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Abstract

Aspect-oriented programming and the development of aspect-oriented languages is rapidly gaining momentum,
and the advent of this new kind of programming language provides interesting challenges for compiler developers.
Aspect-oriented language features require new compilation approaches, both in the frontend semantic analysis and
in the backend code generation. This paper is about the design and implementation of theabc compiler for the
aspect-oriented language AspectJ.

One important contribution of this paper is to show how we canleverage existing compiler technology by com-
bining Polyglot (an extensible compiler framework for Java) in the frontend and Soot (a framework for analysis and
transformation of Java) in the backend. In particular, the extra semantic checks needed to compile AspectJ are im-
plemented by extending and augmenting the compiler passes provided by Polyglot. All AspectJ-specific language
constructs are then extracted from the program to leave a pure Java program that can be compiled using the existing
Java code generation facility of Soot. Finally, all code generation and transformation is performed on Jimple, Soot’s
intermediate representation, which allows for a clean and convenient method of applying aspects to source code and
class files alike.

A second important contribution of the paper is that we describe our implementation strategies for the new chal-
lenges that are specific to aspect-oriented language constructs. Although our compiler is targeted towards AspectJ,
many of these ideas apply to aspect-oriented languages in general.

Our abccompiler implements the full AspectJ language as defined byajc 1.2.0 and is freely available under the
GNU LGPL.

1 Introduction

Aspect-oriented programming is rapidly gaining popularity and AspectJ [9] is widely recognised as one of the key
aspect-oriented programming languages in use today. To date, there has been only one compiler for AspectJ —ajc,
originally developed by the inventors of AspectJ at Xerox PARC [14] and currently developed and maintained as part
of the Eclipse AspectJ project [2].

This paper is about the design and implementation of a new compiler for AspectJ, theAspectBench Compiler,
abc [1]. Our original motivation for buildingabcwas to create a workbench that allows easy experimentation with
new language features [3] and new optimisations. However, we found that implementing an alternative compiler
also helped to clarify the language semantics. Further, forusers of a language, it is often useful to have different
compilers, as each compiler has it strengths, and it provides a way for users to verify that they are not relying on any
implementation-specific behaviour.

As researchers in the compiler field, we felt that it was important for us to leverage previous work in the area of
compiler toolkits for building Java frontends and backends. Thus, an important contribution of this paper is to show
how we combined the Polyglot framework for extensible Java frontends [13] with the Soot framework for analysis and
optimisation of Java [19]. Combining the tools was a non-trivial challenge, and a substantial part ofabc’s architecture
design stems from the need to cleanly separate the Java part of AspectJ programs from the aspect-specific parts in a
way that can be used by both the frontend and backend Java tools. We are the first AspectJ compiler to achieve a clean
separation of the implementation of the aspect-oriented features from these underlying tools.

Current versions of the AspectJ language specify that weaving (injecting aspect code) should be done at the byte-
code level (as opposed to source level), and input to the compiler can be AspectJ/Java source, or Java class files.
Designingabcto handle both kinds of inputs in a natural way was another important design challenge.

Implementing compilers for aspect-oriented languages is arelatively new field, and another important contribution
of this paper is to show the structure of such a compiler, and to describe how we have implemented the various parts
that are specific to compiling aspect-oriented code. Althoughabc is an AspectJ compiler, many of these components
would also be necessary for other aspect-oriented languages.

The structure of this paper is as follows. In Section 2 we provide a brief introduction to the most relevant features of
AspectJ.1 In Section 3 we briefly summarise our building blocks, Polyglot and Soot. Section 4 provides a description
of the architecture ofabc, and how this architecture fits together with our building blocks. Section 5 discusses details
of how specific aspect-oriented features have been addressed, namely how we handlename matching, declare parents,

1We assume that many compiler researchers are not yet familiar with AspectJ; readers with previous knowledge of AspectJ may skip this section.
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intertype declarationsandadvice. Finally, Section 6 reviews related work and Section 7 givesconclusions and future
work.

2 An overview of AspectJ

An AspectJ program consists of two kinds of entities: ordinary Java classes andaspects, which are instructions for
injecting code into the classes at specific points and under specific conditions. Aspects are applied to classes (and
the aspects themselves) by a process known asweaving: an AspectJ compiler reads in the aspects and classes to be
compiled and produces classes in which the aspect code has been injected as specified in the aspects.

To introduce AspectJ’s features, we have chosen a small expression interpreter in Java, to which we will apply
five illustrative aspects. As illustrated in Figure 1(a), most of the interpreter was generated using the SableCC parser
generator, and the generated code is in four packages providing the lexer, parser, tree nodes, and various tree traversal
visitors. In addition to the generated code there are two small programmer-defined Java classes:tiny/Main.java
contains the main method which reads in input, applies the parser and then evaluates the resulting expression tree. The
actual expression evaluation is performed by the methodeval defined in the classtiny/Evaluator.java . An
example of running thetiny interpreter is given in Figure 1(b).

Generated packages:
(must not be directly modified)

lexer/
parser/
node/
analysis/

User-defined package:
tiny/Main.java

/Evaluator.java

> java tiny.Main
Type in a tiny exp:
3 + 4 * 6 - 7
The result of evaluating:
3 + 4 * 6 - 7
is: 20

(a) code base (b) example run

Figure 1:tiny interpreter example

The AspectJ language can be divided intostaticanddynamicfeatures. Static features are defined and implemented
with respect to the static structure of a program, whereas dynamic features relate to the dynamic trace of a program
execution. Figure 2 shows the five example aspects which we apply to our exampletiny interpreter code base.

