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Abstract

Aspect-oriented programming and the development of aspé@atted languages is rapidly gaining momentum,
and the advent of this new kind of programming language pesvinteresting challenges for compiler developers.
Aspect-oriented language features require new compilajaproaches, both in the frontend semantic analysis and
in the backend code generation. This paper is about therdesid implementation of thabc compiler for the
aspect-oriented language AspectJ.

One important contribution of this paper is to show how we leerage existing compiler technology by com-
bining Polyglot (an extensible compiler framework for Jeivathe frontend and Soot (a framework for analysis and
transformation of Java) in the backend. In particular, tktteaesemantic checks needed to compile AspectJ are im-
plemented by extending and augmenting the compiler passe&ied by Polyglot. All AspectJ-specific language
constructs are then extracted from the program to leaveeaJava program that can be compiled using the existing
Java code generation facility of Soot. Finally, all codeggation and transformation is performed on Jimple, Soot’s
intermediate representation, which allows for a clean amyenient method of applying aspects to source code and
class files alike.

A second important contribution of the paper is that we dbsavur implementation strategies for the new chal-
lenges that are specific to aspect-oriented language ootstrAlthough our compiler is targeted towards AspectJ,
many of these ideas apply to aspect-oriented languagesérge

Our abc compiler implements the full AspectJ language as definedjby.2.0 and is freely available under the
GNU LGPL.

1 Introduction

Aspect-oriented programming is rapidly gaining populaahd AspectJ [9] is widely recognised as one of the key
aspect-oriented programming languages in use today. & thetre has been only one compiler for Aspectaje-
originally developed by the inventors of AspectJ at XeroxREA[14] and currently developed and maintained as part
of the Eclipse AspectJ project [2].

This paper is about the design and implementation of a newpitenfor AspectJ, theAspectBench Compiler
abc[1]. Our original motivation for buildingabc was to create a workbench that allows easy experimentatitbn w
new language features [3] and new optimisations. Howeverfaund that implementing an alternative compiler
also helped to clarify the language semantics. Furtheru$ers of a language, it is often useful to have different
compilers, as each compiler has it strengths, and it prevadeay for users to verify that they are not relying on any
implementation-specific behaviour.

As researchers in the compiler field, we felt that it was intgatrfor us to leverage previous work in the area of
compiler toolkits for building Java frontends and backentsus, an important contribution of this paper is to show
how we combined the Polyglot framework for extensible Jawatends [13] with the Soot framework for analysis and
optimisation of Java [19]. Combining the tools was a nowdtichallenge, and a substantial partatiics architecture
design stems from the need to cleanly separate the Javafgspect] programs from the aspect-specific parts in a
way that can be used by both the frontend and backend Jaga Welare the first AspectJ compiler to achieve a clean
separation of the implementation of the aspect-orientatilifes from these underlying tools.

Current versions of the AspectJ language specify that weggijecting aspect code) should be done at the byte-
code level (as opposed to source level), and input to the tengan be AspectJ/Java source, or Java class files.
Designingabcto handle both kinds of inputs in a natural way was anothepittamt design challenge.

Implementing compilers for aspect-oriented languagesésadively new field, and another important contribution
of this paper is to show the structure of such a compiler, ardescribe how we have implemented the various parts
that are specific to compiling aspect-oriented code. Algimabcis an AspectJ compiler, many of these components
would also be necessary for other aspect-oriented language

The structure of this paper is as follows. In Section 2 we jgt®a brief introduction to the most relevant features of
Aspectd In Section 3 we briefly summarise our building blocks, Pabygind Soot. Section 4 provides a description
of the architecture ofibc, and how this architecture fits together with our buildingdiis. Section 5 discusses details
of how specific aspect-oriented features have been addressmely how we handigame matchingleclare parents

1We assume that many compiler researchers are not yet famittaAspectJ; readers with previous knowledge of Aspeaiy skip this section.



intertype declarationandadvice Finally, Section 6 reviews related work and Section 7 ga@sclusions and future
work.

2 An overview of AspectJ

An AspectJ program consists of two kinds of entities: ordinlava classes araspectswhich are instructions for
injecting code into the classes at specific points and uresific conditions. Aspects are applied to classes (and
the aspects themselves) by a process knownesing an AspectJ compiler reads in the aspects and classes to be
compiled and produces classes in which the aspect code basrjected as specified in the aspects.

To introduce AspectJ’s features, we have chosen a smaléssion interpreter in Java, to which we will apply
five illustrative aspects. As illustrated in Figure 1(a),shof the interpreter was generated using the SableCC parser
generator, and the generated code is in four packages prg¥itk lexer, parser, tree nodes, and various tree trdversa
visitors. In addition to the generated code there are twdlgragrammer-defined Java classéay/Main.java
contains the main method which reads in input, applies thespand then evaluates the resulting expression tree. The
actual expression evaluation is performed by the methad defined in the classny/Evaluator.java . An
example of running thény interpreter is given in Figure 1(b).

Generated packages:
(must not be directly modified)

lexer/ > java tiny.Main
parser/ Type in a tiny exp:
node/ 3+4*6-7
analysis/ The result of evaluating:
3+4%6-7
User-defined package: is: 20

tiny/Main.java
/Evaluator.java

(a) code base (b) example run

Figure 1:tiny interpreter example

The AspectJ language can be divided istaticanddynamidfeatures. Static features are defined and implemented
with respect to the static structure of a program, whereasuthjc features relate to the dynamic trace of a program
execution. Figure 2 shows the five example aspects which plg &pour exampleiny interpreter code base.

2.1 Static Features

TheStyleChecker  aspect in Figure 2 illustrates an interesting use of Asp#wtdieclare warningconstruct. This
construct allows the programmer to specify a pattern andraingstring. For each place in the program matching the
pattern, a compile-time warning is issued, using the s@mthe warning message. In our example we have specified a
pattern that matches all places where a field is set, and valinechot within a method whose name starts wéét’ In

fact, the pattern is a bit more precise than this, becaus# amly match sets to non-private, non-final fields. When we
compile thetiny code base with th8tyleChecker  aspectébc StyleChecker.java */*.java ) several
warnings are given, mostly relating to the generated pasge, for example:

parser/TokenIndex.java:14: Warning --
Set of field outside of a set method.

