29
@v The abc Group

N g

Optimising AspectJ

abc Technical Report No. abc-2004-3

Pavel Avgustinov!, Aske Simon Christensen?, Laurie Hendren®, Sascha Kuzins?,
Jennifer Lhotak3, Ondfej Lhotak3, Oege de Moor!, Damien Sereni?,
Ganesh Sittampalam?, Julian Tibble!

! Programming Tools Group 2 BRICS 3 Sable Research Group
Oxford University University of Aarhus McGill University
United Kingdom Denmark Montreal, Canada

November 12, 2004

aspectbench.org

Contents

1 INTRODUCTION 3
2 BACKGROUND AND DEFINITIONS 4
3 OPTIMISING AROUND ADVICE 5
3.1 Implementation ISSUES L e e e 5
3.2 Generallmplementation e e 6
3.2.1 CIOSUIES . . . o o e 6
3.22 Inlining e e e e e 6
3.3 Aroundweavinginabc e e e 7
3.3.1 The Generic Implementation 7
3.3.2 Contextand Advice Formals e 7
3.3.3 Localandanonymousclasses e e e 8
3.3.4 Special Cases e 8
3.4 Empirical Results e e e 9
4 OPTIMISING CFLOW 10
4.1 Intraprocedural Optimisations e e e 11
4.1.1 cflowwithout Bound Variables L 11
4.1.2 SharingflowStates e 11
4.1.3 CSEofflowState Retrieval 11
4.2 Interprocedural Optimisations e e e 11
421 Analysisinabc e e e 12
422 CallGraph e e e 13
4.2.3 Interproceduralcflowanalysis e 13
4.3 Empirical Results L e 15
5 OTHER OPTIMISATIONS 17
6 RELATED WORK 18
7 CONCLUSIONS 18

List of Figures

1
2

List of Tables

Reweaving in th@abcbackend 12
Jedd code implementing Algorithm 1. e 15
Execution Timesand Code Size e 9
Static intra-procedural optimisationcounts L Lo 16
Benchmark running times (seconds) e e e e 16
17

Static inter-procedural optimisationcounts L L Lo

Abstract

Aspect], an aspect-oriented extension of Java, is becamingasingly popular. However, not much work has
been directed at optimising compilers for AspectJ. OptimgisAOP languages provides many new and interesting
challenges for compiler writers, and this paper identified addresses three such challenges.

First, compilingaroundadvice efficiently is particularly challenging. We provideew code generation strategy
for around advice, which (unlike previous implementations) both dgdihe use of excessive inlining and the use
of closures. We show it leads to more compact code, and carimjgove run-time performance. Second, woven
code sometimes includes run-time tests to determine whathéce should execute. One important case isfloav
pointcut which uses information about the dynamic calliogtext. Previous techniques failowwere very costly in
terms of both time and space. We present new techniques tmia@or eliminate the overhead ofiow using both
intra- and inter-procedural analyses. Third, we have adge:the general problem of how to structure an optimising
compiler so that traditional analyses can be easily adaptdte AOP setting.

We have implemented all of the techniques in this papahity our AspectBench Compiler for AspectJ, and we
demonstrate significant speedups with empirical resultsneSof our techniques have already been integrated into
the production AspectJ compileijc 1.2.1.

1 INTRODUCTION

Aspect-oriented programming is a new programming paradigis rapidly growing in acceptance, in large part due
to the popularity of AspectJ [4], an aspect-oriented extensf Java that is compatible with existing Java programs.
Aspect-oriented programming encompasses many diffeaagulage features, which can be separated into two cate-
gories:static features, essentially a version of open classes,dgndmicfeatures. While the static features incur no
substantial performance penalty, that is not necessaelgase for the dynamic features. New optimisation strasegi
are required to improve the performance of programs writténg the dynamic features of AspectJ.

Challenges The execution model for (the dynamic features of) Aspectfias execution of the main program is
monitored for certain programmer-specified events. Whesdloccur, control is passedadvice a special kind of
method that contains the extra code to be executed. Advitdeaun before or after the event that triggers it, or it
can be executed “around” it (instead of it).

The monitoring of the base program to find points where adsferild apply can be expensive. Of course, the
AspectJ language has been designed so that most of theioosditat cause advice to be triggered can be determined
statically, and so do not induce overheads. A nice explanditom the viewpoint of partial evaluation can be found
in[17].

However, some features of AspectJ require the insertionyofshic checks in the base programs, resulting in
performance loss. Furthermore, “around” advice, which ee&cdbe in more detail in Section 2, is a powerful language
feature that is difficult to implement efficiently. It has lneghown that the combination of these factors can result in
substantial overhead in AspectJ programs [9]. Heverheadshould be understood as the additional cost for matching
events to advice, not the execution of advice code itseladdition, we must considespace overheadThis is the
size of the extra code introduced when aspects are applegitogram.

These problems highlight the need for novel aspect-spepfimisation strategies.

The ajc Compiler The reference implementation of AspectJ, originally depeH by the language’s designers, is
theajc compiler [4], maintained as part of the Eclipse project. @ftrecompiler has been designed with compilation
speed in mind, and supports incremental compilation. Thesegn aims reduce the opportunities for optimisation,
and indeedjc performs only a small amount of intraprocedural analystsramwhole-program analysis. This results
in substantial overhead in programs producedjoywhen using certain features of AspectJ [9].

The AspectBench Compiler The observation that aspects can introduce substantigheads has prompted us
to build a new compiler for the AspectJ language, the AspertB Compilergbd) [1], which is freely available under
the GNU LGPL. Whileabcuses a weaving strategy similarag in many ways, by contrast its design was motivated
by two goals: to bextensibl€so that new features can be added to the input languageyavid@a powerfuanalysis

and optimisation frameworkThis second feature, which aims to reduce the overhead©#% & the main focus of
this paper.

To achieve thisabcuses the Soot program analysis and transformation frankg@®}as a backend. Soot provides
a typed, three-address intermediate representatiore@cdimple) and a library of standard program analyses. In
addition, it is straightforward to define new analyses intSboth intraprocedural and interprocedural. In partigula
the Jimple IR is extremely well-suited to program analysid atansformation.