2.1 Static Features

TheStyleChecker aspect in Figure 2 illustrates an interesting use of AspectJ, thedeclare warningconstruct2. This
construct allows the programmer to specify a pattern and a warning string. For each place in the program matching the
pattern, a compile-time warning is issued, using the stringas the warning message. In our example we have specified a
pattern that matches all places where a field is set, and whichare not within a method whose name starts with “set”. In
fact, the pattern is a bit more precise than this, because it will only match sets to non-private, non-final fields. When we
compile thetiny code base with theStyleChecker aspect (abc StyleChecker.java */*.java ) several
warnings are given, mostly relating to the generated parsercode, for example:

parser/TokenIndex.java:14: Warning --
Set of field outside of a set method.

index = 0;
ˆ-------ˆ

2There is also an analogousdeclare errorconstruct
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public aspectStyleChecker{
declare warning :

set(!final !private * *)
&& ! withincode(void set*(..) ):
“Set of field outside of a set method.”;

}

public classValue{
private int value;// a new field
public void setValue(int v)

{ value = v;}
public int getValue()

{ return value;}
}
public aspectValueNodeParent{

declare parents:
node.NodeextendsValue;

}

public aspectAddValue{
private int node.Node.value;
public void node.Node.setValue(int v)

{ value = v;}
public int node.Node.getValue()

{ return value;}
}

public aspectCountEvalAllocs{

int allocs;// counter

pointcut mainEval() :
call(* *.eval(..)) && within (*.Main);

before () : mainEval()
{ allocs = 0;}

after () : mainEval()
{ System.out.println(

“*** Eval allocations: ” + allocs);}

before () : cflow(mainEval()) && call(*.new(..))
{ allocs ++;}

}

public aspectExtraParens{
Stringaround() :
execution(String node.AMultFactor.toString())||
execution(String node.ADivFactor.toString())
{ String normal =proceed();

return “(” + normal +“)” ;
}

}

(a) static features (b) dynamic features

Figure 2: Illustrative AspectJ examples

When using SableCC (or other tools) to generate compilers, it is very important not to modify the generated code,
so that it can be regenerated without clobbering the user’s changes. SableCC generates all the classes representing the
AST, with classnode.Node as the root (extendingObject ), and a hierarchy of subclasses for other kinds of nodes
belownode.Node , as indicated by the grammar specification. This hierarchy is fixed in the generated code and since
one should not edit these generated classes, it is not possible to add new fields to the nodes. The recommended method
is to associate values with nodes using a hash table. However, using static features of AspectJ there are two ways of
adding fields, without touching the generated code, withoutresorting to the use of external hash tables, and giving full
semantic checking of the added fields.

The aspectValueNodeParent from Figure 2(a) illustrates the AspectJdeclare parentsconstruct. In this exam-
ple the programmer defines an ordinary class,Value , to implement the new field and accessor to that field. Then, the
declare parentsconstruct is used to inject the newValue class as a parent of the generatednode.Node class. In
general, thedeclare parentsconstruct can be used to introduce newextendsandimplementsrelations.

Sometimes it is not possible (or desirable) to add new fields and methods by injecting new classes into the hierarchy,
and AspectJ provides a general form of injecting new fields, constructors and methods into classes and interfaces,
calledintertype declarationsor ITDs. The aspectAddValue in Figure 2(a) illustrates ITDs for injecting a new field
and two new methods into thenode.Node class. The declarations look like normal Java declarations, but the name
of the field/constructor/method being defined is prefixed by the name of the class/interface into which it should be
injected (in our examplenode.Node ). Since AspectJ also allows one to inject new members into both classes and
interfaces, ITDs can be quite powerful (and tricky to implement correctly in a compiler).

2.2 Dynamic Features

The dynamic features of AspectJ are quite different from thestatic features. While the static features are merely new
incarnations of old ideas (in particular ITDs are a form of open classes), the dynamic features are generally regarded as
the defining characteristic of aspect-orientation. They are defined with respect to a trace of the program execution. This
trace is comprised of various kinds of observable events, such as getting/setting fields, calling methods/constructors
and executing method/constructor/initialiser bodies. These events may correspond to exactly one instruction (for
example, getting/setting fields), or they may correspond toa group of instructions (for example, the body of a method).
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Each event has a starting point in the trace (just before it happens), and an ending point (just after it happens). The
dynamic features of AspectJ allow one to specify a pattern tomatch certain events, and then advice (extra code) to
executebefore, after or around the matching events. The events are usually calledjoin points in the literature on
aspect-oriented programming, because these are places during program execution where an aspect can join in.

The aspectCountEvalAllocs in Figure 2(b) demonstratesbeforeandafteradvice. The purpose of this example
is to count the number of allocations that occur during the evaluation of an expression, starting from the call toeval
in theMain class. In this example we define a pointcutmainEval to specify that thecall must be to a method called
eval , and this call must occurwithin theMain class. Then we definebeforeadvice to initialise a counter just before
the call, andafter advice to print out the value of the counter just after the call. The tricky part of this aspect is the
beforeadvice used to increment the counter. We use the AspectJcflowconstruct to specify that we are interested in all
events that occur between the start and end of a call to eval (i.e. between the time the call starts, and when the call is
finished). We use the && operator to pick out, from those events, all events that call a constructor, as indicated by the
pattern “call(*.new(..))”. Thecflowconstruct is of particular interest, because it means that we can match according
to some runtime context, and because this matching cannot always be decided statically, runtime checks are necessary.
There exist a number of other pointcut primitives (not covered in this introduction) that also require such runtime
checks.

TheExtraParens aspect contains a very simple example ofaroundadvice. This example is intended to slightly
modify the output of the pretty print of expressions, by inserting parentheses around each factor. For example if the
base program is compiled with this aspect (abc ExtraParens.java */*.java ), the pretty print of the output
in Figure 1(b) would be changed to3 + (4 * 6) - 7 , instead of3 + 4 * 6 - 7 .

The advice declaration in theExtraParens aspect specifies a pattern to capture the execution of the tworelevant
methods. In the advice body, theproceedconstruct is used to specify that the original method body should be executed,
the parentheses are added to the result, and this new result is then returned.

In our example theproceedcall is very simple, but in general the use ofproceedcan be quite complex — it can
be left out entirely, executed conditionally, called many times, saved for later execution using a local class, and the
arguments can be modified. Thus,aroundadvice is quite a bit more complicated thanbeforeandafter advice, as it is
not just injecting advice (code), but can actually change how existing code executes.

