly or explicitly translated into native code suitable for the host

architecture before execution.



COMP 520 Winter 2016 Native Code Generation (3)

Interpreters:

• are easier to implement;

• can be very portable; but

• suffer an inherent inefficiency:



COMP 520 Winter 2016 Native Code Generation (4)

pc = code.start;
while(true)
{ npc = pc + instruction_length(code[pc]);

switch (opcode(code[pc]))
{ case ILOAD_1: push(local[1]);

break;
case ILOAD: push(local[code[pc+1]]);

break;
case ISTORE: t = pop();

local[code[pc+1]] = t;
break;

case IADD: t1 = pop(); t2 = pop();
push(t1 + t2);
break;

case IFEQ: t = pop();
if (t == 0) npc = code[pc+1];
break;

...
}

pc = npc;
}



COMP 520 Winter 2016 Native Code Generation (5)

Ahead-of-Time compilers:

• translate the low-level intermediate form into native code;

• create all object files, which are then linked, and finally executed.

This is not so useful for Java and JOOS:

• method code is fetched as it is needed;

• from across the internet; and

• from multiple hosts with different native code sets.



COMP 520 Winter 2016 Native Code Generation (6)

Just-in-Time compilers:

• merge interpreting with traditional compilation;

• have the overall structure of an interpreter; but

• method code is handled differently.

When a method is invoked for the first time:

• the bytecode is fetched;

• it is translated into native code; and

• control is given to the newly generated native code.

When a method is invoked subsequently:

• control is simply given to the previously generated native code.



COMP 520 Winter 2016 Native Code Generation (7)

Features of a JIT compiler:

• it must be fast, because the compilation occurs at run-time (Just-In-Time is really Just-Too-Late);

• it does not generate optimized code;

• it does not necessarily compile every instruction into native code, but relies on the runtime library for
complex instructions;

• it need not compile every method;

• it may concurrently interpret and compile a method (Better-Late-Than-Never); and

• it may have several levels of optimization, and recompile long-running methods.



COMP 520 Winter 2016 Native Code Generation (8)

Problems in generating native code:

• instruction selection:
choose the correct instructions based on the native code instruction set;

• memory modelling:
decide where to store variables and how to allocate registers;

• method calling:
determine calling conventions; and

• branch handling:
allocate branch targets.



COMP 520 Winter 2016 Native Code Generation (9)

Compiling JVM bytecode into VirtualRISC:

• map the Java local stack into registers and memory;

• do instruction selection on the fly;

• allocate registers on the fly; and

• allocate branch targets on the fly.

This is successfully done in the Kaffe system.



COMP 520 Winter 2016 Native Code Generation (10)

The general algorithm:

• determine number of slots in frame:
locals limit + stack limit + #temps;

• find starts of basic blocks;

• find local stack height for each bytecode;

• emit prologue;

• emit native code for each bytecode; and

• fix up branches.



COMP 520 Winter 2016 Native Code Generation (11)

NaÏve approach:

• each local and stack location is mapped to an offset in the native frame;

• each bytecode is translated into a series of native instructions, which

• constantly move locations between memory and registers.

This is similar to the native code generated by a non-optimizing compiler.



COMP 520 Winter 2016 Native Code Generation (12)

Input code:
public void foo() {
int a,b,c;

a = 1;
b = 13;
c = a + b;

}

Generated bytecode:
.method public foo()V

.limit locals 4

.limit stack 2
iconst_1 ; 1
istore_1 ; 0
ldc 13 ; 1
istore_2 ; 0
iload_1 ; 1
iload_2 ; 2
iadd ; 1
istore_3 ; 0
return ; 0

• compute frame size = 4 + 2 + 0 = 6;

• find stack height for each bytecode;

• emit prologue; and

• emit native code for each bytecode.



COMP 520 Winter 2016 Native Code Generation (13)

Assignment of frame slots:
name offset location

a 1 [fp-32]
b 2 [fp-36]
c 3 [fp-40]

stack 0 [fp-44]
stack 1 [fp-48]

Native code generation:
save sp,-136,sp

a = 1; iconst_1 mov 1,R1
st R1,[fp-44]

istore_1 ld [fp-44],R1
st R1,[fp-32]

b = 13; ldc 13 mov 13, R1
st R1,[fp-44]

istore_2 ld [fp-44], R1
st R1,[fp-36]

c = a + b; iload_1 ld [fp-32],R1
st R1,[fp-44]

iload_2 ld [fp-36],R1
st R1,[fp-48]

iadd ld [fp-48],R1
ld [fp-44],R2
add R2,R1,R1
st R1,[fp-44]

istore_3 ld [fp-44],R1
st R1,[fp-40]

return restore
ret



COMP 520 Winter 2016 Native Code Generation (14)

The naïve code is very slow:

• many unnecessary loads and stores, which

• are the most expensive operations.