Contributions This paper is the first systematic study of the analysis atichigation of aspect-oriented programs,
in particular for the AspectJ language. We present theviafig novel contributions:

e A novel implementation strategy fomfound advice’. Around advice is executed instead of the event that
triggered it. Our implementation strategy avoids the usgaxfures in all but some pathological examples, unlike
earlier implementations, which relied heavily on closurEarthermore, our implementation makes judicious
choices about inlining, thus producing compact code.

e A number of intraprocedural optimisations to reduce thelosads of ¢flow pointcuts’. This feature of AspectJ
is used to intercept method calls in the dynamic scope ofsthad its naive implementation can be very costly.

e An interprocedural analysis to completely eliminate therbreads of usingflow in most cases. This analysis
and the associated transformations illustrate our finalritrion:

e A general technique for leveraging analyses and transfitwmsfor pure Java on AspectJ programs. The tech-
nigue consists of first compiling the program naively, polgsinserting too many dynamic checks (for the
applicability of advice) into the base program. We then gsmthe resulting intermediate code, and reconsider
the decisions to insert dynamic checks, based on the agagsilts.

All these contributions have been implementecbt and, at our suggestion, some have also been adoptagtby
We present experiments to confirm that the above technicaresesult in dramatic improvements in run time as well
as code size. While this paper illustrates the techniquéteicontext of the AspectJ language, they equally apply to
other aspect-oriented programming languages.

Outline This paper is structured as follows. We first briefly introetice relevant features and terminology of As-
pectJ in Section 2. Then, we describe the optimisations msakics implementation ofiround advice in Section 3.
Subsequently, optimisations specific to ttilew construct of AspectJ are given in Section 4. Section 5 surnisesr
further efficiency improvements achieved dlgc Finally, we give related work in Section 6 and conclude ic-Se
tion 7.

2 BACKGROUND AND DEFINITIONS

The execution events in an AspectJ program that can be mediand associated with advice code are cgltéal
points. A join point is a span of time in the execution of the progrdimample join points are a call of a method, an
execution of a method body, a field read or an execution of aemion handler. For any particular join point, the
textual part of the program executed during the time spahaifjbin point is called thehadow of the join point.

AspectJ contains a query language for picking out join irfuch a query is called @ointcut. An advice
declaration consists of an advice kindéfore, after, around), a pointcut, and a body of code, calledvice. The
advice is to be executed before, after, or instead of anypoint which matches the pointcut. Whenever multiple
pieces of advice apply at the same join point, precedenes ddtermine the order in which they execute.

A pointcut consists of a number pbintcut designators connected by boolean connectives. Each pointcut desig-
nator is either static (defining a set of join point shadows)ymamic (defining a run-time condition). Some examples
of static pointcuts areall andexecution which match all calls to and executions of a method matchipgttern;
within, which matches all join points within class matching a gattendhandler, which matches exception han-
dlers. Some examples of dynamic pointcuts amgs (a), which matches when actual arguments of a method have
specified run-time typesf (e), which matches when the arbitrary Java expressievaluates to true; antflow (p),
which matches when a join point is within the dynamic scopa ¢din point matched by pointcys. In addition

to testing runtime conditions, dynamic pointcut desigratoay also bind context values to variables to make them
available to the advice code and to the codd ipointcuts. For instance, ttags pointcut designator may bind the
actual arguments.

AspectJ also contains standalone pointcut query constrittedeclare error anddeclare warning constructs
take a pointcut consisting of only static pointcut desigratilong with a message. If the pointcut matches any join
point shadow, the message is printed as a compile-time ermwarning, respectively.

The process of compiling AspectJ programs is knowwees/ing. The base program and advice declarations are
woven together into one program which behaves as if the &spece monitoring execution of the base program, and
invoking the relevant advice.

Weaving is a two-step process. The first sfgpntcut matching, checks for each possible join point shadow in the
program and each advice declaration, whether the pointetitigossibly match a join point at that shadow. If so, it
constructs alynamic residue of the runtime checks to be performed at the shadow to determihether the pointcut
actually matches.

The second step axlviceweaving. At each join point shadow where a piece of advice may appbjeds generated
to evaluate the dynamic residue and, if it matches, to biacttntext values and invoke the advice.

3 OPTIMISING AROUND ADVICE

Most advice in AspectJ programs adds some code to a join,paihéer before or after itaround advice is unique in
that it is executethsteadof each join point it applies to. It can, however, invoke thigimal join point at any time by
using aproceedstatement.

The following caching aspect demonstrates the usefulnfebgsainterception mechanism. The aspect intercepts
calls to a method naméddo and only executes a call if the result is not in the cache dyrea

aspectCache{
pointcut methodsToCache(Object arg) :
call(Object foo(Object)) &&args(arg);
Objectaround(Object arg) : methodsToCache(axg)
if (lcacheContains(arg))
setCache(arggroceedarg));

return getCachedValue(arg);

booleancacheContains(Object arg)..}
void setCache(Object arg, Object valde).}
Object getCachedValue(Object arg)..}

Like all forms of advicearound advice can have arguments. Each of these arguments has twbd to an
exposed context value by the pointcut expression: in theebrampleargs(arg) binds the argument dbo to arg.
A proceedstatement looks like a method call with the same number afragnts as the advice, and it executes the
original join point with the bound context values set to tliguaments of thegproceedcall. Theproceedcall can
thereforechangethe values of context values (such as method arguments).

3.1 Implementation Issues

A number of difficulties arise in the implementationasbund advice (and particularly theroceedstatement), which
we briefly outline before giving possible solutions.

The first problem is thaaround advice can apply in multiple places within the base progrdrar example,
consider somearound advice with pointcuexecutionvoid fod..)) || executior{void bax..)). This will apply to
the bodies of method®o andbar, and any occurrence @roceedin the advice body will pass control back to the
method that was matched. Furthermore,dbetextof the advice applications (the values of locals used in thésad
statements) can certainly differ between applicationfetcandbar. This polymorphic behaviour gfroceedis the
main difficulty in its implementation.

Matters are complicated further by the fact tipabceed can occur in arbitrary places within the advice body,
including local and anonymous classes. An important inagilin is thatproceedstatements may be executed after
the control flow has left the advice body. Any context valueeded for thgroceedcall must therefore outlive the
execution of the advice in this case.

Finally, aspects are not restricted to observing the basgram, and in fact advice can apply to other advice. In
particular, a piece ofiround advice can apply to the execution of @anbody, directly or indirectly. Suchircular
adviceexecution applicatiorsse very rare, and usually pathological and a symptom of gt &r the program. It is
important to observe that these can occur, however, as vilhsiva to treat such applications as special cases. Note
that the application odround advice to any other advice other than itself, or to a stateéméhin its body (but not
the whole body) is not considered circular. These otherscascommon, but circular applications are rare.

3.2 General Implementation

Any piece of advice, regardless of its kind, is turned intdedrpJava method (thedvice methopboth byabcandajc.
The interest lies in the translation of tpeoceedstatement, minding the issues described above. The popiwor
behaviour ofproceed coupled with the need to store execution context, mots/tite use o€losuresas a default and
straightforward implementation strategy.