Also, it should be noted that all of our advice examples are very simple, and do not have any parameters. In
general, advice may have parameters, and the pointcut patterns may specify how to bind those parameters to values.
Readers who wish to know more details of the AspectJ languageand its applications may wish to consult one of the
growing number of textbooks on the subject,e.g.[11].

3 Building Blocks

In the following sections, we briefly introduce the buildingblocks ofabc, Polyglot and Soot, focusing on the features
that are most relevant to theabcdesign.

3.1 Polyglot

Polyglot [13] is an extensible frontend for Java that performs all the semantic checks required by the language. It
is structured as a list of passes that rewrite an AST, and build auxilliary structures such as a symbol table and type
system.

The extensibility of Polyglot is achieved in a number of ways. Polyglot allows a grammar to be specified as an
incremental set of modifications to the existing Java grammar, and the tree rewriting portion can be extended without
modifying the base compiler. New AST nodes may be added; theyextend existing nodes and give definitions of the
specific methods required by compiler passes that are relevant to them. New passes may be added between the existing
passes. In addition, the behaviour of existing nodes in existing passes can be modified usingdelegates[13], achieving
the same task in Java as intertype declarations do in AspectJ. Strict use of interfaces and factories throughout Polyglot
makes it easy to modify structures such as the type system.
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3.2 Soot

Soot [19] is a Java bytecode analysis toolkit based around the Jimple IR, a typed, three-address, stack-less code.
Jimple is low-level enough for pointcut matching, in that the granularity of any join point is at least one entire Jimple
statement. It is high-level enough for weaving and easy analysis; in particular, during weaving, we need not worry
about implicit operations on the computation stack, because all operations are expressed in terms of explicit variables.

Soot can produce Jimple from both bytecode and Java source code. The source frontend, JAVA 2JIMPLE, makes use
of Polyglot to build an AST and perform frontend checks, and then generates Jimple. As output, Soot generates Java
bytecode. This process includes important optimisations for generating efficient bytecode [19]; these are necessary
even for today’s JITs. Soot also supports an annotation framework [16] which allows arbitrary tags to be attached to
the code and automatically propagated through all transformations and all its intermediate representations. We make
extensive use of tags to track information flowing throughabc.

4 Architecture

In Section 2 we introduced the static and dynamic language features that must be handled by an AspectJ compiler,
and in Section 3 we discussed our basic building blocks, Polyglot for building the frontend and Soot for building the
backend. Of course, the big question is how to fit these building blocks together so that in the end, one has a nicely
structured AspectJ compiler that can handle both the staticand dynamic features of AspectJ. In this section we address
the design of the architecture, and then in Section 5 we focuson how to handle specific language features in more
detail, where the implementation of some language featurescrosscuts several parts of architecture.

Figure 3 shows a high-level view of theabc architecture: the compiler takes .java and .class files as input, and
produces woven .class files as output. An important point about AspectJ compilers is that the files given to it as
explicit input are considered differently from classes that are found implicitly when the compiler must resolve classes
from the class path. Classes corresponding to the explicit inputs are said to beweavable: aspects can weave into these
classes, and it is the woven version of these classes that will be output by the compiler. Classes corresponding to the
implicitly processed classes are not weavable.

As shown in Figure 3 we have split the architecture into four major components, two in the frontend and two in the
backend. Compiler writers will immediately see that this architecture is different from the usual view of a compiler as
a frontend and a backend connected via an intermediate representation.

The first major difference is that the frontend and backend ofabcare connected via two data structures, the IR of
the program (Java AST) and the AspectInfo data structure. The interesting point here is that in order to use standard
Java compiler tools, we must be able to tease apart the incoming AspectJ program into a standard Java part, represented
as Java ASTs, and an aspect-specific part that captures all ofthe key information about aspects and how the aspects
related to the Java IRs. This process is represented by theSeparatorbox in Figure 3.

The second major difference between an AspectJ compiler anda standard Java compiler is that the backend must
deal with both weaving the static AspectJ language features(static weaving), and weaving the dynamic language fea-
tures (advice weaving). As shown in Figure 3 the static weaving is performed in conjunction with the code generation
of the Jimple IR, and the advice weaving is performed on the Jimple IR.

In the remainder of this section we visit each of the four major components of the architecture, discussing the
relevant details of each component.

4.1 Polyglot-based Frontend

We used Polyglot as the building block for our frontend. Polyglot allows us to define the AspectJ grammar in a
separate definition file, as a natural extension to the Java grammar. It turns out that the exercise of specifying a
complete LALR(1) AspectJ grammar had not been done before, and so this is another contribution of our project.3

A big challenge in developing our frontend was defining and implementing the semantic checks. AspectJ requires

3Theajc compiler uses a combination of an LALR(1) grammar and a hand-written top-down parser, so it does not provide a complete unified
specification.
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Backend

.java

Aspect
Info

.class

Code generation and static weaving

Separator

AspectJ
AST

Java
AST

IR

Java
bytecode

Advice weaving and postprocessing

Jimple

Polyglot−based frontend

Frontend

Figure 3: High-level overview of the components of theabccompiler

a large number of semantic checks in addition to the ones required by pure Java. Most of these checks have been
implemented in Polyglot passes. Unlike in Java, where all semantic checks can be performed in the frontend, some
semantic checks for AspectJ depend on the result of backend weaving, and thus some semantic checking has to be
deferred until after weaving has occurred. Both exception checking (described in Section 4.4) and some checks related
to advice weaving (described in Section 5.4) must be delayeduntil the backend.

To implement the semantic checks, we only overrode 14 AST nodes of pure Java in minor ways; everything else
was handled with new AST nodes and new visitor passes. The changes we made to the passes are summarised in
Figure 4. This overview has been simplified for expository reasons; the actual number of passes for semantic checking
in abc is 27, compared to 13 in the original Polyglot compiler. The number forabc is so large because we strove to
minimise dependencies between passes, and therefore each new pass performs only one specific task.