2There is also an analogodsclare errorconstruct



public aspectStyleCheckeK
declare warning :
sef(!final !private * *)
&& ! withincode(void set*(..) ):

“Set of field outside of a set methog]

}

public classValue {
private int value;// a new field
public void setValueint v)
{ value = v;}
public int getValue()
{ return value;}

public aspectValueNodeParenf
declare parents
node.NodeextendsValue;
}

public aspectCountEvalAllocs{
int allocs;// counter

pointcut mainEval() :
call(* *.eval(..)) && within (*.Main);

before () : mainEval()
{ allocs = 0;}

after () : mainEval()
{ System.out.printin(
“*** Eval allocations: " + allocs); }

before () : cflow(mainEval()) && call(*.new(..))
{ allocs ++;}

public aspectAddValue{
private int node.Node.value;
public void node.Node.setValuieg v)
{ value =v;}
public int node.Node.getValue()
{ return value;}

public aspectExtraPareng
Stringaround() :
execution(String node.AMultFactor.toString()}
executionString node.ADivFactor.toString())
{ String normal =proceed);
return “(" + normal +*)" ;

}

; }
(a) static features

(b) dynamic features
Figure 2: lllustrative AspectJ examples

When using SableCC (or other tools) to generate compilgssyery important not to modify the generated code,
so that it can be regenerated without clobbering the uskaages. SableCC generates all the classes representing the
AST, with classnode.Node as the root (extendin@bject ), and a hierarchy of subclasses for other kinds of nodes
belownode.Node , as indicated by the grammar specification. This hierarsfixéd in the generated code and since
one should not edit these generated classes, it is not po&siddd new fields to the nodes. The recommended method
is to associate values with nodes using a hash table. Howesiag static features of AspectJ there are two ways of
adding fields, without touching the generated code, withesrting to the use of external hash tables, and giving full
semantic checking of the added fields.

The aspecValueNodeParent from Figure 2(a) illustrates the Aspeddclare parentgonstruct. In this exam-
ple the programmer defines an ordinary cld&spe , to implement the new field and accessor to that field. Then, th
declare parentgonstruct is used to inject the néalue class as a parent of the generatedle.Node class. In
general, theleclare parentgonstruct can be used to introduce nextendsaandimplementselations.

Sometimesitis not possible (or desirable) to add new figldswaethods by injecting new classes into the hierarchy,
and AspectJ provides a general form of injecting new fieldsistructors and methods into classes and interfaces,
calledintertype declarationsr ITDs. The aspechddValue in Figure 2(a) illustrates ITDs for injecting a new field
and two new methods into threde.Node class. The declarations look like normal Java declaratioumsthe name
of the field/constructor/method being defined is prefixedh®/niame of the class/interface into which it should be
injected (in our examplaode.Node ). Since AspectJ also allows one to inject new members intio tlasses and
interfaces, ITDs can be quite powerful (and tricky to impérncorrectly in a compiler).

2.2 Dynamic Features

The dynamic features of AspectJ are quite different fromstiagic features. While the static features are merely new
incarnations of old ideas (in particular ITDs are a form ofoglasses), the dynamic features are generally regarded as
the defining characteristic of aspect-orientation. Theydafined with respect to a trace of the program executiors. Thi
trace is comprised of various kinds of observable eventd) ag getting/setting fields, calling methods/construsctor
and executing method/constructor/initialiser bodies.eSehevents may correspond to exactly one instruction (for
example, getting/setting fields), or they may corresporadgmup of instructions (for example, the body of a method).



Each event has a starting point in the trace (just beforegpbas), and an ending point (just after it happens). The
dynamic features of AspectJ allow one to specify a pattemmatch certain events, and then advice (extra code) to
executebefore after or aroundthe matching events. The events are usually cgted pointsin the literature on
aspect-oriented programming, because these are pladag guvgram execution where an aspect can join in.

The aspecCountEvalAllocs in Figure 2(b) demonstratégforeandafteradvice. The purpose of this example
is to count the number of allocations that occur during theuation of an expression, starting from the calétal
in theMain class. In this example we define a pointmainEval to specify that theall must be to a method called
eval , and this call must occwithin theMain class. Then we defingeforeadvice to initialise a counter just before
the call, andafter advice to print out the value of the counter just after thé cBhe tricky part of this aspect is the
beforeadvice used to increment the counter. We use the Aspé#otdconstruct to specify that we are interested in all
events that occur between the start and end of a call to egak@tween the time the call starts, and when the call is
finished). We use the && operator to pick out, from those esgall events that call a constructor, as indicated by the
pattern ‘tall(*.new(..))". Thecflowconstruct is of particular interest, because it means tieatam match according
to some runtime context, and because this matching canmaysalbe decided statically, runtime checks are necessary.
There exist a number of other pointcut primitives (not cedein this introduction) that also require such runtime
checks.

TheExtraParens aspect contains a very simple examplamfundadvice. This example is intended to slightly
modify the output of the pretty print of expressions, by itisg parentheses around each factor. For example if the
base program is compiled with this aspeatt¢ ExtraParens.java */*.java ), the pretty print of the output
in Figure 1(b) would be changed® + (4 * 6) - 7 ,insteadof3 + 4 * 6 - 7 .

The advice declaration in tHextraParens  aspect specifies a pattern to capture the execution of theetexant
methods. In the advice body, theoceedconstruct is used to specify that the original method bodykhbe executed,
the parentheses are added to the result, and this new 1=t returned.

In our example the@roceedcall is very simple, but in general the usebceedcan be quite complex — it can
be left out entirely, executed conditionally, called maimyets, saved for later execution using a local class, and the
arguments can be modified. Thaspundadvice is quite a bit more complicated thiaeforeandafter advice, as it is
not just injecting advice (code), but can actually change éxisting code executes.

