PolyJ 1.2 Translation Specification

December 15, 2000

This document describes the translation of PolyJ to standard Java as implemented in PolyJ version 1.2. It covers the translation of parametric classes and interfaces, followed by the generation of adapter interfaces and adapter classes, the translation of code inside a method body, and additional notes about static fields and arrays. The translation was documented by Matt Harren and Aleksey Kliger.

A. Translation of Parametric Classes:

To translate a parametric class that does not extend another parametric class:

The following code is added to the class:

protected class_name$$$W $W; //The adapter object for this instantiation.

// Objects of a polymorphic class are only considered the same type

// if they were instantiated on the same parametric types.

// In the methods below, a separate String argument is used to represent

// each of the n parametric types.

public static boolean $instanceof(Object o, String $1 ... String $n) {

return (o instanceof class_name)

 && ((class_name) o).$instanceof$$class_name($1 ... $n);

}

public boolean $instanceof$$class_name(String $1 ... String $n) {

return $W.class_name$$$W$PSig$1().equals($1)

 && ...

 && $W.class_name$$$W$PSig$1().equals($n);

}

public class_name $cast$$class_name(String $1, ... String $n) {

if (!this.$instanceof$$class_name($1 ... $n))

throw new ClassCastException();

return this;

}

//Only generated if the class contains static initialization code

static public void $stinit(class_name$$$W $W)

 {

 if ($W.$FetchS$k()) return;
//where $W.$FetchS$k() and $W.$SetS$k

 $W.$SetS$k(true);

// refer to the $initialized member

// of the adapter class.

 static initialization code

 }

Constructors are translated as follows:

class_name(argument list) {

super(arguments to superclass constructor);

// Considered to be "super()" if there is no explicit call to the

// superclass constructor

remaining constructor code

}

=>

class_name(class_name$$$W $W, argument list) {

super(arguments to superclass constructor);

this.$W = $W;

// Insert instance initialization code here. For fields with

// parametric types and no explicit initialization, use

// fieldname = $W.$Default$k();

remaining constructor code (translated)

}

Field types are translated according to the Translating Code section below (except for static fields, which are stored in the adapter classes). Method bodies and initialization code in the class are also translated as described in the Translating Code section below.

To translate a parametric class that does extend another parametric class

The translation in this case is the same as above, except that no declaration of $W is needed (because we inherit the superclass’s declaration), and the $W object is passed to the superconstructor:

class_name(class_name$$$W $W, argument list) {

super($W, arguments to superclass constructor);

...

To translate a parametric interface:

These method declarations are added:

public boolean $instanceof$$class_name(String $1 ... String $n);

public class_name $cast$$class_name(String $1, ... String $n);

And a separate “instanceof” class is generated:

public class class_name$$$W {

public static boolean $instanceof(Object o, String $1 ... String $n) {

return (o instanceof class_name)

 && ((class_name) o).$instanceof$$class_name($1 ... $n);

}

}

The separate class is needed because interfaces cannot have static methods. We considered trying to eliminate the need for this method by just inlining the code:

(expr instanceof class_name) && ((class_name) expr).$instanceof$$class_name($1 ... $n);

but this would have resulted in expr being evaluated twice.

To translate any class (parametric or not) that implements a parametric interface:

The class must implement the $instanceof$$class_name and $cast$$class_name methods defined in each parametric superinterface that is above it in the type hierarchy. The implementation is similar to the implementation of these methods for parametric classes.

B. Generating Adapter Interfaces:

An adapter interface is created for each parametric class. All adapter classes for a particular parametric class must implement this interface. If a parametric class extends another parametric class, the corresponding adapter interface should also extend the superclass’s adapter interface.

The names for adapter interfaces are created by appending "$$$W" to the name of the parametric class.