The semantic checking of AspectJ source files depends on the static weaving since, for instance, the code might
refer to members introduced by intertype declarations. This makes the dependencies between passes quite subtle.
In particular, checkingdeclare parentsneeds the class hierarchy and inner-class relationships tobe available, both
for doing pattern matching (which depends on the hierarchy as described in Section 5.1) and for checking that the
hierarchy introductions are valid. On the other hand, disambiguating the class names found in method signatures
needs the final hierarchy in place, so this must happen afterdeclare parents.

Similarly, to check the validity of intertype declarations, information about the existing class members must be
available. Furthermore, anything that depends on the presence of class members (in particular the disambiguation of
method bodies) must know about intertype members as well. Thus, semantic checking of intertype declarations must
happen in connection with the pass that inserts the normal class members.

4.2 Separator

The key to our compiler architecture is the Separator, whichsplits the AspectJ AST (with associated type information)
into a pure Java AST and theAspectInfostructure to record aspect-specific information. TheAspectInfoincludes all
information that the backend needs from the Polyglot AST, sothe backend does not use the AST at all, only the Jimple
representation and theAspectInfo.

We now list the main components of theAspectInfostructure:

• All AspectJ-specific language constructs. For all constructs that contain Java code, the code is placed into

8



Type check of binary weavable classes

Type check

Disambiguate bodies

Add members to types

Disambiguate signatures

Build types, disambiguate inner classes and supertypes

Parse

Evaluate patterns and declare parents

Advice and pointcuts

Advice bodies

Add ITD members to host class

Advice headers and pointcuts

New types for aspects and pointcuts

Extra productions and AST nodes

Misc. checks (initialization, reachability etc.)

Check pointcut dependencies

Figure 4: Simplified list of the compiler passes of Polyglot and howabcextends them. The solid boxes on the left
show the original Polyglot passes for pure Java. On the right-hand side, in overlapping boxes, we have indicated which
passes were changed. Finally, the dashed boxes with arrows indicate where we inserted new passes.

placeholder methods in the Java AST, and theAspectInforeferences these methods. It is important not to weave
into some methods created by the compiler, so these are identified.

• An internal representation of the class hierarchy and innerclass relationships.

• A list of weavable classes.

• Information about fields and methods whose names have been name mangled, or to which extra arguments have
been added.

• A representation of types, classes and signatures that can be used throughout the whole compiler. This represen-
tation is independent of both Polyglot and Soot, and it provides a bridge for communicating type information
between the two frameworks.

• Information about relative precedence between advice.

The separation process runs in roughly four steps, implemented as a number of Polyglot passes. The four steps of
separation are:

1. Name mangling. The names of some intertype declarations must be mangled (see Section 5.3).

2. Aspect methods. Code from AspectJ constructs is inserted into pure Java methods, and dummyproceedmeth-
ods are generated for proceed calls inaround advice.

3. Harvesting. All AspectJ constructs are harvested from the AST and put into designated data structures in
AspectInfo.

4. Cleaning. All AspectJ constructs are removed, leaving a pure Java AST. JAVA 2JIMPLE sees aspects as plain
Java classes containing the placeholder methods.

4.3 Code Generation and Static Weaving

The AST passed to JAVA 2JIMPLE might not correspond to a valid Java program in itself, sinceit may refer to members
to be introduced by intertype declarations. Furthermore, it might depend on the class hierarchy being updated by
declare parents. For these reasons, the translation from Java AST to Jimple code cannot happen as one atomic action.

To solve this problem, we take advantage of an existing feature of Soot. In Soot, the translation of both source and
class files to Jimple happens in two stages: one to generate a skeleton, consisting of just the class hierarchy and the
member structure of classes, but without any method bodies.The second stage generates the bodies in Jimple.
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Figure 6: The structure of the advice weaver and final stages
of theabcbackend

Figure 5 shows how the static weaving fits in between these twostages. After the skeleton generation, we adjust
the hierarchy according to parent declarations and intertype declarations. The woven skeleton is then input into the
Soot Jimple body generation. Finally, delegation code for intertype field initializers is generated.

4.4 Advice Weaving and Postprocessing

Once weaving of static features is complete and Jimple has been generated, we weave advice. The structure of the
advice weaver and the final stages of theabcbackend is shown in Figure 6.

The process consists of two main steps, matching (see Section 5.4.1) and weaving (see Section 5.4.2). Matching
determines the static locations (shadows) where each pointcut may match, and which dynamic checks arenecessary
to determine whether it matches. Weaving inserts the checksand the advice into the code.

At the same time as pointcut matching and advice weaving, we handle certain features that turn out to fit neatly into
the same framework:per aspects (a construct for creating instances of an aspect),declare soft(for masking checked
exceptions),declare warninganddeclare error. One side effect of implementing thedeclare softconstruct is that we
cannot verify that checked exceptions are declared correctly until we have dealt with this construct, since it has the
effect of converting checked exceptions into unchecked exceptions. As a result, exception checking is carried out after
the advice weaving process, rather than in the frontend as would be normal for a Java compiler.

Since one major goal ofabc is to implement AspectJ features as efficiently as possible,we make it possible to
perform analyses on the woven code, and use the analysis results in the weaving process to produce improved code.
To support this,abcsupportsreweaving. Weaving is first performed, the analyses run on the woven code, weaving is
undone, and then redone making use of the analysis results. The whole process can be repeated if desired.

Finally, abc runs a number of standard Soot optimisations, such as copy propagation and dead code elimination.
Some of these are extended to add special knowledge of theabc runtime library; for example, the intraprocedural
nullness analysis is extended to exploit the fact that certain factory methods in theabc runtime library never return
null.
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5 Implementing Language Features

In the previous section, we have describedabcby giving its general architecture and points of interest about each of its
components. We now adopt a different viewpoint, and show howvarious AspectJ language features are implemented
within this architecture. The features that we focus on hereare: implementing AspectJ patterns (name matching), the
declare parentsconstruct,intertype declarations, and, finally, how the weaving ofadviceis implemented.