Also, it should be noted that all of our advice examples amy ganple, and do not have any parameters. In
general, advice may have parameters, and the pointcutpattey specify how to bind those parameters to values.
Readers who wish to know more details of the AspectJ langaadéts applications may wish to consult one of the
growing number of textbooks on the subjexg.[11].

3 Building Blocks

In the following sections, we briefly introduce the buildibigpcks ofabg Polyglot and Soot, focusing on the features
that are most relevant to ttadocdesign.

3.1 Polyglot

Polyglot [13] is an extensible frontend for Java that perfsrall the semantic checks required by the language. It
is structured as a list of passes that rewrite an AST, andl uikilliary structures such as a symbol table and type
system.

The extensibility of Polyglot is achieved in a number of wafolyglot allows a grammar to be specified as an
incremental set of modifications to the existing Java gramaral the tree rewriting portion can be extended without
modifying the base compiler. New AST nodes may be added;dkignd existing nodes and give definitions of the
specific methods required by compiler passes that are relevthem. New passes may be added between the existing
passes. In addition, the behaviour of existing nodes irtiagipasses can be modified usihgjegate$13], achieving
the same task in Java as intertype declarations do in Asgitcick use of interfaces and factories throughout Polyglo
makes it easy to modify structures such as the type system.



3.2 Soot

Soot [19] is a Java bytecode analysis toolkit based arouadithple IR, a typed, three-address, stack-less code.
Jimple is low-level enough for pointcut matching, in thag granularity of any join point is at least one entire Jimple
statement. It is high-level enough for weaving and easyyaiglin particular, during weaving, we need not worry
about implicit operations on the computation stack, beeallooperations are expressed in terms of explicit vargable

Soot can produce Jimple from both bytecode and Java soutlee The source frontendyva 2JMPLE, makes use
of Polyglot to build an AST and perform frontend checks, amehtgenerates Jimple. As output, Soot generates Java
bytecode. This process includes important optimisationgénerating efficient bytecode [19]; these are necessary
even for today’s JITs. Soot also supports an annotationdvasrk [16] which allows arbitrary tags to be attached to
the code and automatically propagated through all transdtions and all its intermediate representations. We make
extensive use of tags to track information flowing throadpa

4 Architecture

In Section 2 we introduced the static and dynamic languaateifes that must be handled by an AspectJ compiler,
and in Section 3 we discussed our basic building blocks,datyor building the frontend and Soot for building the
backend. Of course, the big question is how to fit these mgltlocks together so that in the end, one has a nicely
structured AspectJ compiler that can handle both the staticdynamic features of AspectJ. In this section we address
the design of the architecture, and then in Section 5 we foaulsow to handle specific language features in more
detail, where the implementation of some language feattrmsscuts several parts of architecture.

Figure 3 shows a high-level view of trebc architecture: the compiler takes .java and .class files @st,jmand
produces woven .class files as output. An important pointuaBspect] compilers is that the files given to it as
explicit input are considered differently from classed i@ found implicitly when the compiler must resolve classe
from the class path. Classes corresponding to the expijgitts are said to beeavable aspects can weave into these
classes, and it is the woven version of these classes tHdiendutput by the compiler. Classes corresponding to the
implicitly processed classes are not weavable.

As shown in Figure 3 we have split the architecture into foajancomponents, two in the frontend and two in the
backend. Compiler writers will immediately see that thistatecture is different from the usual view of a compiler as
a frontend and a backend connected via an intermediatesetegion.

The first major difference is that the frontend and backenabafare connected via two data structures, the IR of
the program (Java AST) and the Aspectinfo data structure.iffieresting point here is that in order to use standard
Java compiler tools, we must be able to tease apart the imgpfisipectJ program into a standard Java part, represented
as Java ASTs, and an aspect-specific part that capturesth &ky information about aspects and how the aspects
related to the Java IRs. This process is represented Ifygparatotbox in Figure 3.

The second major difference between an AspectJ compileaatandard Java compiler is that the backend must
deal with both weaving the static AspectJ language fea{static weaving), and weaving the dynamic language fea-
tures (advice weaving). As shown in Figure 3 the static wagis performed in conjunction with the code generation
of the Jimple IR, and the advice weaving is performed on thmpl# IR.

In the remainder of this section we visit each of the four mammponents of the architecture, discussing the
relevant details of each component.

4.1 Polyglot-based Frontend

We used Polyglot as the building block for our frontend. Bty allows us to define the Aspect] grammar in a
separate definition file, as a natural extension to the Jaaamar. It turns out that the exercise of specifying a
complete LALR(1) AspectJ grammar had not been done befacksa this is another contribution of our projéct.

A big challenge in developing our frontend was defining angl@menting the semantic checks. AspectJ requires

3Theajc compiler uses a combination of an LALR(1) grammar and a haritlen top-down parser, so it does not provide a complettiegn
specification.
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Figure 3: High-level overview of the components of #iecompiler

a large number of semantic checks in addition to the onesrextjby pure Java. Most of these checks have been
implemented in Polyglot passes. Unlike in Java, where afilss#ic checks can be performed in the frontend, some
semantic checks for AspectJ depend on the result of backeatlimg, and thus some semantic checking has to be
deferred until after weaving has occurred. Both exceptiwtking (described in Section 4.4) and some checks related
to advice weaving (described in Section 5.4) must be delapétithe backend.

To implement the semantic checks, we only overrode 14 ASEsod pure Java in minor ways; everything else
was handled with new AST nodes and new visitor passes. Thegelsave made to the passes are summarised in
Figure 4. This overview has been simplified for expositopsns; the actual number of passes for semantic checking
in abcis 27, compared to 13 in the original Polyglot compiler. Thener forabcis so large because we strove to
minimise dependencies between passes, and therefore @agiass performs only one specific task.

