
A Sparse Algorithm for

Predicated Global Value Numbering

Karthik Gargi

Hewlett-Packard India Software Operation

PLDI’02

Monday 17 June 2002

Sparse Predicated Global Value Numbering

1. Introduction

2. Brute Force Algorithm

3. Sparse Value Numbering

4. Additional Analyses and Balanced Value Numbering

5. Putting it all Together

6. Measurements

7. Conclusions

PLDI’02 17 June 2002 2/34

SSA Optimization Framework

Routine IR

Translate IR into SSA form

...

Perform global value numbering

Transform IR based on results of GVN

...

Translate IR out of SSA form

Optimized IR

PLDI’02 17 June 2002 3/34

Global Value Numbering

• A value is a constant or an SSA variable

• Values can be partitioned into congruence classes

• Congruent values are identical for any possible

execution of a routine

• Every congruence class has a representative value

called a leader

PLDI’02 17 June 2002 4/34



Global Value Numbering (continued)

• Analysis phase - does not modify IR

• Inputs

– Routine in SSA form

• Outputs

– Congruence classes of routine

– Values in every congruence class

– Leader of every congruence class

– Congruence class of every value

PLDI’02 17 June 2002 5/34

Global Value Numbering (continued)

• GVN can be unified with:

– Constant folding

– Algebraic simplification

– Unreachable code elimination

• The results of GVN are used to perform:

– Unreachable code elimination

– Constant propagation

– Copy propagation

– Redundancy elimination

PLDI’02 17 June 2002 6/34

Brute Force Algorithm

1. Make all SSA variables have the value >

2. Clear hash table to map expressions to values

3. For all instructions V ← X op Y in RPO:

Let E be the expression: Value-of(X) op Value-of(Y)

Perform a hash table lookup on E:

• If lookup is successful, make its result the value of V

• Otherwise set the value of V to V itself,

and update hash table to map E onto V

4. Repeat steps 2. and 3. until there are

no more changes in values

PLDI’02 17 June 2002 7/34

Brute Force Algorithm (example, pass 1)

I1
J1
I2

2J

I3
J3 J3

I1
J1
I2

2J

I3

I1
I1
I1
I1
I3
I3

I1
I3I1

Var Var ValueValue

Expr Value

1

+ 1

I1 ← 1
J1 ← 1

I2 ← φ(I1, I3)
J2 ← φ(J1, J3)
I3 ← I2 + 1
J3 ← J2 + 1

PLDI’02 17 June 2002 8/34



Brute Force Algorithm (example, passes 2 and 3)

J3

I1
J1
I2

2J

I3

I1
I1
I1
I1
I3
I3

Var Value

, I )
I3I2

I1
I2

J3

I1
J1
I2

2J

I3

I1
I1
I2
I2
I3
I3

Expr

1

1phi(I 3

Value

+ 1

Var Value

I1 ← 1
J1 ← 1

I2 ← φ(I1, I3)
J2 ← φ(J1, J3)
I3 ← I2 + 1
J3 ← J2 + 1

PLDI’02 17 June 2002 9/34

Brute Force Algorithm (continued)

• This is Taylor Simpson’s hash based RPO algorithm (1996)

• Achieves the same result as partitioning algorithm

of Alpern, Wegman and Zadeck (1988)

• Makes the optimistic assumption - all values are initially

congruent, until proven otherwise

• Only an optimistic algorithm can discover the

congruence of I3 and J3 in the previous example

• Takes O(C) passes where C is the loop connectedness

of the SSA def-use graph

PLDI’02 17 June 2002 10/34

Sparse Value Numbering

1. Initialize as in Brute Force

2. Touch instructions of start block

3. For all instructions I in RPO:

If I is touched:

• Wipe it

• Process it as in Brute Force

• If its value has changed, touch its consumers

(found from SSA def-use chains)

4. Repeat step 3. until there are no more touched instructions

PLDI’02 17 June 2002 11/34

Sparse Value Numbering (continued)

• After every pass, values are the
same as for Brute Force

• First pass processes 6
instructions, and leaves the
definitions of I2 and J2 touched