5.1 Name Matching

Many AspectJ constructs use patterns to pick out specific classes or methods to act on. The basic component of these
is the name pattern; this selects classes textually by name.For instance, to select all classes in a package namedast
that need support for break labels in a compiler, you might write ast.*Loop|| ast.If || ast.Switch. This would match,
among others, a class namedast.WhileLoop.

Finding the set of classes matched by a name pattern corresponds to normal Java name lookup. It follows the same
scope rules, but it looks for all names matching a pattern, rather than a single name. To avoid performing this lookup
process every time the name pattern is queried (which can happen many times), these matching sets are explicitly
calculated for each name pattern before they are needed by any matching operations.

Name patterns range over all classes in the class path. However, all uses of patterns can be reduced to two cases:
ranging over all weavable classes (this is the case fordeclare parents, for example), and ranging over all classes
referred to in the program (this is used to match method patterns, among other things).

All pattern matches performed in the frontend range over theformer domain (weavable classes). All class decla-
rations in the AST and class files are collected for this purpose. After thedeclare parentspass, name patterns must be
re-evaluated in the updated class hierarchy. Finally, patterns need to be evaluated yet again after Soot has loaded all
the classes referred to in the program for use in the pointcutmatcher in the backend.

5.2 Declare Parents

The declare parentsconstruct allows an aspect to inject classes into the inheritance hierarchy, and to make classes
implement additional interfaces. Figure 2(a) demonstrates a very simple use ofdeclare parents.

The validity of adeclare parentsdeclaration involves some constraints on the class hierarchy (classes can only be
inserted into the hierarchy chain, not completely replace the parent classes), plus some structural requirements on the
child class (must actually implement the methods of the interface, must contain appropriate constructor calls etc.). All
of these must be checked in the frontend.

The hierarchical constraints are checked in thedeclare parentsPolyglot pass itself. Care must be taken here, as the
validity of declare parentsdeclarations might depend on the order in which different declarations (or even different
classes matched by the same declaration) are handled. Handling the child classes in topological order, starting with
Object , ensures that a unique valid interpretation is found if one exists.

For child classes from source, the structural requirementsare taken care of by the normal Java checks, since these
take place after thedeclare parentspass. For classes from class files, the checks must be performed explicitly.

All checks are performed in the frontend; the weaver fordeclare parentsthen modifies the hierarchy in Soot.
Additionally, when a new superclass has been set on a class read from a class file, all superclass constructor calls must
be changed to call constructors in the new parent, as these calls are represented asinvokespecial instructions
with the old parent class as explicit receiver class.

5.3 Intertype Declarations

When implementing intertype declarations, the main task isto make Polyglot’s type-checker aware of the new mem-
bers that are introduced by aspects. Polyglot includes a pass called ADDMEMBERS that populates class types with
their members. Intertype declarations add their own type tothe host class type during this pass. Note that this isnot the
same as actual weaving: we manipulate types only, not ASTs. The weaving of intertype declarations happens much
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public classA {

int x1;
classB {

int x2;
}
}

aspectAspect{
static int x3;
static int y4;
int A.B.foo() {

classC {

int x5 = 3;
int bar(){ return x5 + A.this.x1;}

}

return this .x2 + (newC()).bar() + y4;
}
}

Figure 7: Scope rules for intertype methods.

later, in the static weaver.

Visibility A complication is introduced by the fact that visibility is always interpreted from the originating aspect.
So for example, if we have two aspectsA andB, and both contain a declarationprivate int C.f, then there are in fact
two fields introduced inC, and they are only visible from their origin. To cope with this, we introduced subclasses of
the AST nodes for class members (constructors, fields and methods) that are used for intertype-declared members and
keep track of the origin of an intertype declaration. Furthermore, the accessibility test in Polyglot was overridden so
that it uses that origin instead of the host class of an intertype declaration.

Scope inside intertype declarations The visibility rules are similarly applied to resolve variable and method
references inside intertype declarations. The environment for an intertype methodC.foo()in an aspectA is built up as
follows: first, we have everything that is in scope insideC and which is visible fromA. Next, we have the scope ofA.
Note, however, that it is an error to refer to instance variables of the aspect: as far as the aspect is concerned, the body
of foo is a static context. The AspectJ rules for one intertype declaration overriding another are somewhat complex,
and omitted for reasons of space.

This environment (consisting of the visible scope of the host class followed by the aspect) is used to disambiguate
uses ofthisandsuperthat may occur in the body offoo: we have to distinguish whether they refer to the host classC,
to some local class, or to an aspect. Such disambiguation must also be applied to references that have an implicitthis
receiver. The example in Figure 7 illustrates this: each field has been labelled with a superscript to link declarations
and references.

Because Polyglot is based on the rewriting paradigm, it is easy to implement these rules by introducing appropriate
new AST nodes forthis andsuperin the host class. Furthermore, by subclassing the type of environments, we can
keep the necessary information about intertype declarations to decide for each variable whether it refers to the host
class or not.

Mangling The visibility rules also imply that names of non-public intertype declarations must be mangled prior to
code generation: a private ITD becomes a public member of thehost class, but only the originating aspect should know
its name. A subtle issue is that sometimes the mangling between several entities must be coordinated. For example, let
A be an abstract class andB a concrete class that extendsA. Now if we introduce a package-visible abstract methodfoo
into A, and an implementation offoo into B, both must be mangled to the same name. For this purpose, we introduced
a new pass that computes equivalence classes of intertype declarations that must get the same name. A subsequent
pass then carries out the name mangling, renaming both declarations and references.

In Polyglot, this is nicely implemented by storing the relevant information (about equivalence classes and mangled
names) inside the type for the intertype declaration. It is then very easy to fix up the references as required.