The semantic checking of AspectJ source files depends ondtie weaving since, for instance, the code might
refer to members introduced by intertype declarations.s Tinakes the dependencies between passes quite subtle.
In particular, checkingleclare parentfieeds the class hierarchy and inner-class relationships tvailable, both
for doing pattern matching (which depends on the hierarchgiescribed in Section 5.1) and for checking that the
hierarchy introductions are valid. On the other hand, disgoating the class names found in method signatures
needs the final hierarchy in place, so this must happenddigare parents

Similarly, to check the validity of intertype declaratigrisformation about the existing class members must be
available. Furthermore, anything that depends on the pcesef class members (in particular the disambiguation of
method bodies) must know about intertype members as wells,1demantic checking of intertype declarations must
happen in connection with the pass that inserts the norrass chembers.

4.2 Separator

The key to our compiler architecture is the Separator, whjhs the AspectJ AST (with associated type information)
into a pure Java AST and thespectinfostructure to record aspect-specific information. Repectinfancludes all
information that the backend needs from the Polyglot ASThedackend does not use the AST at all, only the Jimple
representation and thespectinfo

We now list the main components of tAspectinfcstructure:

o All AspectJ-specific language constructs. For all congsrticat contain Java code, the code is placed into



[Parse | Extra productions and AST node}

‘Build types, disambiguate inner classes and supertj(pé@w types for aspects and point4

—» | Evaluate patterns and declare parents !

‘Disambiguate signatures \ Advice headers and pointcuts ‘
‘Add members to types \ Add ITD members (o host class ‘
[Disambiguate bodies [ Advice bodies ‘
‘Type check \ Advice and pointcuts ‘

Figure 4: Simplified list of the compiler passes of Polyglotdowabc extends them. The solid boxes on the left
show the original Polyglot passes for pure Java. On the-tightd side, in overlapping boxes, we have indicated which
passes were changed. Finally, the dashed boxes with amoliesiie where we inserted new passes.

placeholder methods in the Java AST, andAkpectinfaeferences these methods. It is important not to weave
into some methods created by the compiler, so these arefiddnt

¢ Aninternal representation of the class hierarchy and iolzess relationships.
e A list of weavable classes.

¢ Information about fields and methods whose names have besmmangled, or to which extra arguments have
been added.

e Arepresentation of types, classes and signatures thatcasdu throughout the whole compiler. This represen-
tation is independent of both Polyglot and Soot, and it ptesia bridge for communicating type information
between the two frameworks.

¢ Information about relative precedence between advice.

The separation process runs in roughly four steps, implézdeas a number of Polyglot passes. The four steps of
separation are:

1. Name mangling The names of some intertype declarations must be mangleds@ction 5.3).

2. Aspect methods Code from AspectJ constructs is inserted into pure Javhadst and dummproceedmeth-
ods are generated for proceed callsiinund advice.

3. Harvesting. All AspectJ constructs are harvested from the AST and puot designated data structures in
Aspectinfo

4. Cleaning. All AspectJ constructs are removed, leaving a pure Java A&R 2JMPLE sees aspects as plain
Java classes containing the placeholder methods.

4.3 Code Generation and Static Weaving

The AST passed towa 2JIMPLE might not correspond to a valid Java program in itself, singey refer to members
to be introduced by intertype declarations. Furthermdraight depend on the class hierarchy being updated by
declare parentsFor these reasons, the translation from Java AST to Jingale cannot happen as one atomic action.

To solve this problem, we take advantage of an existing featfiSoot. In Soot, the translation of both source and
class files to Jimple happens in two stages: one to gener&tdetan, consisting of just the class hierarchy and the
member structure of classes, but without any method botllessecond stage generates the bodies in Jimple.
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Figure 5 shows how the static weaving fits in between thesestages. After the skeleton generation, we adjust
the hierarchy according to parent declarations and irgertleclarations. The woven skeleton is then input into the
Soot Jimple body generation. Finally, delegation coderftertype field initializers is generated.

4.4 Advice Weaving and Postprocessing

Once weaving of static features is complete and Jimple has generated, we weave advice. The structure of the
advice weaver and the final stages of #itebackend is shown in Figure 6.

The process consists of two main steps, matching (see 8éc#al) and weaving (see Section 5.4.2). Matching
determines the static locatiorsh@dow¥where each pointcut may match, and which dynamic checkseressary
to determine whether it matches. Weaving inserts the chemttshe advice into the code.

At the same time as pointcut matching and advice weaving anelle certain features that turn out to fit neatly into
the same frameworkper aspects (a construct for creating instances of an aspleatiare sof{for masking checked
exceptions)declare warninganddeclare error One side effect of implementing tlieclare sofconstruct is that we
cannot verify that checked exceptions are declared cdyrentil we have dealt with this construct, since it has the
effect of converting checked exceptions into uncheckedgttans. As a result, exception checking is carried out afte
the advice weaving process, rather than in the frontend atdi® normal for a Java compiler.

Since one major goal aibcis to implement AspectJ features as efficiently as possitdemake it possible to
perform analyses on the woven code, and use the analysitsrigsthe weaving process to produce improved code.
To support thisabcsupportseweaving Weaving is first performed, the analyses run on the woveer cmdaving is
undone, and then redone making use of the analysis restiswiiole process can be repeated if desired.

Finally, abcruns a number of standard Soot optimisations, such as capagation and dead code elimination.
Some of these are extended to add special knowledge ahtbeuntime library; for example, the intraprocedural
nullness analysis is extended to exploit the fact that ceftactory methods in thabc runtime library never return
null.
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5 Implementing Language Features

In the previous section, we have descriladad by giving its general architecture and points of interestateach of its
components. We now adopt a different viewpoint, and show vemious AspectJ language features are implemented
within this architecture. The features that we focus on laeee implementing AspectJ pattermafne matching the
declare parentgonstructjntertype declarationsand, finally, how the weaving @dviceis implemented.