Since the methods in the interface must be duplicated once per type, field, or constraint, all of the method names end with $k, where k is a unique number used to distinguish between methods.

public interface parametric_class_name$$$W

{

These two methods are needed for each type parameter:

 // Default value for variables of this type

// (either null or jltools.ext.polyj.runtime.TWrap.Default)

public Object $Default$k();

// A string representing the instantiation type

public String $PSig$k();

These two methods are needed for each static field:

public Object $FetchS$k();

// Read from the variable

public Object $SetS$k(Object $val);
// Write $val to the variable,

// and return $val

These three methods are needed for each type parameter:

(They are needed to access arrays with a parametric base type)

public int $ALen$k(Object array);
 // Returns the length of the array

public Object $AFetch$k(Object array, int index); //Fetch array[index]

public Object $AStore$k(Object array, int index, Object val);//Set array[index]

This method are needed for each array type that is constructed within the class. (i.e. if a class uses both

“new T[n]” and “new T[m][n]”, then two separate $ANew$k methods must be generated.):

public Object[]..[] $ANew$k(int $1, ... int $n); // Create an n-dimensional array

A copy of this method is needed for every instantiation of a parametric type that refers to one of this class’s own parameters. (The getWhere$ method simply returns an instance of the appropriate adaptar class for the instantiation.):

public return_type getWhere$k();

And, of course, we need the actual where methods for the type constraints:

public returntype $Where$k(arguments);

For example, the constraint "boolean equals(T)" is translated to

public boolean $Where$k(Object $this, Object $1);

}

C. The Adapter Classes:

An adapter class is generated for each unique type instantiation of a parametric class, and implements the adapter interface for that class. They are named by taking the type string of the instantiated class, and replacing "[" with "$1", "," with "$_", "]" with "$2", and "#" with "$8". For example,

Set[MapEntry[HashTable#K, HashTable#V]]
becomes

Set$1MapEntry$1HashTable$8K$_HashTable$8V$2$2
Adapter classes are only generated if needed (i.e. if there is a new operator or static method call that refers to the class). Unlike PolyJ 1.0.2, adapter classes to not inherit from other classes, so there is no need to generate adapter classes for a parametric class’s superclasses just because the parametric class is instantiated.

In addition to implementing all of the methods described by the adapter interface, the following code is also included in the class:

public final class adapter_class_name implements adapter_interface_name {

// exactly one instance of the adapter class is created:

private adapter_class_name() {}

private static adapter_interface_name the_instance

= new adapter_class_name();

public static adapter_interface_name getInstance() {

return the_instance;

}

// If the parametric class had any static fields, they are declared here

private static type field_name;

...

}

D. Translating Code:
All code that refers to parametric classes must be translated into standard Java. Here is a breakdown of that translation:

(In these examples, P is a class with 2 type parameters, P_instance is an instance of P[T,U], and string(Type) is the canonical string representation for a type Type)

Code where the parametric type is not known (i.e. inside the parametric class):

Translating Types:

· Fields and variables with a parametric type are assigned type Object in the translation.

· n-dimensional arrays of a parametric type are translated as (n-1)-dimensional arrays of Object (see the section on arrays at the end of this document for more information).

Static Field Accesses (where the field has a parametric type T):

 RHS:
P.x => ((P$$$W)$W).$FetchS$k()

 LHS:
P.x = expr => ((P$$$W)$W).$SetS$k(expr)

Exception: if the field is a protected member of a superclass, then $fetch_x($W) and

$set_x($W, expr) are used instead. (Note: the $fetch_x and $set_x methods are not yet implemented.)

Arrays of a parametric type:

Element access (RHS):

arr[intexpr] => ((T)((P$$$W)$W).$AFetch$k(arr, intexpr))

Element access (LHS):

arr[intexpr] = expr => ((T)((P$$$W)$W).$AStore$k(arr, intexpr, expr))

Length:

arr.length => ((P$$$W)$W).$ALen$k(arr);

Construction:

new T[size_1]...[size_n] =>

((Object[]...[])((P$$$W)$W).$ANew$k(size_1,...,size_n));
Where methods:

t.foo(a, b) => ((P$$$W)$W).$Where$k(t, a, b)

Default fields:

T.default => ((P$$$W)$W).$Default$k()

Equality Operator:

expr1 == expr2 => jltools.ext.polyj.runtime.Primitive.ee(expr1, expr2)

(On non-primitive types, ee() will test for pointer equality. On primitive types, ee() will

compare the primitives themselves rather than the objects.)