As a preparatory step to implementiagpund, any shadow that is advised by soar@und advice is lifted into
a separate method (tipeoceed methgdthat can be invoked bgroceed Note that this is necessary as shadows need
not be entire method bodies.

3.2.1 Closures

We shall now give a brief description of the closure strategy

This approach works by defining a suitable interface typeclass type) for each advice method. All calls to
proceedare then translated to calls on this closure interface.
public interface Around$1{

{ public [ret-type] proceed$1([arg-type] argl, ..});

[ret-type] adviceMethod$1(Around$1 closure,
[arg-type] argl, .Y ...
[ret-type] result=closure.proceed$1(argl”, ...);

For each advice application, a specialised closure typefisell that implements the interface, and for each advice
invocation, an instance of the closure class is passed tadWiee method. This closure must then call the proceed
method.

The major drawback of the closure approach is performanaeh Eme advice is triggered, a closure object has to
be allocated on the heap, which can be a significant overhead.

3.2.2 Inlining

In all cases apart from the case of advice applying to itsathér the whole advice or a statement within it), it is
possible to avoid closures by duplicating the advice mefoo@&ach point in the program where the advice applies.
This so called inlining (irajc terminology) eliminates the need for polymorphism aspheceedstatements in this
specialised advice method always invoke the same join hiatlow, and the join point context can be transferred
using method arguments.

While inlining may be a good optimisation in certain sitoas, the duplication of the advice method for every
advice application can lead to code bloat and thus is uridaites the general approach.

Theproceedstatement is implemented &jc using these two strategies, a generic strategy based aretoand
an inlining strategy that is used in certain cases. We slalldescribeabcs approach.

3.3 Around weaving in abc

We present a novel approach for weaving around advice. Quoaph is generic: the same strategy can be employed
everywhere, and it does not rely on inlining. The only eximepts the pathological case of circular adviceexecution
applications, described previously. We will return to tbase in Section 3.3.4.

When compared to the dual strategyajt, abcs around weaver never performs significantly worse and inyma
cases performs significantly better. Particularly,

e whenevemjc resorts to closure creatioabccan be expected to produce faster code
e when the advice code is big and applies at many locatalnsavoidsajc’s code bloat
e with circular adviceexecution applicatiora)cproduces fewer closure objects and hence faster code.

We shall now describe our weaving strategy in detail.

3.3.1 The Generic Implementation

Instead of creating a closure class for each join point sivadoere around advice could appaycplaces the proceed
code from all join point shadows of a class in a single statiped method in the class. Each join point shadow at
which around advice applies is replaced with a call to théadwody. Into the advice body, we pass a static class ID
to identify the class from which we are calling it, and a shadb to identify the join point shadow within the class.

To implement theproceedcall, the advice body uses the static class ID (using a swti@tement) to select the class
from which it was called, and calls the static proceed methadkat class. The static proceed method uses the shadow
ID to select the shadow whose proceed code it must executauBe we keep the code of each join point shadow in
the class where it originally occurred, there is no need tegate accessor methods for private members.

ret-typeadviceMethod$1(Around$1 closure,
int shadowID,int staticClassIDargs) {

switch (staticClassID)Y

case0: closure.proceed$1(shadowlargs); break;

casel: ShadowClass.proceed$1(shadowdiys); break;
...dispatch to other classes to which the advice applies...

public classShadowClasg§
public static ret-typeproceed$lift shadowlID args) {
switch(shadowID){
case0: ... do what the first shadow did...
casel: ... do what the second shadow did...
...handle further cases...

}

3.3.2 Context and Advice Formals

In addition to calling the right piece of code we must alsoueashat values are passed for free variables used by this
code (thecontext). We describe the implementation of context passaxd.

Passing context Context from the join point shadow is needed in two placesstFit is used by the code of the
shadow itself. Since we have moved this code out from thar@igoin point shadow to the static proceed method,
we must pass the required context into this method. Secbhadd$pectJ pointcut designat@asys, this, andtarget
allow values from the context of the join point to be bounddonial parameters of the advice, and used in the advice
body. Therefore, these values must be passed from the jaibhgimdow site to the advice method that is called.

The dynamic residue of the pointcut guarding the advice ntapay not match at run time. If the residue does
not match, the advice is not executed, and the static pravediabd is called directly from the shadow, so the context
values are passed to it directly. If the residue does mahtehatlvice body is called from the shadow, and it may in

turn call the static proceed method (if the advice contaipmaeedcall). Therefore, from the shadow, we must pass
to the advice body both the context needed by the advice lisely and the context needed by the proceed code, so
that the advice body can pass it to the static proceed method.

One complication is that one advice method can apply to mifereint join point shadows with different context
values. Therefore, we add a sufficient number of paramefezaah type to the method implementing the advice
to cover the context at all shadows at which the advice mayyagm keep the number of parameters reasonably
small, we only add parameters of the types Object, int, fii@mtple and long, since context values of any type can be
converted to one of these types to be passed into the method.

A second complication is that the context value to be bourghtadvice parameter may not be known until run
time. Consider the following pointcut:
void around(Foo x) :args(x,..) || args(..,x)

In this case, x may be bound to the first argument of a methdti lfis typeFoo), or the last argumenrt.The
dynamic residues at the join point shadow determine whichgfghe pointcut matches, so at the shadow, at run time,
we know whether the x in the advice should be bound to the firstst parameter.

A third complication is that the advice may modify the contthat is to be passed to the proceed code for the
shadow. Theroceedexpression in the advice body accepts the same number ahargs as there are parameters to
the advice body. In thproceedcall to the original code from the shadow, these argumeptace the context values
that were bound to the corresponding advice parameters thieesdvice was invoked. In the above example, if we
call proceed(null) from the advice, the code of the shadow must be exedouith its first or last argument replaced
with null, depending on which clause of the pointcut matchetthe join point before the advice was executed. Since
this binding is only known at the dynamic residue and onlyuattime, we must communicate it from the residue to
the advice method, which then communicates it to the staticged method. To do this, at the dynamic residue, we
create a bit vector specifying the bindings, and pass iuindo the relevant methods.

3.3.3 Local and anonymous classes

As we have observed previoustypceedstatements can occur in local and anonymous classes withiceamethods,
and thus theoroceedinvocation can occur after control flow has left the advicehmod (and so its context must be
stored). Our implementation strategy conveniently ex$etodthis case, as all the necessary context is available in
the advice method. We simply need to add new fields to the mcahonymous class to hold the context values and
initialise these fields when the classes are instantiated.