AspectInfo and code generation Our implementation strategy leaves the code for intertype methods as static
methods in the originating aspects. There are two reasons for this decision. First, there is no need to generate accessor
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methods for accessing members of the aspect scope (and that is the vantage point for visibility tests). Second, the
weaver will correctly use the aspect as the lexical scope formatchingwithin pointcuts. To illustrate, we return to the
AddValueexample of Section 2. After the ASPECTMETHODSpass, the code forgetValuein theAddValueclass will
be:

public static getValue$4(final node.Node this$6) {
return this$6.AddValue$value$3;

}

This is then called by a delegating method inNodethat passes thethis pointer as an argument. Sometimes there
is still a need to generate accessor methods, for example if the host class is nested, and there is a reference to an
enclosing class in the intertype method. Accessor methods are also necessary for the implementation ofprivileged
aspects, which by definition are able to override all the visibility rules and can access any members of any class in the
system. Due to space constraints, we omit a detailed discussion.

5.4 Advice

A piece of advice consists of the pointcut specifying when itshould apply, together with some code to be run. The
frontend ofabc constructs a method body with a synthetic name to hold this code, and places the pointcut and the
name of this method in theAspectInfostructure. The job of the backend is then to find the static locations in the code
where each pointcut might match (the join point shadows), and to insert code that will check at runtime whether or not
the pointcut does actually match, and call the method implementing the advice body with the appropriate parameters.

As well as advice that is defined directly in the user’s aspects, various forms of synthetic advice are used to
implement features of the AspectJ language such ascflowpointcuts,declare soft, and aspects that are only instantiated
conditionally (perthisetc). We return to this point after explaining the mechanicsof how normal advice is inserted.

In abc, finding where advice might apply (matching) and inserting calls to that advice (weaving) are done in two
distinct phases; the matcher produces a list of “advice applications” that is then passed to the weaver. We did this
(rather than immediately inserting code as advice is found to apply) for two reasons. Firstly, there are specific rules of
precedencestating in which order multiple pieces of advice applying atthe same join point should run, and it is most
convenient to weave advice in order of precedence. Unfortunately we cannot simply sort the complete list of advice
before matching, because it is legal to have a cycle in the precedence relationship, so long as that cycle is not actually
realised at any particular join point shadow. Having an intermediate list that we can sort before weaving is therefore
helpful. Secondly, as we mentioned in Section 4.4, we want tosupportreweavingto produce better runtime code using
analysis results from a first attempt at weaving. Again, the presence of an explicit intermediate list makes this process
easier.

5.4.1 Matching

Pointcuts can only match at specificjoin pointsduring the program’s execution. Each join point corresponds to a static
join point shadowin the program. The pointcut matcher first identifies all the join point shadows in the program. For
each shadow, it tests each pointcut to see if it could possibly match at that point.

Figure 8(a) shows an example of some Java code and a pointcut.ThemainEval() pointcut from theCountEvalAllocs
aspect picks out all join points within theMain class whereeval() is called, and so in particular the call from within
therun() method is a join point shadow at which thebeforeadvice in this aspect can apply.

Regularised pointcut language The problem of checking whether a particular pointcut applies at a given
shadow naturally splits itself into three parts. A shadow occurs inside a method body, which is itself contained within
a class, and shadows also have a specific type. For example, one might cover the entire execution of the method, or
a single instruction that sets a particular field. A pointcutcan place restrictions on any of the containing class, the
containing method, and the shadow type.

As it turns out, some primitive pointcuts in the AspectJ language place restrictions on more than one of these parts,
and, in addition, there is a significant amount of duplication and overlap between different pointcuts. For example, the
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public classMain {
. . .
public void run()

{ eval()}
. . .

}
public aspectCountEvalAllocs{

. . .
pointcut mainEval() :

call(* *.eval(..)) && within (*.Main);

before () : mainEval()
{ allocs = 0;}

. . .
}

public classMain {
. . .
public void run(){

Main this;
CountEvalAllocs theAspect;

this := @this; // give arg 0 a name
nop; // beginning nop for shadow
// get the singleton aspect instance
theAspect = CountEvalAllocs.aspectOf();
// run the before advice
theAspect.before$0();
nop; // jump here if residue fails
// run the original code at the shadow
this.eval();
nop; // ending nop for shadow
return ;

}
. . .

}

(a) Source Java and AspectJ code (b) Woven Jimple

Figure 8: An example of matching and weaving

pointcutexecution(int foo())specifies that we are only interested in execution join points inside methods with the given
signature, while the pointcutwithincode(int foo())also specifies that the join point should be inside such a method, but
imposes no restriction on its type.

As a result, we have chosen to make the implementation simpler by working with a modified pointcut language
in the backend, and having the frontend translate pointcutsinto this modified form when constructing theAspectInfo
structure. In our modified language, each of the primitive pointcuts restricts at most one of the three parts mentioned
above; it either specifies the containing class, the containing method, or the join point type.

This regularised language also partitions certain AspectJpointcuts into two different pointcuts; for examplewith-
incode(...)can take either a method signature or a constructor signature as an argument, but in our backend language
there are two pointcuts,withinmethod(...)andwithinconstructor(...). Therefore, the pointcutexecution(int foo())will
be translated intowithinmethod(int foo()) && execution(). In the regularised language, the latter conjunct is only a
restriction on the join point type and does not specify anything about the containing method.

Dynamic residues Once the matcher has identified that a pointcut might apply ata join point shadow, it remains
to generate some runtime code for that shadow to determine whether the pointcut does actually apply each time an
associated join point occurs (i.e. the control flow of the program reaches that shadow). In some cases, we will
statically know that the pointcut will always apply at the shadow, so the corresponding advice body will be executed
unconditionally.

As well as deciding whether an advice body should execute at all, it is necessary to gather certain values before
calling it. All advice bodies run as instance methods in the aspect that defines them, and it is necessary to call the
staticaspectOf method in that aspect to obtain an instance for use as the receiver of the advice call. We can see an
example of this call in the woven code in Figure 8(b). TheaspectOf method itself is automatically generated in an
aspect body when compiling it into a class.