5.1 Name Matching

Many AspectJ constructs use patterns to pick out specifisetaor methods to act on. The basic component of these
is the name pattern; this selects classes textually by n&areinstance, to select all classes in a package nasied
that need support for break labels in a compiler, you migliteverst.*Loop|| ast.If || ast.Switch This would match,
among others, a class namast.WhileLoop

Finding the set of classes matched by a name pattern comgspmnormal Java name lookup. It follows the same
scope rules, but it looks for all names matching a pattetherahan a single name. To avoid performing this lookup
process every time the name pattern is queried (which capemamany times), these matching sets are explicitly
calculated for each name pattern before they are needed/tipaching operations.

Name patterns range over all classes in the class path. Hovahuses of patterns can be reduced to two cases:
ranging over all weavable classes (this is the casedémtare parentsfor example), and ranging over all classes
referred to in the program (this is used to match method ett@mong other things).

All pattern matches performed in the frontend range ovefdh@er domain (weavable classes). All class decla-
rations in the AST and class files are collected for this psepéfter thedeclare parentpass, name patterns must be
re-evaluated in the updated class hierarchy. Finallyepastneed to be evaluated yet again after Soot has loaded all
the classes referred to in the program for use in the poimbedicher in the backend.

5.2 Declare Parents

The declare parentzonstruct allows an aspect to inject classes into the itdrer@ hierarchy, and to make classes
implement additional interfaces. Figure 2(a) demonssrateery simple use afeclare parents

The validity of adeclare parentsieclaration involves some constraints on the class higydatasses can only be
inserted into the hierarchy chain, not completely replaeegarent classes), plus some structural requirementson th
child class (must actually implement the methods of thefate, must contain appropriate constructor calls etdl). A
of these must be checked in the frontend.

The hierarchical constraints are checked indbelare parent®olyglot pass itself. Care must be taken here, as the
validity of declare parentsleclarations might depend on the order in which differedatations (or even different
classes matched by the same declaration) are handled. ibigaitttk child classes in topological order, starting with
Object , ensures that a unique valid interpretation is found if ofists.

For child classes from source, the structural requiremematséaken care of by the normal Java checks, since these
take place after thdeclare parentpass. For classes from class files, the checks must be pedaxplicitly.

All checks are performed in the frontend; the weaverdeclare parentshen modifies the hierarchy in Soot.
Additionally, when a new superclass has been set on a clad$nem a class file, all superclass constructor calls must
be changed to call constructors in the new parent, as thdélseaca represented asvokespecial instructions
with the old parent class as explicit receiver class.

5.3 Intertype Declarations

When implementing intertype declarations, the main task imake Polyglot's type-checker aware of the new mem-
bers that are introduced by aspects. Polyglot includes s @@Eked ADDMEMBERS that populates class types with
their members. Intertype declarations add their own tyleadnost class type during this pass. Note that thietshe
same as actual weaving: we manipulate types only, not ASHs.vleaving of intertype declarations happens much
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aspectAspect{
static int x3;
. static int y*;
pi‘:]tt":(‘if"aSSA { int A.B.foo() {
classi?: { classC {
it intx> =3;
) ’ int bar(){ return x5 + A this.x!;}
}
} return this .x2 + (new C()).bar() + v;
}
}

Figure 7: Scope rules for intertype methods.

later, in the static weaver.

Visibility A complication is introduced by the fact that visibility isays interpreted from the originating aspect.
So for example, if we have two aspeétsandB, and both contain a declaratipnivate int C.f then there are in fact
two fields introduced irC, and they are only visible from their origin. To cope withghive introduced subclasses of
the AST nodes for class members (constructors, fields anldaug) that are used for intertype-declared members and
keep track of the origin of an intertype declaration. Funihere, the accessibility test in Polyglot was overridden so
that it uses that origin instead of the host class of an iypertieclaration.

Scope inside intertype declarations The visibility rules are similarly applied to resolve vadria and method
references inside intertype declarations. The envirotifieeian intertype metho@.foo()in an aspecA is built up as
follows: first, we have everything that is in scope ins@land which is visible fromA. Next, we have the scope &f

Note, however, that it is an error to refer to instance védeisbf the aspect: as far as the aspect is concerned, the body
of foois a static context. The AspectJ rules for one intertypeatatibn overriding another are somewhat complex,
and omitted for reasons of space.

This environment (consisting of the visible scope of thetletass followed by the aspect) is used to disambiguate
uses otthisandsuperthat may occur in the body dbo: we have to distinguish whether they refer to the host diass
to some local class, or to an aspect. Such disambiguatiohatassbe applied to references that have an impd#
receiver. The example in Figure 7 illustrates this: eacl figls been labelled with a superscript to link declarations
and references.

Because Polyglotis based on the rewriting paradigm, itsy éaimplement these rules by introducing appropriate
new AST nodes fothis andsuperin the host class. Furthermore, by subclassing the typewfamments, we can
keep the necessary information about intertype declaratio decide for each variable whether it refers to the host
class or not.

Mangling The visibility rules also imply that names of non-publicartyype declarations must be mangled prior to
code generation: a private ITD becomes a public member dfdbeclass, but only the originating aspect should know
its name. A subtle issue is that sometimes the mangling leeteeveral entities must be coordinated. For example, let
Abe an abstract class aBd concrete class that extenldNow if we introduce a package-visible abstract metfoad

into A, and an implementation éo into B, both must be mangled to the same name. For this purposetnwduced

a new pass that computes equivalence classes of intertygferatéons that must get the same name. A subsequent
pass then carries out the name mangling, renaming bothreléolas and references.

In Polyglot, this is nicely implemented by storing the relavinformation (about equivalence classes and mangled
names) inside the type for the intertype declaration. héntvery easy to fix up the references as required.