3.3.4 Special Cases

In the previous sections we have described the generic mgitation ofaround advice inabc As mentioned above,

in the pathological case of circular adviceexecution thisnot be used, and we resort to closures instead. Furthermor
for efficiencyabcalso chooses to inline advice methods in some cases (whewtfiee is small and does not apply
numerous times, to avoid code bloat). Hamkning is not taken in thajc sense, but rather in the usual sense of
substituting the body of the method (in this case, the adwiethod) at the point where it is called. We now describe
these two special cases in greater detail.

Circular advice applications The execution of advice is a join point itself, so advice cpplato the execution

of advice (the entire body of the advice method). These adoicadvice applications can be expressed as a directed
graph structure. When weaving into the execution of a methioel whole body of the method is moved into the
corresponding proceed method. To simplify the weaving@segca topological sort is performed on the graph structure
prior to weaving. This ensures that once an around advichaddtas been woven into, it itself is not applied to any
join point shadows anymore.

Obviously, a topological sort fails in the presence of cgdtethe graph, and the weaver will encounter situations
where the advice method to be woven has already been wowen Trtis is the only case where we resort to the

1ajc as of version 1.2.1 avoids this complication by issuing a witen limitation error when encountering multiple bindipgintcut primitives
for the same advice formal.

Time (s) Size (instr.)

Benchmark abc abc ajc abc abc ajq
(inline) (inline)
sim-nullptr 24.0 21.3 22.00 6440 6811 7327

sim-nullptr-rec | 24.0 21.5126.6 6512 14502 9206
weka-nullptr 17.0 15.4 14.1] 80199 78949 8559(
weka-nullptr-rec| 16.9 15.5 43.4| 80296150298 11237p
ants-delayed 176 17.7 18.3 3768 4361 3784
ants-profiler 22.0 20.2 21.7) 7619 17815 13401

Table I: Execution Times and Code Size

creation of closure objects. The semantics of AspectJtditkeat in a cyclical graph, the order of the execution of
advice methods is determined by the dynamic residues bafgradvice is executed. Because those residues and the
resulting execution order can be arbitrarily complex, weidied that closures offer a clean, general solution.

As observed previously, cycles in the advice-on-advicdiegion graph are very rare and usually pathological. It
therefore seems unnecessary to try to avoid closures umeka tircumstances. We have, however, strived to minimise
the cost of closures; we create specialised closure clagdefields matching the types of context values, whemgas
uses an expensive object array to store context valuesifiregiboxing of primitive types).

Inlining as an optimisation pass For very small advice, the most efficient strategy can beltnarthe advice
directly into the join point shadow. This is implementedlicas an optimisation pass running after the around weaver.

The inlining process is implemented as a series of plain dptimisations. The advice method is first inlined into
the join point shadow as a normal Java method. A constanigaipr and switch statement folder are then used to
remove checks on the static class ID. Finally, the proceettiadeis inlined also, and its switch statement removed.
Since multiple pieces of advice can apply at the same shati@myhole process must be repeated until there are no
calls left to inline.

3.4 Empirical Results

To compare our strategy &c's and to experiment with the different tradeoffs of inligistrategies, we experimented
with three base programs and three aspects. The base psgraants an aspect-oriented simulation of an ants
colony (following the specification of the ICFP 2004 prograing contest) written by one of the authors (OdM) for
use in an undergraduate coursiey, a discrete event simulator for certificate revocation $tion [2]; andweka part

of the weka machine learning library [23]. All benchmarks&eun on a dual AMD Athlon 2000+ with 2GB RAM
and the Sun J2SE 1.4.2 JVM.

Table | shows the both the execution time (in seconds) anagwowde size (in bytecode instructions). For each
benchmark we give results foabc usingabcs generic around weaveabc (inline), the same aabg but with the
postpass inlining optimization; argjc, the result given byajc's around weaver (which is either closure-based or
inlining, depending on the benchmark). For each benchmagkave put the fastest time and the smallest code size in
bold. Note that in almost all cases eittaacor abc(inline) gives the fastest code and tladics code size is smallest,
sometimes by a significant margin.

To compareabcs generic weaving strategy #jc's closure-based and inlining strategies, we applied tweigas
of the nullptr aspect [3] to two base progranssm andweka(the first four lines in Table 1). Thaullptr aspect is a
very simplearound aspect for enforcing coding standards that we found on thewken searching for examples of
aspects. It simply checks for methods returning and isstres messages in the cases where null is returned. We
used two different versions of the aspect, a recursive dredtiginal form) where the advice applies to itself and a
non-recursive version where we explicitly uséthin(...) to avoid matches within the body of the advice. Tdje
compiler uses closure object creation for the first caseafliee of the recursion) and inlining for the second case,
whereasabcuses its generic implementation for both cases.

Comparing the execution times for the non-recurssim{nullptrandweka-nullpt) versions to the times for the
recursive versionss{m-nullptr-req and veka-nullptr-reg, we can see that the execution time and code sizaljor

is almost the same, whereag produces much slower code for the recursive versions (althdsnes slower for
simand 3 times slower fowekg. For the the non recursive casedcis slightly slower tharajc, but abc (inline)
provides further performance improvement at the expenseds siz€. Even with our inliner thajc inlining strategy
is slightly faster for thaveka-nullptrcase.

From these experiments we can see #iatis fairly insensitive to whether the advice is recursive o, tutajc
pays a huge penalty when it must switch to an explicit clostregegy.abcs behaviour is beneficial since programmers
often make their advice recursive by accident and they neegay a performance penalty. Furthermaecallows
for further performance improvement with the specializedtpass inliner.

There are other situations where #je weaver uses closures, which is demonstrated bythg-delayedench-
mark. This benchmark uses tBelayOutputaspect which captures calls to output methods and delags tadls until
the end of the base program. This is accomplished using bdlass of typeRunnabléan the advice method that calls
proceedin its run() method. Thejc weaver has to instantiate closure objects in addition tartstances of the local
class. Our weaving strategy avoids this, which explains thiegbcresults are slightly faster.

To demonstrate the adverse effects of a naive inliningegdgatwe applied a profiling aspect to our ants base
program @nts-profile). The profiling aspect contains a relatively big piece ofuat advice that is applied to the
execution of every method in the base program. Noteajeat inlining strategy doubles the size of the resulting class
files due to the inlining of the advice code into every methdte that this increase in code size can also be observed
with abcs inlining strategy. However, with our weaving strategylining is an entirely optional optimisation and
turning it off only has a slight effect on the efficiency of tresulting program. Irajc’s case, the only alternative to
inlining is the use of closures with the dramatic effects enfarmance shown in the table. Furthermore, with our
approach we can selectively inline and we are actively waykin inlining heuristics specific to the around weaver.