There are a number of features of the pointcut language whichrequire runtime checks or the passing of values.
Most important of these are thethis, targetandargspointcuts, which expose, where they exist, the value of the current
object instance, the receiver at the join point, and the arguments being passed at the join point. Each of these can
be either given a variable name as an argument, in which case the relevant value will be available in the advice body
under this variable name, or a type, in which case a check willbe made at runtime that the value has the appropriate
type unless this can be statically determined. (In fact, variables in pointcuts must be declared with their types, and so
a type check is also carried out when a variable name is specified).
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It is the role of the matcher to establish what checks need to be done at runtime and what information needs to
be gathered, but as described above it does not actually add runtime code. Therefore, it records this information in a
structure known as adynamic residue, which the weaver later processes.

5.4.2 Weaving

The role of the advice weaver is to actually generate the runtime code for running advice bodies where appropriate.
We use the facilities provided by Soot to make this process assimple as possible. For example, the Soot backend
carries out optimisations such as removingnop instructions and dead code, so our code generation strategydoes not
worry about leaving these in the code it outputs, which makesits design significantly simpler. In Figure 8(b), we see
the results of weaving before these optimisations are applied.

Another property of Soot that helps the design of the advice weaver is that since Jimple is a three-address code
with explicit variable names rather than implicit stack locations, we can simply refer to a variable at the place it is
needed, rather than having to make sure that its value is available on the stack. This is particularly useful when passing
values to advice bodies.

Preparing join point shadows One important problem is that we need to ensure that multiplepieces of advice
applying at the same join point are run in the correct order. In particular,after throwingadvice, a specific form ofafter
advice which only runs if an exception is thrown at the join point, needs careful treatment to ensure that it interacts
correctly with the existing exception behaviour of the joinpoint and of other advice applying at it. We also need to
make sure that jumps are fixed up correctly; statements that branch to the beginning of a join point shadow should now
branch to the first piece of advice that might run at that shadow (it is not possible for an existing statement to branch
to the middle of a shadow).

Our approach is to first insertnopstatements at the beginning and end of each shadow, and then to weave advice in
an “inside-out” order — that is,beforeadvice that should run “closest” to the original code of the join point is woven
first. The idea is that at each stage, thenop statements enclose the entire join point including advice that has been
inserted so far, and that the next piece of advice to be woven is inserted just inside thenopstatements — immediately
after the beginning one forbeforeadvice, and immediately before the ending one forafter advice. This keeps the
weaving process as simple and as modular as possible — the procedure for inserting thenop statements takes care
to ensure that jumps and exception handling ranges are correctly modified, and the subsequent weaving process can
largely ignore this. For example, if an exception range covers the original code at the shadow, it should cover the
entire join point after weaving, but if it has been introduced byafter throwingadvice, it should only cover the original
code and any advice that was woven before theafter throwingadvice; advice that is woven afterwards should not be
within the exception range. Thenopstatements allow us to tell the difference, because in the former case they will be
included in the exception range, but in the latter case they will not.

An added complication is that certain types of join point shadows do not fit nicely into the single-entry single-exit
(ignoring exceptions) model implied by the above approach.For example, an execution join point might terminate
at any one of a number ofreturn statements. Therefore, we first transform the code where necessary, replacing these
return statements with jumps to a singlereturn at the end of the body, first storing the value to be returned ina local
variable if necessary.

Similarly, thepreinitialisationandinitialisation join points can span multiple constructors, if one constructor calls
another in the same class usingthis(...). We therefore inline such calls to ensure that the code for each shadow is fully
contained within a single method.

Inserting advice Each type of advice (before, after andaround) has its own weaver, which inserts code in the
appropriate position of the join point shadow. As mentionedearlier,beforeadvice goes immediately after the beginning
nopof the shadow (an example of this can be seen in Figure 8(b)), and all forms ofafteradvice go immediately before
the ending one. A novel strategy described in [10] is used foraroundadvice. The key detail for the purposes of this
paper is that it lifts all the code found between the twonopstatements at the time of weaving into a separate method,
replacing it with code to implement the advice, which can itself call back to the original code.

In fact, it is onlyafter returningadvice, another specific form ofafteradvice that only runs on normal termination
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of a join point, that needs to be placed at the end of the shadow; after throwingadvice is implemented by an exception
handler which ends by rethrowing the original exception, soit can be placed anywhere in the method. For simplicity,
we choose to also place it at the end of the shadow. “Full”after advice, which runs both after normal termination of
the join point and when an exception is thrown, is actually implemented by weaving bothafter returningandafter
throwingadvice.

Once we have identified where the advice should go, the next step is to weave code for the dynamic residue. We
assume that any dynamic residue could fail; this may leave some dead code around in the case of residues that cannot,
but this is tidied up later by the Soot backend. Thus, each dynamic residue is woven with two exit points; one which
runs the advice body and one which skips it. In Figure 8(b), the noplabelled as “Jump here if residue fails” is the exit
point for failure (which is never jumped to in this example),and the call to the advice body immediately after is the
exit point for success.

5.4.3 Synthetic advice

Certain constructs in the AspectJ language other than advice have pointcuts associated with them, and require code
to be run at the join points picked out by these pointcuts. Forexample, users ofdeclare softspecify a pointcut where
certain exceptions should be softened, which requires inserting code at the relevant join point shadows to catch the
exception, wrap it up as aSoftExceptionand throw this new exception.

Of course, this is very similar to what is required to implement advice declarations; the main difference is merely
that the code to be inserted is not a call to an advice body. It is natural to use the same implementation strategy for
such constructs, and indeed the frontend ofabc transforms them into “synthetic” advice declarations to beprocessed
along with the normal pieces of advice.

The final constructs that the advice weaver deals with aredeclare warninganddeclare error. These also specify
pointcuts, but no code is inserted at the relevant join points; they merely cause the compiler to emit warnings or errors
if any such join points are found. Since they must be evaluated at compile-time, it is an error to specify a pointcut
which would require runtime code to check whether it appliedor not. In abc these constructs are also treated as
synthetic advice declarations, but instead of generating adynamic residue for the code weaving phase, a warning or
error is emitted as appropriate.