• Second pass processes 4
instructions, and leaves the
definitions of I2 and J2 touched

• Third pass processes 2
instructions, and confirms
fixed point

• ≈1.5X faster than Brute Force
for this example

I1 ← 1
J1 ← 1

I2 ← φ(I1, I3)
J2 ← φ(J1, J3)
I3 ← I2 + 1
J3 ← J2 + 1

PLDI’02 17 June 2002 12/34



Sparse Value Numbering (continued)

• Faster than Brute Force because it does not

process all instructions in every pass

• Has to examine every instruction to check if it is touched,

but this is much faster than processing it

• Does not clear hash table between passes

• When the leader of a congruence class

is moved to a new congruence class:

– Touch the definitions of the remaining members

of the old class

– Choose one of them to be the new leader of the old class

PLDI’02 17 June 2002 13/34

Sparse Value Numbering (continued)

• For acyclic code, takes one pass

• For cyclic code, when the optimistic assumption is confirmed,

takes almost one pass

• For cyclic code when the optimistic assumption is rejected,

takes anywhere up to one less pass than Brute Force

• Measurements from SPEC CINT2000 C benchmarks:

– Value numbering (unified with additional analyses)

takes < 4% of total optimization time

– 1.98 passes per routine on average

– Speedup due to sparseness is 1.23–1.57

PLDI’02 17 June 2002 14/34

Algebraic Transformations

• Before looking up an expression in the hash table:

– Perform constant folding

– Perform algebraic simplification

– Perform global reassociation

– Apply distributive law

• If any value of a congruence class is defined to be a constant,

make that constant the leader of the congruence class

PLDI’02 17 June 2002 15/34

Algebraic Transformations (continued)

• First pass sets value of I1

to 1

• Ignoring I3, value of I2 is

also 1

• Constant folding evaluates

I3 to 1

• Second pass processes

definition of I2

• The value of I2 remains 1

• Hence I3 has the value 1

• Almost one pass to reach

fixed point

I1 ← 1

I2 ← φ(I1, I3)
I3 ← bitwise-and(I2,1)

PLDI’02 17 June 2002 16/34



Unreachable Code Elimination

• Assume start block is initially reachable

• Assume all other blocks and edges are initially unreachable

• Wipe but do not process, touched but

unreachable instructions

• Examine jump instructions also:

– If an outedge cannot be followed, it remains unreachable

– Otherwise it becomes and remains reachable

• Once an edge becomes reachable, so do its target blocks

• Ignore operands of φ-functions carried by unreachable edges.

PLDI’02 17 June 2002 17/34

Unreachable Code Elimination (continued)

• Constant folding evaluates the

predicate I1 6= 0 to true

• So edges E1 and E2 remain

unreachable

• So I2 is ignored when evaluating

the definition of I3

• Hence I3 has the value 1

I1 ← 1
if (I1 6= 0)

I1 ← 2. . .

I3 ← φ(I1, I2)

true E1

E2

PLDI’02 17 June 2002 18/34

Balanced Value Numbering

• Pessimistic in congruence of values - assumes all values

are non-congruent until proven otherwise

• Optimistic in reachability

• To perform balanced value numbering:

– Treat every cyclic φ-function as a unique value

– Terminate after the first pass

• On SPEC CINT2000 C benchmarks:

– As fast as pessimistic value numbering

– Almost as strong as optimistic value numbering

– Runs 1.39–1.90 times faster than optimistic

value numbering

PLDI’02 17 June 2002 19/34

Value Inference

• The use of I1 in block B1 is

dominated by edge E1

• The predicate J1 6= 0 has

the value false at edge E1

• So J1 has the value 0 at edge

E1 and block B1

• I1 is congruent to J1

• So I1 has the value 0 at edge

E1 and block B1

• Hence K1 has the value 0

I1 ← J1 + 0
if (J1 6= 0)

K1 ← I1

true E1

B1

PLDI’02 17 June 2002 20/34



Value Inference (continued)

• Algorithm:

Before looking up an expression in the hash table:

For each operand X of the expression:

1. Start from the block B containing the expression

2. Go up the dominator tree looking for an edge E such that:

(a) E dominates B

(b) E is the true outedge from a jump instruction

with predicate Y = Z

(c) Y is congruent to X

3. If such an E is found, then replace X by Z

• Only dominator tree based approach can be

completely unified with value numbering

PLDI’02 17 June 2002 21/34

Value Inference (continued)

• Two ways to determine dominance relationships:

– Complete algorithm - incrementally build

reachable dominator tree

– Practical algorithm - use dominator tree of routine

∗ Cannot ignore unreachable code

∗ Cannot perform inferences along back edges

• When the reachability or predicate of an edge B1→B2 changes,

touch potentially affected instructions:

– Complete algorithm - touch all instructions

of blocks dominated by block B2

– Practical algorithm - touch all instructions

downstream in RPO of block B2

PLDI’02 17 June 2002 22/34

Value Inference (continued)

• Value inference can take O(E2) time in the worst case,

where E is the number of edges in the CFG

• Sufficient to perform value inference on operands

of = or 6= predicates of jump instructions

• Track the number of such values in every congruence class

• Perform value inference only on values

in classes with positive counts

• Results of value inference can be cached

across multiple uses in a block

• Measurements from SPEC CINT2000 C benchmarks:

Value inference visits 0.91 blocks per instruction on average

PLDI’02 17 June 2002 23/34

Predicate Inference

• Similar to value inference

• The predicate J1 = 0 in

block B1 is dominated by

edge E1

• The predicate I1 6= 0 has

the value false at edge E1

• I1 is congruent to J1

• So the predicate J1 = 0 has

the value true in block B1

I1 ← J1 + 0
if (I1 6= 0)

if (J1 = 0)

true E1

B1

PLDI’02 17 June 2002 24/34



Φ-Predication

• Problem: when are I0 and

I ′0 congruent?

• Rewrite I0 as: if P1 then I1

else if P2 then I2 else if . . .

• P1 is true when and only

when control reaches B1

along D1→· · ·→E1→B1

• Similarly I ′0 is: if P ′
1 then I ′1

else if P ′
2 then I ′2 else if . . .

• I0 is congruent to I ′0 if Ii

is congruent to I ′i and Pj

is congruent to P ′
j

I0 ← φ(I1, I2, . . .)

...

I ′0 ← φ(I ′1, I ′2, . . .)

...

E1 E2 . . .

E′
1 E′

2 . . .

B1

D1

B′
1

D′
1

PLDI’02 17 June 2002 25/34

Φ-Predication (continued)

• Predicate of block B1 defined as: P1 ∨ P2 ∨ . . .

• Two φ-functions are congruent if their arguments are

congruent and either their blocks are identical or the

predicates of their blocks are congruent

• To compute the predicate of block B1:

– Find its immediate dominator D1

– Traverse all reachable paths from block D1 to block B1

– Combine predicates of jumps encountered during traversal

• Restrictions:

– Block B1 must postdominate block D1

– Back edges can not be traversed

PLDI’02 17 June 2002 26/34

Φ-Predication (continued)

• To determine the predicate

of block B4, start from

block B1

• Traverse the paths

B1→B2→B4 and

B1→B3→B4

• The predicate of block B4

is: (K1 6= 0) ∨ (K1 = 0)

• The predicate of block B7

is identical

• Hence J3 is congruent to I3

if (K1 6= 0)

I1 ← 1 I1 ← 2

I3 ← φ(I1, I2)
if (K1 6= 0)

J1 ← 1 J1 ← 2

J3 ← φ(J1, J2)

true false

true false

B1

B2 B3

B4

B5 B6

B7

PLDI’02 17 June 2002 27/34

Φ-Predication (continued)

• Compute predicates of touched blocks only

• Compute predicate of block before processing

instructions of block

• When the reachability or predicate of an edge B1→B2

changes, touch potentially affected blocks:

– Complete algorithm - touch all blocks

that postdominate block B2

– Practical algorithm - touch all blocks

downstream in RPO of block B2

• Measurements from SPEC CINT2000 C benchmarks:

Φ-predication visits 0.16 blocks per instruction on average

PLDI’02 17 June 2002 28/34



Putting it all Together

• Unifies sparse value numbering with constant folding,

algebraic simplification, unreachable code elimination,

global reassociation, value inference, predicate inference,

and φ-predication

• Worst case time complexity:

– Balanced value numbering - O(E2(E + I))

– Optimistic value numbering:

∗ Acyclic CFG - O(E2(E + I))

∗ Cyclic CFG - O(CE2(E + I))

• Measurements from SPEC CINT2000 C benchmarks:

Unified algorithm takes < 4% of total optimization time

PLDI’02 17 June 2002 29/34

Measurements

Unified algorithm on SPEC CINT2000 C benchmarks:

• Value numbering (unified with additional analyses)

takes < 4% of total optimization time

• Runs 1.23–1.57 times faster when sparseness is enabled

• Runs 1.15–1.32 times faster when global reassociation, value

inference, predicate inference and φ-predication are disabled

• Runs 1.39–1.90 times faster with balanced value numbering

• 1.98 passes per routine on average

• Blocks visited per instruction on average:
Value inference - 0.91
Predicate inference - 0.38
Φ-predication - 0.16

PLDI’02 17 June 2002 30/34

Measurements (continued)

Unified algorithm vs. Click’s strongest algorithm (1995)
on SPEC CINT2000 C benchmarks:

0 20 40 60 80 100

1

2

5

10

20

50

100

×

×

×

×

×

×

×

× ×× × × ×

+

+

+

+

+

+

+

+

+

+

+

+

+
+
++

+++++ +++++ + + + +¦¦¦¦¦¦¦¦

¦

¦

¦
¦¦

¦¦
¦

¦

¦

¦

¦¦

¦

¦

¦¦

Unreachable values × 0 x

Constant values + 0 x

Congruence classes ¦ 0 x

Total number of routines

6103

5868

5852

6138

Improvement

N
u
m

be
r

o
f
ro

u
ti
n
e
s

PLDI’02 17 June 2002 31/34

Measurements (continued)

Unified algorithm vs. Wegman and Zadeck’s
sparse conditional constant propagation algorithm:

×

×

×

×

×

×

×

× ×× × × ×

+

+

+

+

+

+

+

+

+

+

+

+

+
+
++

+++++++++++ +++

Unreachable values × 0 x

Constant values + 0 x

Total number of routines

6103

5853

6138

1 2 5 10 20 50 100

1

2

5

10

20

50

100

Improvement

N
u
m

be
r

o
f
ro

u
ti
n
e
s

PLDI’02 17 June 2002 32/34



Measurements (continued)

Unified algorithm: optimistic vs. balanced value numbering

× ×
+ +

+ + + + + +¦¦

¦

¦

¦

¦ Unreachable values × 0 x

Constant values + 0 x

Congruence classes ¦ 0 x

Total number of routines

6136

6128

6117

6138

1 2 5 10 20 50 100 200

0

2

4

6

8

10

12

Improvement

N
u
m

be
r

o
f
ro

u
ti
n
e
s

PLDI’02 17 June 2002 33/34

Conclusions

• Sparse value numbering is practical and efficient

• Balanced value numbering is a good tradeoff between

compilation time and optimization strength

• Sparse value numbering can be unified with

a wide range of additional analyses

• The unified algorithm offers modest improvements

over existing methods

Thank you to Laurie Hendren for helping

to prepare and presenting this slide set.

Questions or comments regarding this work may

please be sent to the author at kg@india.hp.com

PLDI’02 17 June 2002 34/34

Examples of Differences - Unreachable Values (Unified vs.

Click)

• Benchmark: 176.gcc

• Routine: try combine (instruc-

tion combiner)

• Unreachable values:

– Click 95: 0

– Unified algorithm: 100

– Improvement: 100

• Source: Predicate inference

if (X != 0)

...

if (X != 0)

...

else

...

...

if (X < 64)

...

if (X >= 64)

...

PLDI’02 17 June 2002 35/34