4 OPTIMISING CFLOW

The cflow pointcut picks out join points that fall within the dynamicope of certain events. Specifically, for any
pointcutp, cflow(p) applies at a point in the execution of the prograrp ihatchesomestate in the call stack at that
program point. Ifp contains variables to be bound, then these are bound totile aalues found in the match nearest
the top of the call stack. For example, the pointcut

call(x foo()) && cflow(call(x bar(x)) && args(x))

matches all calls téoo that occur within the dynamic scope of a calltar, and binds< to the value of the argument
of the last call tdbar.

Itis clear that the use afflow pointcuts requires, in general, the insertion of dynanststén the program to test
the current state against the conditidtow(p). The naive implementation aflow associates a state with eacflow
pointcut (this implementation is described in [17]) and afed this incrementally. The state is a stack of variable
bindings that represents an abstraction of the call stagkh Eme a join point that matchgds entered, a new item is
pushed onto the stack, with all the variablegpibound to the appropriate values. When this join point is teg top
of the stack is popped. Finally, to check wheth#ow(p) applies at a program point, it suffices to check whether or
not the stack is empty; if it is non-empty then the pointcyilegs and the appropriate variable bindings can be found
on top of the stack.

The implementation offlow (as described above and usedijn) is clearly expensive, both because of the need
to update the state (which happens every tpraoplies) and because of the dynamic tests inserted (whighrcéhe
worst case, apply everywhere). Performance experimenfgiothat the overhead introduced is substantial [9].

We introduce a number of optimisations fcfiow, all implemented irmbc. We first show a number of simple,
intraprocedural optimisations that reduce the overhehstautially. Then, we show how the overhead can be entirely
eliminated in many common cases by an interprocedural aisalffinally, we give empirical measurements showing
that the optimisations are very effective.

2|n some cases the inlined code can be slightly smaller bedarmmoves calls that required a large number of arguments.

10

4.1 Intraprocedural Optimisations

The simplecflow optimisations focus on eliminating the more obvious inéficies in updating the state and checking
for applicability. They are straightforward but quite effige.

4.1.1 cflow without Bound Variables

The first optimisation applies to pointcuts of the focffow(p), wherep does not bind any values. In this case, the
state of thecflow(p) reduces to a stack of empty sets of variable bindingsjdri.2, this is represented by a stack of
arrays of length 0.

We improve on this in the obvious way, by replacing the staik &n integer counter that is incremented and
decremented whep is entered and left respectively. This avoids repeatedations of empty arrays. The case of a
parameterlessflow appears to be quite common, so this optimisation is wideblieable.

4.1.2 Sharing cflow States

Another optimisation thaabcperforms is tesharethe state update and query code between related (or id@ rfflcay
pointcuts whenever possible. Consider the following pmits:

call(x bar()) && cflow(call(x foo(..)) && args(t, *,*))
call(x bar()) && cflow(call(x foo(..)) && args(x,s, x))

A naive implementation would keep a stack for eaflbw pointcut, and update and query them independently. We
optimise this by observing that a singtlow pointcut can be written that covers the two existing insésndn this
case, it iscflow(call(x foo(..) && args(l1,12, %)) (wherel, andl, are fresh variables). Note that this binds variables
used in either one of theflow pointcuts in the original program.

The implementation otflow in abc attempts taunify each pair ofcflow pointcuts that it finds. Unification of
two pointcuts succeeds if the pointcuts are syntacticalyivalent with the exception of free variables, and retans
pointcut that carries enough state to cover both pointagéthe above example).

In general, this sharing of state can improve performanbstantially. In fact, cases similar to the above arise
frequently due to inlining of named pointcuts, a strateggduboth inajc andabc An added benefit is that some
method bodies can become smaller when this is performedsigliag duplication of bookkeeping code). We present
empirical measurements of the performance improvemer@edtion 4.3.

4.1.3 CSE of cflow State Retrieval

The final simplecflow optimisation is the caching afflow state objects (stacks or counters). The state of a given
pointcutcflow(p) is thread-local, as it is an abstraction of the call stackltidle copies are therefore kept, one for
each thread, and any operationajtow state (updating or checking) involves retrieving the cogljd/for the current
thread (in the worst case, a hash table lookup).

In general, multiple operations on the saaflew state can occur within the body of the same method. In fact,
updates to the state ofcilow are always paired (the state is updated when entering awithdea join point), so in
most cases the state is retrieved at least twice in any matheklich it is needed at all.

We can therefore improve on the original implementationdiyieving the appropriate state object only when it is
first used in a given method, and storing it for future usebé@same method.

4.2 Interprocedural Optimisations

The optimisations that we have described above reduce #reead associated widflow, but this can still be substan-
tial. Since thecflow construct depends on dynamic properties of the programriergé it is impossible to eliminate
such overhead entirely. However, many usesflofw can be statically determined, at least at some programspdint
take a simple concrete example, the pointdidgw(call(x foo())) matches all points in the execution of the program

11

within the dynamic scope of a call foo. It is possible to determine statically that some programgsa@anneverbe

in the dynamic scope dbo, and that some program poirgtkvaysexecute in its scope. At each such program point the
cflow pointcut is statically known to be true or false, so the dyitazheck can be eliminated. In addition, eliminating
such dynamic matching code can allow the compiler to eliteisame of the state-updating code for ttfiew (if its
effects can no longer be observed after dynamic checks araved).

Our empirical results in Section 4.3 show tleiow pointcuts can indeed be statically determined in almost all
cases. We will now describe the analysis usedltinto achieve this.

The idea for this analysis was introduced in [18] for a singiecedural language. The analysis has been adapted
to the much wider context of AspectJ and implemented widiia It requires an interprocedural analysis, but has two
substantial advantages:

¢ It eliminates the overhead faflow completely in many common cases, and
¢ Inthose cases, it allowcflow to be used in constructs that require static pointcuts (asdeclare warning).

4.2.1 Analysis in abc

One of the design goals abcwas to make it possible to analyze the code being woven, amthesanalysis results

to optimise the weaving process to produce more efficienécdwl particular, we wanted to be able to leverage the
many analyses existing for Java code, without having toitewafl of them to be specific to AspectJ. Therefabge
includes a hook to perform analyses on the Jimple code peatiimmediately after weaving, optimise the naive
weaving instructions originally produced by the matched ¢hen repeat the weaving process on the original code
using the optimised weaving instructions. Because the wowgee being analyzed has no AspectJ-specific constructs,
it is possible to apply standard analyses already in SootcoDfse, we also implement analyses and optimisations
specific to Aspectd, but these are greatly simplified by babig to use the results of Java analyses.