6 Related work

ajc is the original compiler for the AspectJ language, and was written by the language’s designers. It builds on the
Eclipse Java compiler, while the backend makes use of a customised version of BCEL. The separation from the Eclipse
compiler is however not complete, and a painful merge has to be undertaken when the base compiler is upgraded.
Implementing a weaver with BCEL is hard in comparison with Soot; a detailed description of the weaver inajc can
be found in [7]. In summary, the structure ofabc is similar to that ofajc, separating the pure Java and aspect-specific
information, and leveraging existing frontend and backendtechnology. However,abcachieves a complete separation
from these building blocks, using them without any modification.

The general strategy of weaving dynamic features in AspectJ, leaving dynamic residues where needed, is nicely ex-
plained in terms of partial evaluation in [12]. AspectJ is byno means the only aspect-oriented language, however, and
in the remainder of this section, we give a quick overview of the most important alternatives and their implementation
strategies.

AspectC++is an extension of C++ with aspects, which provides pointcuts and advice, but there is no support for
advanced static weaving features such asdeclare parents[8]. It is implemented as a source-to-source transformer. As
explained earlier, we believe much is to be gained from weaving on an appropriate intermediate representation - not
only the ability to weave binaries, but also to simplify the implementation of the weaver.

AspectWerkzis a framework for the application of aspects to Java programs. The instructions to the weaver can
be given in a variety of meta-notations, including XML and Java 1.5 attributes. The AspectWerkz framework is of a
highly dynamic nature, allowing aspects to be enabled and disabled at run-time. This is achieved via a mechanism
akin to the observer pattern: each piece of advice becomes a kind of listener, while joinpoints generate events to notify
the advice. In his paper on the implementation of AspectWerkz [4], Jonas Bonér claims the overheads are negligible.
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To assess that claim, we translated a few benchmarks from [6]into AspectWerkz, in particular a variant ofFigureand
of NullCheck. We found that the code produced by AspectWerkz forFigure runs 1000% slower than that produced by
abc, andNullCheckruns 600% slower — even when using theoffline weavingfeature of AspectWerkz, which performs
weaving at compile-time instead of load-time. Similar observer-style implementation techniques are employed in Eos
(an aspect-oriented extension to C#) [17] and JAC (a framework for distributed aspect-oriented programming) [15].
AspectWerkz aims for load-time weaving, and thus the efficiency of its weaver needs to be balanced with the efficiency
of the generated code.

JBoss AOPis an aspect oriented framework similar to AspectWerkz, butit is more targeted towards the JBoss
Application Server. The main implementation technique is aframework called Javassist [5] for writing bytecode
translators. Javassist has been carefully honed to produceefficient translators, again with a view towards load-time
weaving. By contrast, our use of Soot was motivated by the desire to produce efficient object code, while the time
taken by the weaver itself is less important.

Neither AspectWerkz nor JBoss AOP appears to implement the level of static checking afforded to us by the
use of Polyglot: again this is motivated by the desire to produce efficient translators. Indeed, AspectWerkz lacks
certain features of AspectJ that require more transformation or checking than others. In particular it lacks initialisation
joinpoints, exception softening, precedence declarations and parents declarations. It also lacks the ability to issue
compile-time warnings and errors based on pointcut matching.

7 Conclusions and Future Work

In this paper we have presented how we designed and implemented theabc AspectJ compiler, building upon two
existing compiler toolkits, Polyglot and Soot. Theabccompiler is a complete implementation of the AspectJ language,
which can be used as an alternative compiler for AspectJ applications, or as a workbench for language extensions and
compiler optimisations.

There were two main contributions in this paper. First, we demonstrated how to build the architecture ofabc
around the Polyglot and Soot building blocks. It was a non-trivial exercise to make these building blocks fit together,
but with the correct design of theAspectInfodata structure we showed how the AspectJ-specific information could be
cleanly separated from the pure Java part, thus enabling us to use Polyglot and Soot as Java tools.

We found that there were distinct benefits of building upon such powerful tools. We used Polyglot’s extensible
grammar system to specify AspectJ as a clear extension of Java, and Polyglot’s pass mechanism to insert new passes
relevant to AspectJ. We also used Polyglot’s extension mechanisms to implement the relatively complex semantic
checks required for AspectJ, particularly as they related to AspectJ’sintertype declarations, which have quite com-
plex semantics. We found a large benefit from using Soot as ourbackend, mostly due to the use of Soot’s Jimple
intermediate form, but also because Soot easily handles inputs as either class files or Java source files. By basing our
matcher and weaver on Jimple we found that it was quite easy tospecify matching rules and also quite straightforward
to actually perform the weaving. Finally, Soot’s built-in optimizations allow us to produce code that has been cleaned
up after weaving, and give us the opportunity to implement AspectJ-specific optimisations in the future.

Our second main contribution was to show, in some detail, howwe implemented the aspect-specific parts of
our compiler, in particular how we handle name matching, thedeclare parentsconstruct, intertype declarations and
advice matching and weaving. Fordeclare parents, the main challenge was to fit its handling in the right position
among existing passes: just enough information has to be available to do a first evaluation of the relevant patterns,
but no other processing should be done yet. Regarding intertype declarations, our main obstacle was to determine and
implement the correct scope rules. In fact, clarifying these scope rules has had an immediate impact onajc. Finally,
for advice and pointcut matching, a salient point was the design of an intermediate representation for pointcuts that
simplified the implementation. Perhaps the most promising part of our architecture, however, is the ability to weave,
analyse the result, and weave again — this opens the way towards sophisticated analyses of AspectJ programs, for
instance to implement thecflowoptimisation proposed in [18].

The abc group found the project of building the compiler to beexceptionally fun, challenging and educational.
We hope that others will learn from our experiences and thatabcwill continue to be a research platform for further
work on compiling aspect-oriented languages. Our group is actively pursuing optimisation opportunities, and also new
language extensions that require more sophisticated static analyses.
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