Code where the parametric type is known (i.e. code that uses an instantiated class):

Field Accesses (where the field has a parametric type T):

non-static:

if T is primitive:

P_instance.x => ((jltools.ext.polyj.runtime.TWrap)P_instance.x).value

if T is a class or array:

 RHS:
P_instance.x => ((T)P_instance.x)

 LHS:
P_instance.x = expr => ((T)(P_instance.x = expr))

static: (because P[int, Object] and P[boolean, Object] are different classes, they have

separate static fields.)

if T is primitive:

P.x => ((jltools.ext.polyj.runtime.TWrap)

pjIns.P$$string(T)$$string(U).getInstance().$FetchS$k()).value

if T is a class or array:

RHS: P.x =>

((T)pjIns.P$$string(T)$$string(U).getInstance().$FetchS$k())

LHS:
P.x = expr =>

((T)pjIns.P$$string(T)$$string(U).getInstance().$SetS$k(expr))

(If the static field is not public, a token must be passed to the $FetchS$k and $SetS$k

methods. See below for more information.)

All Code:

cast operator:

(P[T, U])obj => obj.$cast$$P(string(T), string(U));

instanceof operator:

(obj instanceof P[T, U]) => P.$instanceof$$P(obj, string(T), string(U));

Constructor Call (where T and U are known):

new P[T, U](...) => new P(pjIns.P$1string(T)$_string(U)$2.getInstance(), ...)

Constructor Call (where either T or U is a type parameter of the current class):

new P[T, U](...) => new P(((P$$$W)$W).getWhere$k, ...)

E. Notes:

Arrays of a Parametric Type:

For non-primitive types, these behave in the obvious way. For primitive types, arrays with parametric types are implemented as arrays of true primitives (e.g. int[] rather than jltools.ext.polyj.runtime.IntWrap[]). This is useful in cases such as:

class Set[T] { T[] contents; ... }

public void foo(){

Set[int] set = new Set[int]();

set.contents = new int[10];
//Requires Set.contents to be

// implemented as an int[].

}

In order to generalize arrays of these two cases, the following methods are used:

int $ALen$k(Object array);

Object $AFetch$k(Object array, int index);

Object $AStore$k(Object array, int index, Object val);

Also, we generate array creation methods of the form:

Object[]..[] $ANew$k(int $1,..., int $n);

An n-dimensional array is represented as an (n-1)-dimensional array of Object. (The Object represents either an array of some reference type or an array of primitives, giving the type its nth dimension.) Only the innermost array needs to be accessed using $ALen$k, $AFetch$k and $AStore$k methods; for example, if array is declared as type T[][][] (and translated as type Object[][]), then array[1][2][3] is translated as $AFetch$k(array[1][2], 3)
Access Modifiers On Static Parametric Fields:

Translating access modifiers is somewhat tricky for parametric static fields because these values are actually stored in the adapter class, which is in a different package than the parametric class that defined the fields. Here’s how this is handled:

Private:

Because static values are not actually stored in the class where they were declared, private access is not possible. If a programmer attempts to declare a private parametric static field, the PolyJ compiler will display a warning to the screen explaining that the restriction has been downgraded to default access.

Default Access:

Default and protected access are enforced by use of a token. For each package with a parametric class that contains a default or protected member, the following class is generated:

package PackageName;

public final class $token {

 static final $token the_instance = new $token(); //Can only be accessed

 // from within PackageName

 private $token() {};

}

When a default static field declaration is translated, an additional parameter is appended to the parameter lists of each accessor: PackageName.$token $t. Any calls to these methods are required to pass PackageName.$token.the_instance as a parameter, therefore ensuring that the methods can only be called from package PackageName.

For example, a default static field stat would result in these accessor methods:

public Object $FetchS$k(bar.$token $t)

 { if ($t == null) throw new java.lang.SecurityException();

 return stat; }

public Object $SetS$k(Object $val, bar.$token $t)

 { if ($t == null) throw new java.lang.SecurityException();

 stat = $val;

 return $val; }

Accesses to the field would be translated as:

RHS:
P.stat => $W.$FetchS$k(PackageName.$token.the_instance)
LHS:
P.stat = expr => $W.$SetS$k(expr, PackageName.$token.the_instance)

Protected:

Protected static fields are translated as described for default fields, with one addition: a protected method must be added to the parametric class to allow subclasses in different pakages to access the field.

Therefore, the following functions are added for each static variable:

protected static Object $fetch_stat(class_name$$$W $W) {

 return $W.$FetchS$k(PackageName.$token.the_instance);

protected static Object $set_stat(class_name$$$W $W, Object val) {

 return $W.$SetS$k(val, PackageName.$token.the_instance);

Public:
No special action needed during translation. (Recall that the $FetchS$k and $SetS$k methods are declared public.)