Aspect Info
from Frontend

i

Matcher

R T

Weaving
Instructions

v

Analyses and
Optimizations

v
Woven

Jimple
v
Bytecode
Generator

Weaver

Figure 1: Reweaving in thebcbackend

The structure of thabcbackend which makes these analyses and optimisationdfmissshown in Figure 1. In
normal operation, the phases are executed from top to bofftva matcher takes as input information about all the
pointcuts and advice from the front-end, and produces afse¢aving instructions which specify where in the code
they should be woven. The weaver executes these instracpooducing woven Jimple, which is finally translated to
bytecode. When we want to perform optimisations, we feedmbreen Jimple back into our analyses, and use their
results to optimise the weaving instructions that were dsgatoduce the woven code. The weaver can then execute
the optimised weaving instructions on the original Jimpldes Note that this mechanism requires saving a copy of
the original Jimple code prior to the original weaving pasgsich abcdoes.

So far, we have implemented an interprocedefliw analysis and a thisJoinPoint escape analysis, but the ap-
proach is general; other analyses can be added to the bdlethBaalyses and Optimisations in Figure 1.

Itis possible that an analysis will produce more preciselte# executed not on the naively woven Jimple, but on
Jimple woven using optimised weaving instructions produmnean earlier pass of the analysis. Therefateallows

12

the Analyses and Optimisations feedback loop to be repdaiedired.

4.2.2 Call Graph

Estimating which shadows may or must be in the cflow of othadskvs requires a call graph approximating which

methods may be called from which call sites. We base our aaslgn a conservative call graph: every method invo-
cation possible at run-time must be included in the call grapall graph construction for object-oriented languages
like Java has been the subject of a significant amount of relséag.[5, 8, 20, 21]). Rather than reinvent the wheel,

we construct call graphs using Paddle, a successor of Spark3], the points-to analysis and call graph construction
framework available in Soot [22].

In Java, most method calls are virtual, meaning that the ateihvoked depends on the run-time type of the
receiver object. The treatment of virtual calls is one ofibg features distinguishing different call graph condinre
algorithms. The Paddle framework allows us to experimetit wall graphs constructed using algorithms ranging
from CHA [8], which conservatively assumes that receiversld have any type admitted by their declared type, to
using a subset-based points-to analysis to compute pesasititime receiver types.

Some applications of call graphs, such as devirtualisatioly require call edges for explicit invoke instructions
present in the code. However, because methods invokedcithplby the VM are defined to be in the cflow of
their calling context, our call graph must include theseliaitpcalls. In particular, we include implicit calls to sta
initialisers [16, section 2.17.4], calls through tRevilegedAction interface, and implicit constructor calls by
the Class.newlnstance method. For the latter, the user provides a list of all claghat may be instantiated
using reflection. To ensure that this list (and our call gjapleomplete, we insert code into methods not reachable in
the call graph to abort execution and alert us to the erratdRehandles these tricky but important details for us; we
do not need to consider them explicitly in our cflow analysis.

One type of implicit method invocation which we specificadiyclude from the call graph used for cflow analysis
is the invocation of theun method of newly created threads. dbc we strive to be consistent with the AspectJ
language as specified by thg implementation. Irajc, cflow stacks are maintained separately for each thread, so
the code executed by a thread is not considered to be in the ofithe code that created the thread. The call graph
produced by Paddle includes a type for each call edge, so mveeaaove these unwanted invocation edges.

4.2.3 Interprocedural cflow analysis

Desired optimisation The customary implementation ofcilow pointcut expressiorflow(p) incurs overhead

at two kinds of shadows. First, at each shadow matciping cflow stack is pushed and popped to indicate when
we are in the dynamic scope of thlow. We denote these shadows with the tarptdate shadowSecond, at each
shadow where theflow pointcut could possibly match, we insert a dynamic residuest whether theflow stack is
non-empty. We denote these shadows with the wuery shadow

We wish to perform two kinds of optimisation. First, if we cdeterminecflow stack emptiness at a query shadow
statically, we can remove the dynamic residue at the quexgtah, and possibly other code that becomes unreachable.
Second, if we can prove thatclow stack update operation will not be observed by a stack quinyjnithe dynamic
scope of an update shadow, we can remove the stack updatgiopeiat the update shadow.

Analysis information required For each update shadash in the program, we define two sets of instructions
to be computednayCflow(sh) andmustCflow(sh). mayCflow(sh) contains every instructionin the program such
that wheni is executed, we may be in the dynamic scopsiofThat is,i may execute after the push operatiorshf
has been performed, but before the corresponding pop agretes been performediustCflow(sh) contains every
instructioni such that wheneveéiis executed, we must be in the dynamic scopstof

Whenever a query shadow is notrimayCflow(sh), we replace the dynamic test with a constant false pointcut
expressiort. Any query shadow imustCflow(sh) is replaced with a constant true pointcut expression.

3Thecflow expression may be part of a more complicated pointcut esjmes Constant folding of pointcut expressions is done iragte
phase prior to weaving.

13

In addition, we calculate a subsetcessaryShadowsf update shadows whose effect may be observed at a query
shadow. Each update shadstve necessaryShadowsatisfies two properties. First, some query shadetvthat
has not been resolved statically may occur in the dynamipesobsh (i.e. gshe mayCflow(sh)). Secondsh may
occur outside the dynamic scope of all update shadows fosaheecflow stack (.e. Ash.sh e mustCflow(sH)).

This second condition enables us to mark as unnecessasy tiposte shadows at which the stack is always already
non-empty.

The optimisations become more complicated whencflawv binds arguments because, in this case, each query
shadow not only tests whether the stack is non-empty, batadserves the entry at the top of the stack. We can still
resolve statically those query shadows noiriayCflow (sh), since we know that the stack would always be empty
when they are executed. However, at the query shadows whekaow the stack is non-empty, we must keep the
dynamic residues which read the entry from the stack. Intaafigdiwe can no longer remove update shadows just
because they are in theustCflow of some other update shadow which will make the stack nontgrhpcause we
also need the correct entry to be pushed onto the stack iti@uth the stack being non-empty.

Computing analysis information The exact extent of eflow shadow depends on subtle details of advice prece-
dence and the distinction betweeflow and cflowbelow, and the weaver must respect these details when weaving
the cflow stack update operations. Because we perform the analysieomoven code, we need not consider these
details; we simply consider eacffiow shadow to start immediately after the point where the weaose thecflow

push instruction, and end immediately before the corredipgreflow pop instruction. We need to unambiguously
classify every instruction in the method as being eithehimibr outside theflow shadow. This requires that there be
no jumps into or out of the shadow, which would bypass the puglop instruction.