COMP 520 Winter 2016 Native Code Generation (15)

We wish to replace loads and stores:

c = a + b; iload_1 ld [fp-32],R1
st R1,[fp-44]

iload_2 ld [fp-36],R1
st R1,[fp-48]

iadd ld [fp-48],R1
ld [fp-44],R2
add R2,R1,R1
st R1,[fp-44]

istore_3 ld [fp-44],R1
st R1,[fp-40]

by registers operations:

c = a + b; iload_1 ld [fp-32],R1
iload_2 ld [fp-36],R2
iadd add R1,R2,R1
istore_3 st R1,[fp-40]

where R1 and R2 represent the stack.



COMP 520 Winter 2016 Native Code Generation (16)

The fixed register allocation scheme:

• assign m registers to the first m locals;

• assign n registers to the first n stack locations;

• assign k scratch registers; and

• spill remaining locals and locations into memory.

Example for 6 registers (m = n = k = 2):

name offset location register

a 1 R1
b 2 R2
c 3 [fp-40]

stack 0 R3
stack 1 R4

scratch 0 R5
scratch 1 R6



COMP 520 Winter 2016 Native Code Generation (17)

Improved native code generation:

save sp,-136,sp
a = 1; iconst_1 mov 1,R3

istore_1 mov R3,R1
b = 13; ldc 13 mov 13,R3

istore_2 mov R3,R2
c = a + b; iload_1 mov R1,R3

iload_2 mov R2,R4
iadd add R3,R4,R3
istore_3 st R3,[fp-40]
return restore

ret

This works quite well if:

• the architecture has a large register set;

• the stack is small most of the time; and

• the first locals are used most frequently.



COMP 520 Winter 2016 Native Code Generation (18)

Summary of fixed register allocation scheme:

• registers are allocated once; and

• the allocation does not change within a method.

Advantages:

• it’s simple to do the allocation; and

• no problems with different control flow paths.

Disadvantages:

• assumes the first locals and stack locations are most important; and

• may waste registers within a region of a method.



COMP 520 Winter 2016 Native Code Generation (19)

The basic block register allocation scheme:

• assign frame slots to registers on demand within a basic block; and

• update descriptors at each bytecode.

The descriptor maps a slot to an element of the set {⊥, mem, Ri, mem&Ri}:

a R2
b mem
c mem&R4
s_0 R1
s_1 ⊥

We also maintain the inverse register map:

R1 s_0
R2 a
R3 ⊥
R4 c
R5 ⊥



COMP 520 Winter 2016 Native Code Generation (20)

At the beginning of a basic block, all slots are in memory.

Basic blocks are merged by control paths:

J
J
J 







a R1
b R2

a R3
b R4

a ?
b ?

Registers must be spilled after basic blocks:

J
J
J 







a R1
b R2

st R1,[fp-32]

st R2,[fp-36]

a R3
b R4

st R3,[fp-32]

st R4,[fp-36]

a mem
b mem



COMP 520 Winter 2016 Native Code Generation (21)

save sp,-136,sp

R1 ⊥
R2 ⊥
R3 ⊥
R4 ⊥
R5 ⊥

a mem
b mem
c mem
s_0 ⊥
s_1 ⊥

iconst_1 mov 1,R1

R1 s_0
R2 ⊥
R3 ⊥
R4 ⊥
R5 ⊥

a mem
b mem
c mem
s_0 R1
s_1 ⊥

istore_1 mov R1,R2

R1 ⊥
R2 a
R3 ⊥
R4 ⊥
R5 ⊥

a R2
b mem
c mem
s_0 ⊥
s_1 ⊥

ldc 13 mov 13,R1

R1 s_0
R2 a
R3 ⊥
R4 ⊥
R5 ⊥

a R2
b mem
c mem
s_0 R1
s_1 ⊥

istore_2 mov R1,R3

R1 ⊥
R2 a
R3 b
R4 ⊥
R5 ⊥

a R2
b R3
c mem
s_0 ⊥
s_1 ⊥



COMP 520 Winter 2016 Native Code Generation (22)

iload_1 mov R2,R1

R1 s_0
R2 a
R3 b
R4 ⊥
R5 ⊥

a R2
b R3
c mem
s_0 R1
s_1 ⊥

iload_2 mov R3,R4

R1 s_0
R2 a
R3 b
R4 s_1
R5 ⊥

a R2
b R3
c mem
s_0 R1
s_1 R4

iadd add R1,R4,R1

R1 s_0
R2 a
R3 b
R4 ⊥
R5 ⊥

a R2
b R3
c mem
s_0 R1
s_1 ⊥

istore_3 st R1,R4

R1 ⊥
R2 a
R3 b
R4 c
R5 ⊥

a R2
b R3
c R4
s_0 ⊥
s_1 ⊥

st R2,[fp-32]
st R3,[fp-36]
st R4,[fp-40]

R1 ⊥
R2 ⊥
R3 ⊥
R4 ⊥
R5 ⊥

a mem
b mem
c mem
s_0 ⊥
s_1 ⊥

return restore
ret



COMP 520 Winter 2016 Native Code Generation (23)

So far, this is actually no better than the fixed scheme.