Aspectinfo and code generation Our implementation strategy leaves the code for intertyp#éods as static
methods in the originating aspects. There are two reasomisifcdecision. First, there is no need to generate accessor
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methods for accessing members of the aspect scope (and ttiat vantage point for visibility tests). Second, the
weaver will correctly use the aspect as the lexical scopenftchingwithin pointcuts. To illustrate, we return to the
AddValueexample of Section 2. After the #pECTMETHODS pass, the code fagetValuein the AddValueclass will
be:

public static getValues4(final node.Node thi%) {
return this$6.AddValugvalue$3;

}

This is then called by a delegating method\Nadethat passes thhis pointer as an argument. Sometimes there
is still a need to generate accessor methods, for examphe ihost class is nested, and there is a reference to an
enclosing class in the intertype method. Accessor methigalao necessary for the implementatiorpdiileged
aspects, which by definition are able to override all thebilisy rules and can access any members of any class in the
system. Due to space constraints, we omit a detailed discuss

5.4 Advice

A piece of advice consists of the pointcut specifying wheshibuld apply, together with some code to be run. The
frontend ofabc constructs a method body with a synthetic name to hold thile cand places the pointcut and the
name of this method in th&spectinfestructure. The job of the backend is then to find the statiatioos in the code
where each pointcut might match (the join point shadowsj tarnsert code that will check at runtime whether or not
the pointcut does actually match, and call the method imptaing the advice body with the appropriate parameters.

As well as advice that is defined directly in the user’s aspeearious forms of synthetic advice are used to
implement features of the AspectJ language sudiles/pointcuts declare softand aspects that are only instantiated
conditionally perthisetc). We return to this point after explaining the mechanfdsow normal advice is inserted.

In abg finding where advice might applynatching and inserting calls to that adviceeéaving are done in two
distinct phases; the matcher produces a list of “adviceiegpins” that is then passed to the weaver. We did this
(rather than immediately inserting code as advice is foorapply) for two reasons. Firstly, there are specific rules of
precedencstating in which order multiple pieces of advice applyinghet same join point should run, and it is most
convenient to weave advice in order of precedence. Unfatalpwe cannot simply sort the complete list of advice
before matching, because it is legal to have a cycle in theggience relationship, so long as that cycle is not actually
realised at any particular join point shadow. Having anrimediate list that we can sort before weaving is therefore
helpful. Secondly, as we mentioned in Section 4.4, we wastifporreweavingo produce better runtime code using
analysis results from a first attempt at weaving. Again, tfes@nce of an explicit intermediate list makes this process
easier.

5.4.1 Matching

Pointcuts can only match at specifiin pointsduring the program’s execution. Each join point corresggdndh static
join point shadown the program. The pointcut matcher first identifies all thia point shadows in the program. For
each shadow, it tests each pointcut to see if it could pgsgilltch at that point.

Figure 8(a) shows an example of some Java code and a poift®mainEval()  pointcut from theCountEvalAllocs
aspect picks out all join points within théain class whereval() is called, and so in particular the call from within
therun() method is a join point shadow at which theforeadvice in this aspect can apply.

Regularised pointcut language The problem of checking whether a particular pointcut aphkt a given
shadow naturally splits itself into three parts. A shadoauss inside a method body, which is itself contained within
a class, and shadows also have a specific type. For exampl@ight cover the entire execution of the method, or
a single instruction that sets a particular field. A pointcam place restrictions on any of the containing class, the
containing method, and the shadow type.

As it turns out, some primitive pointcuts in the AspectJ laage place restrictions on more than one of these parts,
and, in addition, there is a significant amount of duplicatad overlap between different pointcuts. For example, the
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public classMain {

public void run() {
Main this;
CountEvalAllocs theAspect;

public classMain {

public void run()

{evalQ} this := @this; // give arg 0 a name

nop; // beginning nop for shadow

/I get the singleton aspect instance
theAspect = CountEvalAllocs.aspectOf();
/I run the before advice
theAspect.befok0();

nop; // jump here if residue fails

I run the original code at the shadow
this.eval();

nop; // ending nop for shadow

return ;

public aspectCountEvalAllocs{

'p.o'intcut mainEval() :
call(* *.eval(..)) && within (*.Main);

before () : mainEval()
{ allocs = 0;}

(a) Source Java and AspectJ code (b) Woven Jimple

Figure 8: An example of matching and weaving

pointcutexecution(int foo()¥pecifies that we are only interested in execution join [gairgide methods with the given
signature, while the pointcutithincode(int foo() also specifies that the join point should be inside such aadethut
imposes no restriction on its type.

As a result, we have chosen to make the implementation sirbglevorking with a modified pointcut language
in the backend, and having the frontend translate pointotighis modified form when constructing tihepectinfo
structure. In our modified language, each of the primitivinfooits restricts at most one of the three parts mentioned
above; it either specifies the containing class, the coimigimethod, or the join point type.

This regularised language also partitions certain Aspaaitidtcuts into two different pointcuts; for exampléth-
incode(...)can take either a method signature or a constructor sigmatian argument, but in our backend language
there are two pointcutsyithinmethod(...)Jandwithinconstructor(...) Therefore, the pointcuxecution(int foo()yvill
be translated intevithinmethod(int foo()) && execution()In the regularised language, the latter conjunct is only a
restriction on the join point type and does not specify aimglabout the containing method.

Dynamic residues Once the matcher has identified that a pointcut might appdyjain point shadow, it remains
to generate some runtime code for that shadow to determie¢hehthe pointcut does actually apply each time an
associated join point occurgd. the control flow of the program reaches that shadow). In soases; we will
statically know that the pointcut will always apply at theadow, so the corresponding advice body will be executed
unconditionally.

As well as deciding whether an advice body should execut#,at @ necessary to gather certain values before
calling it. All advice bodies run as instance methods in thgeat that defines them, and it is necessary to call the
staticaspectOf method in that aspect to obtain an instance for use as theveeoé the advice call. We can see an
example of this call in the woven code in Figure 8(b). HspectOf method itself is automatically generated in an
aspect body when compiling it into a class.