Due to details of the weaving process, this requiremenivayd satisfied, except in the case when the argument
p of the cflow expressiorcflow(p) is not entirely static, and requires a dynamic residue. is thse, the weaver
generates the dynamic test at the update shadow. If thecpbiptdoes not match, we do not enter the dynamic
scope of theeflow, so a conditional jump skips the stack update operationerefbre, wherp is not entirely static,
the instructions between the push and pop may execute withduitside the dynamic scope of tbow. Since no
instruction can be guaranteed to execute only in the dynaoupe of thecflow, mustCflow(sh) is the empty set in
this case.

Algorithm 1 is used to computaayCflow(sh). It begins with the statements in the intra-procedural eteaf sh
Then, it adds the statements of all methods that may be datleda statement already in the set, until a fixed point is
reached.

Algorithm 1 computemayCflow(sh)

mayCflow — {st| stis in intraprocedural shadow sh}
repeat
for all methodan | 3st € mayCflow.st may callmdo
mayCflow — mayCflow U set of statements im
end for
until mayCflow does not change

We have implemented all of the inter-procedwfidw analyses using Jedd [14], an extension of Java for expgessin
analyses using binary decision diagrams (BDDs), whichstralots as relations. We chose to implement the analyses
in Jedd for two reasons. First, they can be expressed in dediisely and clearly. As an example, Figure 2 shows the
Jedd implementation of Algorithm 1. Notice that the impleraion closely mirrors the algorithm. Second, although
the sets computed in the analyses may become quite largeaithdikely to share many similarities. BDDs make is
possible to represent these large sets compactly.

The setmustCflow(sh) is computed using Algorithm 2. Khhas a dynamic residue, it must return the empty
set. Otherwise, it starts with all statements in the progiamd removes statements that can be reached from the entry
points of the call graph without passing througlh The statements to be removed are computed by starting kdth t
entry points, and adding statements of methods called fhensét computed so far, but excluding statements in the
intra-procedural shadow eh until a fixed-point is reached.

Computation ohecessaryShadowss shown in Algorithm 3. We begin with all the query shadows] aemove

14

<stmt> mayCflow(Shadow sh) {
<stmt> mayCflow = stmtsWithin(sh);
<stmt> old;
do {
old = mayCflow;
<method> targets =
mayCflow{stmt} <> callTargets{stmt};
mayCflow |=
targets{method} <> stmtsin{method};
} while(mayCflow !'= old);
return mayCflow;

}

Figure 2: Jedd code implementing Algorithm 1

Algorithm 2 computemustCflow(sh)

if shhas a dynamic residuben
mustCflow — 0
else
mustCflow < set of all statements
shadowStmts— {st | stis in intraprocedural shadow efi}
targets— set of entry points of call graph
repeat
targetStmts—
{st| 3m e targetsst is an statement im} \ shadowStmts
mustCflow «— mustCflow \ targetStmts
targets— {m| Jst € targetStmtst may callm}
until mustCflow does not change
end if

those known statically to be false. Unless tilow binds arguments, we can also remove those known statically t
be true. This leaves us with the query shadows that will kededynamically. The necessary shadows are now those
update shadows in whoseayCflow any dynamic query shadow appears. Unlesscflmv binds arguments, we can
also remove those update shadows which are already muiseCflow of another update shadow.

Algorithm 3 computenecessaryShadows

queries— set of all query shadows| Js,mayCflow(sh)
if cflow does not bind argumentisen

queries— queries, Js,mustCflow(sh)
end if
necessaryShadows- {sh| 3st € queriesst € mayCflow(sh)}
if cflow does not bind argumentisen

necessaryShadows-

necessaryShadows| Js,mustCflow(sh)

end if

4.3 Empirical Results

Thecflow optimisations we present in this paper have been empjigalldated in two different AspectJ compilers.
First, we have implemented all the optimisations in albiccompiler. Second, we suggested them todjoedeam, and
they have implemented counters (Section 4.1.1) and shéBeqtion 4.1.2) irajc 1.2.1.

We tested theflow optimisations on benchmarks from a wide range of sources.lidvéhe benchmarks and
their sizes (non-comment SLOC) in the first column of TableHigure is a demo from the AspectJ documentation.
Quicksort is the example from [18] with modifications suggdsoy Gregor Kiczales. Sablecc is a compiler written
using the SableCC compiler generator, with an aspect apfdieount memory allocations in each of its phases. The
base programs ants, certrevsim(sim) and weka were inteadaSection 3.4. Law of Demeter [15] is a style-checking

15

aspect that we have applied to two code bases: Certrevsimvekal Cona [19] is a framework for specifying and
checking pre- and post-conditions using aspects. We apiplie the stack example mentioned in the paper, and to the
simulator.

No opt. Intra-proc
Benchmark SLOC Stacks| Stacks Counters
figure 94 5 0 1
quicksort 72 2 0 1
sablecc 31233 2 0 2
ants 939 1 1 0
LoD-sim 1586 13 0 1
LoD-weka 3912 13 0 1
Cona-stack 291 10 0 1
Cona-sim 1942 46 0 8

Table II; Static intra-procedural optimisation counts

In Table I, we present the static effects of our intra-pha@l optimisations implemented abc The column
labelled “no opt. stacks” shows the number of different lssaloefore our optimisations; the “intra-proc” column
shows the number of stacks and counters after intra-proabaiptimisations have been applied. In most cases, sharing
reduces the number oflow stacks (or counters) significantly, often down to one. Irbathchmarks except ants, all
cflow stacks are replaced with counters. A counter cannot be osethfs because theflow pointcut binds a value.

abc ajc
Benchmark No opt. Intra-proc Inter-proc 1.2 1.2.1
figure 2139.32 39.53 2.04506.28 219.71
quicksort | 124.88 27.08 27.21124.07 29.26
sablecc 34.23 24.01 21.16 30.42 24.87
ants 34.40 32.70 13.17 34.66 34.30
LoD-sim 615.31 28.32 22.391801.64 39.0b
LoD-weka | 1969.77 83.35 62.642372.80 126.2P
Cona-stack1153.66 32.93 23.91151.63 65.2b
Cona-sim 77.12 73.10 71.28 76.77 69.76

Table 11I: Benchmark running times (seconds)

We present the benchmark running times in Table Ill. The meidéction lists the running times of benchmarks
compiled usingabcwith cflow optimisations disabled, with the intra-procedural opsiations described in Section 4.1,
and with the inter-procedural optimisations describedant®n 4.2. The rightmost section lists running times when
the benchmarks are compiled wait versions 1.2 and 1.2.1. Between these two releases, twe dftita-procedural
optimisations presented in this paper, counters (Sectibriyland sharing (Section 4.1.2), were addedjton re-
sponse to our suggestions.