But if we add the statement:

c = c * c + c;

then the fixed scheme and basic block scheme generate:

Fixed Basic block

iload_3 ld [fp-40],R3 mv R4, R1
dup ld [fp-40],R4 mv R4, R5
imul mul R3,R4,R3 mul R1, R5, R1
iload_3 ld [fp-40],R4 mv R4, R5
iadd add R3,R4,R3 add R1, R5, R1
istore_3 st R3,[fp-40] mv R1, R4



COMP 520 Winter 2016 Native Code Generation (24)

Summary of basic block register allocation scheme:

• registers are allocated on demand; and

• slots are kept in registers within a basic block.

Advantages:

• registers are not wasted on unused slots; and

• less spill code within a basic block.

Disadvantages:

• much more complex than the fixed register allocation scheme;

• registers must be spilled at the end of a basic block; and

• we may spill locals that are never needed.



COMP 520 Winter 2016 Native Code Generation (25)

We can optimize further:

save sp,-136,sp save sp,-136,sp

mov 1,R1 mov 1,R2
mov R1,R2

mov 13,R1 mov 13,R3
mov R1,R3

mov R2,R1
mov R3,R4
add R1,R4,R1 add R2,R3,R1
st R1,[fp-40] st R1,[fp-40]

restore restore
ret ret

by not explicitly modelling the stack.



COMP 520 Winter 2016 Native Code Generation (26)

Unfortunately, this cannot be done safely on the fly by a peephole optimizer.

The optimization:

mov 1,R3 =⇒ mov 1,R1
mov R3,R1

is unsound if R3 is used in a later instruction:

mov 1,R3 =⇒ mov 1,R1
mov R3,R1
...

...
mov R3,R4 mov R3,R4

Such optimizations require dataflow analysis.



COMP 520 Winter 2016 Native Code Generation (27)

Invoking methods in bytecode:

• evaluate each argument leaving results on the stack; and

• emit invokevirtual instruction.

Invoking methods in native code:

• call library routine soft_get_method_code to perform the method lookup;

• generate code to load arguments into registers; and

• branch to the resolved address.



COMP 520 Winter 2016 Native Code Generation (28)

Consider a method invocation:

c = t.foo(a,b);

where the memory map is:

name offset location register

a 1 [fp-60] R3
b 2 [fp-56] R4
c 3 [fp-52]
t 4 [fp-48] R2
stack 0 [fp-36] R1
stack 1 [fp-40] R5
stack 2 [fp-44] R6
scratch 0 [fp-32] R7
scratch 1 [fp-28] R8



COMP 520 Winter 2016 Native Code Generation (29)

Generating native code:

aload_4 mov R2,R1
iload_1 mov R3,R5
iload_2 mov R4,R6
invokevirtual foo // soft call to get address

ld R7,[R2+4]
ld R8,[R7+52]
// spill all registers
st R3,[fp-60]
st R4,[fp-56]
st R2,[fp-48]
st R6,[fp-44]
st R5,[fp-40]
st R1,[fp-36]
st R7,[fp-32]
st R8,[fp-28]
// make call
mov R8,R0
call soft_get_method_code
// result is in R0
// put args in R2, R1, and R0
ld R2,[fp-44] // R2 := stack_2
ld R1,[fp-40] // R1 := stack_1
st R0,[fp-32] // spill result
ld R0,[fp-36] // R0 := stack_0
ld R4,[fp-32] // reload result
jmp [R4] // call method

• this is long and costly; and

• the lack of dataflow analysis causes massive spills within basic blocks.



COMP 520 Winter 2016 Native Code Generation (30)

Handling branches:

• the only problem is that the target address is not known;

• assemblers normally handle this; but

• the JIT compiler produces binary code directly in memory.

Generating native code:

if (a < b) iload_1 ld R1,[fp-44]
iload_2 ld R2,[fp-48]
if_icmpge 17 sub R1,R2,R3

bge ??

How to compute the branch targets:

• previously encountered branch targets are already known;

• keep unresolved branches in a table; and

• patch targets when the bytecode is eventually reached.