There are a number of features of the pointcut language wiighire runtime checks or the passing of values.
Most important of these are tltleis, targetandargspointcuts, which expose, where they exist, the value of tineeat
object instance, the receiver at the join point, and the raggus being passed at the join point. Each of these can
be either given a variable name as an argument, in which baselevant value will be available in the advice body
under this variable name, or a type, in which case a checkoeithade at runtime that the value has the appropriate
type unless this can be statically determined. (In factiatdes in pointcuts must be declared with their types, and so
a type check is also carried out when a variable name is spaifi
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It is the role of the matcher to establish what checks nee@tddme at runtime and what information needs to
be gathered, but as described above it does not actuallyustiche code. Therefore, it records this information in a
structure known as dynamic residugwhich the weaver later processes.

5.4.2 Weaving

The role of the advice weaver is to actually generate thémentode for running advice bodies where appropriate.
We use the facilities provided by Soot to make this processimaple as possible. For example, the Soot backend
carries out optimisations such as removimgp instructions and dead code, so our code generation stretegg/not
worry about leaving these in the code it outputs, which matsedesign significantly simpler. In Figure 8(b), we see
the results of weaving before these optimisations are egpli

Another property of Soot that helps the design of the advieawer is that since Jimple is a three-address code
with explicit variable names rather than implicit stackdtions, we can simply refer to a variable at the place it is
needed, rather than having to make sure that its value iablabn the stack. This is particularly useful when passing
values to advice bodies.

Preparing join point shadows One important problem is that we need to ensure that mulpiglees of advice
applying at the same join point are run in the correct ordepdrticularafter throwingadvice, a specific form adfter
advice which only runs if an exception is thrown at the joinnponeeds careful treatment to ensure that it interacts
correctly with the existing exception behaviour of the jpimint and of other advice applying at it. We also need to
make sure that jumps are fixed up correctly; statements thath to the beginning of a join point shadow should now
branch to the first piece of advice that might run at that sha@adis not possible for an existing statement to branch
to the middle of a shadow).

Our approach is to first insembpstatements at the beginning and end of each shadow, andtheate advice in
an “inside-out” order — that idyeforeadvice that should run “closest” to the original code of thie point is woven
first. The idea is that at each stage, tiap statements enclose the entire join point including advieg has been
inserted so far, and that the next piece of advice to be waviserted just inside theopstatements — immediately
after the beginning one fdreforeadvice, and immediately before the ending onedfier advice. This keeps the
weaving process as simple and as modular as possible — thedhn® for inserting theop statements takes care
to ensure that jumps and exception handling ranges arectigrreodified, and the subsequent weaving process can
largely ignore this. For example, if an exception range covee original code at the shadow, it should cover the
entire join point after weaving, but if it has been introdd ey after throwingadvice, it should only cover the original
code and any advice that was woven beforedfier throwingadvice; advice that is woven afterwards should not be
within the exception range. Thwpstatements allow us to tell the difference, because in thedocase they will be
included in the exception range, but in the latter case théyt.

An added complication is that certain types of join pointdshas do not fit nicely into the single-entry single-exit
(ignoring exceptions) model implied by the above approdedr. example, an execution join point might terminate
at any one of a number oéturn statements. Therefore, we first transform the code wheressacy, replacing these
return statements with jumps to a singieturn at the end of the body, first storing the value to be returnedlotal
variable if necessary.

Similarly, thepreinitialisationandinitialisation join points can span multiple constructors, if one construcalls
another in the same class usiihgs(...) We therefore inline such calls to ensure that the code fcin shadow is fully
contained within a single method.

Inserting advice Each type of advicebfore after andaround has its own weaver, which inserts code in the
appropriate position of the join point shadow. As mentioeadier,beforeadvice goes immediately after the beginning
nopof the shadow (an example of this can be seen in Figure 8(i))akforms ofafteradvice go immediately before
the ending one. A novel strategy described in [10] is use@foundadvice. The key detail for the purposes of this
paper is that it lifts all the code found between the tvap statements at the time of weaving into a separate method,
replacing it with code to implement the advice, which caalftsall back to the original code.

In fact, it is onlyafter returningadvice, another specific form afteradvice that only runs on normal termination
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of a join point, that needs to be placed at the end of the shaaftev throwingadvice is implemented by an exception
handler which ends by rethrowing the original exceptiont san be placed anywhere in the method. For simplicity,
we choose to also place it at the end of the shadow. “RitBr advice, which runs both after normal termination of
the join point and when an exception is thrown, is actuallplemented by weaving botifter returningandafter
throwingadvice.

Once we have identified where the advice should go, the negtistto weave code for the dynamic residue. We
assume that any dynamic residue could fail; this may leaneestead code around in the case of residues that cannot,
but this is tidied up later by the Soot backend. Thus, eaclalyoiresidue is woven with two exit points; one which
runs the advice body and one which skips it. In Figure 8(Bntbplabelled as “Jump here if residue fails” is the exit
point for failure (which is never jumped to in this examplahd the call to the advice body immediately after is the
exit point for success.

5.4.3 Synthetic advice

Certain constructs in the AspectJ language other than adhdee pointcuts associated with them, and require code
to be run at the join points picked out by these pointcuts.example, users afeclare sofspecify a pointcut where
certain exceptions should be softened, which requirestingecode at the relevant join point shadows to catch the
exception, wrap it up as @oftExceptiomnd throw this new exception.

Of course, this is very similar to what is required to implemnadvice declarations; the main difference is merely
that the code to be inserted is not a call to an advice bodg. atural to use the same implementation strategy for
such constructs, and indeed the frontendloé transforms them into “synthetic” advice declarations tqpbecessed
along with the normal pieces of advice.

The final constructs that the advice weaver deals wittdartare warninganddeclare error These also specify
pointcuts, but no code is inserted at the relevant join gothey merely cause the compiler to emit warnings or errors
if any such join points are found. Since they must be evatlatecompile-time, it is an error to specify a pointcut
which would require runtime code to check whether it appbedot. Inabcthese constructs are also treated as
synthetic advice declarations, but instead of generatidgn@amic residue for the code weaving phase, a warning or
error is emitted as appropriate.

6 Related work

ajc is the original compiler for the AspectJ language, and watem by the language’s designers. It builds on the
Eclipse Java compiler, while the backend makes use of amistd version of BCEL. The separation from the Eclipse
compiler is however not complete, and a painful merge hastarertaken when the base compiler is upgraded.
Implementing a weaver with BCEL is hard in comparison wittoSa detailed description of the weaverdjt can

be found in [7]. In summary, the structureatbcis similar to that ofajc, separating the pure Java and aspect-specific
information, and leveraging existing frontend and backietinology. Howevegbcachieves a complete separation
from these building blocks, using them without any modifimat

The general strategy of weaving dynamic features in Aspksaiing dynamic residues where needed, is nicely ex-
plained in terms of partial evaluation in [12]. AspectJ isftmymeans the only aspect-oriented language, however, and
in the remainder of this section, we give a quick overviewhef nost important alternatives and their implementation
strategies.

AspectC++is an extension of C++ with aspects, which provides poistamid advice, but there is no support for
advanced static weaving features suchleslare parent$8]. It is implemented as a source-to-source transformsr. A
explained earlier, we believe much is to be gained from weapen an appropriate intermediate representation - not
only the ability to weave binaries, but also to simplify thgplementation of the weaver.

AspectWerkis a framework for the application of aspects to Java prograhie instructions to the weaver can
be given in a variety of meta-notations, including XML andald.5 attributes. The AspectWerkz framework is of a
highly dynamic nature, allowing aspects to be enabled asabtttd at run-time. This is achieved via a mechanism
akin to the observer pattern: each piece of advice becomiesl @klistener, while joinpoints generate events to notify
the advice. In his paper on the implementation of Aspect@gtk Jonas Bonér claims the overheads are negligible.
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To assess that claim, we translated a few benchmarks fromtf6AspectWerkz, in particular a variant Bigure and

of NullCheck We found that the code produced by AspectWerkZgure runs 1000% slower than that produced by
abc andNullCheckruns 600% slower — even when using tifline weavindeature of AspectWerkz, which performs
weaving at compile-time instead of load-time. Similar afee-style implementation techniques are employed in Eos
(an aspect-oriented extension to C#) [17] and JAC (a framlefay distributed aspect-oriented programming) [15].
AspectWerkz aims for load-time weaving, and thus the efficyeof its weaver needs to be balanced with the efficiency
of the generated code.

JBoss AOHs an aspect oriented framework similar to AspectWerkz,ibist more targeted towards the JBoss
Application Server. The main implementation technique fsaanework called Javassist [5] for writing bytecode
translators. Javassist has been carefully honed to prafticeent translators, again with a view towards load-time
weaving. By contrast, our use of Soot was motivated by th@elés produce efficient object code, while the time
taken by the weaver itself is less important.

Neither AspectWerkz nor JBoss AOP appears to implementebe bf static checking afforded to us by the
use of Polyglot: again this is motivated by the desire to poedefficient translators. Indeed, AspectWerkz lacks
certain features of AspectJ that require more transfoonati checking than others. In particular it lacks initiatisn
joinpoints, exception softening, precedence declaratamd parents declarations. It also lacks the ability toeissu
compile-time warnings and errors based on pointcut magchin

7 Conclusions and Future Work

In this paper we have presented how we designed and implechémeabc Aspectd compiler, building upon two
existing compiler toolkits, Polyglot and Soot. TAlkeccompiler is a complete implementation of the AspectJ laggua
which can be used as an alternative compiler for Aspecticgtigins, or as a workbench for language extensions and
compiler optimisations.

There were two main contributions in this paper. First, wendestrated how to build the architectureaifc
around the Polyglot and Soot building blocks. It was a nonalrexercise to make these building blocks fit together,
but with the correct design of thespectinfadata structure we showed how the AspectJ-specific infoomatuld be
cleanly separated from the pure Java part, thus enablirguset Polyglot and Soot as Java tools.

We found that there were distinct benefits of building upochspowerful tools. We used Polyglot’'s extensible
grammar system to specify AspectJ as a clear extension af dad Polyglot's pass mechanism to insert new passes
relevant to AspectJ. We also used Polyglot's extension ar@ss to implement the relatively complex semantic
checks required for AspectJ, particularly as they relatedidpectJ'sntertype declarationswhich have quite com-
plex semantics. We found a large benefit from using Soot adackend, mostly due to the use of Soot’'s Jimple
intermediate form, but also because Soot easily handlegdrgs either class files or Java source files. By basing our
matcher and weaver on Jimple we found that it was quite easyetoify matching rules and also quite straightforward
to actually perform the weaving. Finally, Soot’s built-iptonizations allow us to produce code that has been cleaned
up after weaving, and give us the opportunity to implemente&sl-specific optimisations in the future.

Our second main contribution was to show, in some detail, h@rvimplemented the aspect-specific parts of
our compiler, in particular how we handle name matching,déelare parentgonstruct, intertype declarations and
advice matching and weaving. Fdeclare parentsthe main challenge was to fit its handling in the right positi
among existing passes: just enough information has to hitableato do a first evaluation of the relevant patterns,
but no other processing should be done yet. Regardingyptedeclarations, our main obstacle was to determine and
implement the correct scope rules. In fact, clarifying thesope rules has had an immediate impacatjonFinally,
for advice and pointcut matching, a salient point was theégtesf an intermediate representation for pointcuts that
simplified the implementation. Perhaps the most promisang @f our architecture, however, is the ability to weave,
analyse the result, and weave again — this opens the waydewgaphisticated analyses of AspectJ programs, for
instance to implement theflowoptimisation proposed in [18].

The abc group found the project of building the compiler toelkeeptionally fun, challenging and educational.
We hope that others will learn from our experiences anddbatwill continue to be a research platform for further
work on compiling aspect-oriented languages. Our grouptigely pursuing optimisation opportunities, and also new
language extensions that require more sophisticated stadlyses.
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