Using theabc compiler, the speedups due to our intra-procedural opditioiss are very significant (up to 54-
fold) not only for small benchmarks(g. figure, quicksort), but also for large benchmarks which ciéew (e.g.
the LoD benchmarks). We observe similar speedups witlagheompiler between version 1.2 and 1.2.1, in which
intra-proceduratflow optimisations were added.

Static results of our inter-proceduiclow analysis are shown in Table IV. The “query shadows” colunowsh
for eachcflow pointcut designator (corresponding to a stack or counttee)total number of query shadows and, of
those, how many the analysis determined to be unreachaiemany are determined to never or always match, and
how many cannot be determined statically and thereforderstjuire a dynamic test. The “update shadows” column
shows the total number of update shadows and the numberhianalysis determines to be necessary, and must
remain as dynamic updates even after the analysis.

With the exception of oneflow pointcut designator in sablecc, the analysis was able tizalig determine the
outcome of allcflow queries, and therefore entirely remove the dynamic updatdsjueries of theflow stacks or
counters. The imprecision in the sablecc case is due to cghragows in a static initialiser; to deal with this case, we
are developing a simple analysis to reduce the number ofpustatic initialiser edges in our call graph.

Even though theflow pointcut in ants binds an argument, we can eliminate it beedtus never queried. This

16

Benchmarl Query shadows Update shs.
Total Unreach. Never Always Dynamigotal Dynamic

figure 6 0 2 4 0 6 0
quicksort 6 0 2 4 0 3 0
sablecc 985 388 299 298 0698 0
985 388 332 260 5 1 1

ants 84 0 84 0 0 1 0
LoD-sim 1313 798 515 0 D 41 0
LoD-weka |7031 3501 3530 0 0 41 0
Cona-stack 16 0 14 2 qQ 27 0
Cona-sim 2 0 2 0 q 2 0
3 3 0 0 g 18 0

4 3 1 0 g 31 0

0 0 0 0 q 2 0

7 5 2 0 g 20 0

0 0 0 0 g 6 0

4 0 4 0 g 5 0

0 0 0 0 g 3 0

Table IV: Static inter-procedural optimisation counts

is because the pointcut is being used as an assertion to fiad@ncondition. By determining that treflow never
matches, we have statically verified the assertion. Theemsaaf the static analysis inspired us to begin experimgntin
with AspectJ extensions to allow “dynamic” pointcuts sushféow in “static” declare error constructs. This provides

a way for a programmer to specify properties of the prograrbea@hecked. When the analysis cannot prove the
properties at compile time, a warning is issued and a rue-tiheck inserted.

We were pleasantly surprised that the inter-procedurdyaisavas so effective in resolvingflow statically. To
ensure that these analysis results are indeed correctyjwad the benchmarks with a special dynamic residue woven
in to check that the static analysis results always agre#dthé run-time behaviour.

The performance improvements due to the removal of updatiosts, query shadows, and the code of unreachable
advice are shown in theabcinter-proc” column of Table 1ll. On benchmarks making sfggaint use otcflow, both
small e.g.figure) and larged.g. LoD), these optimisations provide large speedups, eveppoftthe already large
speedups from the intra-procedural optimisations and sleeofi cheaflow counters. Furthermore, when théow
binds an argument, the cheap counters cannot be used, suehgriocedural optimisations enable the removal of
expensiveeflow stacks, resulting in a 2.5-fold speedup in ants.

5 OTHER OPTIMISATIONS

abcimplements a number of other optimisations, and we now givésdi overview of these. They fall into two groups:
those that affect reflective access to the current join poiqointcuts and advice; and the backend optimisations
afforded by the Soot framework.

It is very common for advice to only access the static parthefthisJoinPointobject. abc performs a simple,
conservative analysis to determine whether this is the, @amkif so, it replaces the use tbfisJoinPointby a smaller
structure thisJoinPointStaticPartwhich can be completely computed at compile-tintteésJoinPointStaticParis in
fact part of the AspectJ language; this optimisation thiisves the programmer from the burden of deciding whether
thisJoinPointor thisJoinPointStaticParis preferable. In cases where we do need to keep the dynamsionegit is
initialised lazily. In particular it is not constructed prito the dynamic pointcut matching, as such constructiaghini
turn out to be in vain if the pointcut fails to match. Theseimigations are also presentaic.

After all the aspect-specific transformations are complaie runs a number of generic optimisations for Java
bytecode, which are part of the Soot framework. These acal fgacker (‘register allocation’ on bytecode), copy and
constant propagation, common subexpression elimingparial redundancy elimination, dead assignment elimina-
tion unreachable code elimination, branch simplificatigve have found these (in particular the local packer) to be
effective in producing good code for aspects.

17

6 RELATED WORK

This work is the first general study of analysis and optingastrategies for aspect-oriented languages in general,
and for AspectJ in particular. As a consequence, the amduetated work is rather sparse. There are however a
number of other industrial strength implementations okasrientation, and we discuss these here.

The ajc Compiler The reference implementation of AspectJ (and in fact thg ottier implementation of the
language) is thajc compiler. The weaving strategiesat andabcare similar, except for the optimisations described
in this paper. Following the early success of our optim@aiinabg two of them ¢flow counters and sharing of
cflow stacks) have been incorporated iafo 1.2.1. Further details on the implementation of weavingjm(similar

to weaving inabcexcept for the optimisations described here) can be foufitdh

Other AOP Systems There are a number of other systems besides AspectJ thatrstimpuse of aspects. Perhaps
the most successful of these is AspectWerkz [7]; its featare in fact very similar to those of AspectJ. Aspects are
however deployed using annotations or scripts, rather iham extension of the Java language. Unlike AspectJ,
AspectWerkz supports dynamic weaving: enabling new asggctntime, and also disabling them:

The AspectWerkz system may however also be used in off-lindenin the same way agc or abc. Because
of its focus on runtime weaving, AspectWerkz employs an ebased implementation of join points, where advice
can register as a listener. In preliminary experiments, axeHound this strategy leads to a slow-down of a factor
of 9 or more compared tajc or abc Because of this huge gap and the different aims of dynamaving, we
focused on the most popular static weaving system, whieljicisThe other leading AOP system is JBoss [11], and
this employs a similar implementation strategy to AspecRale It is evident that both these systems could benefit
by the optimisations presented here, when used in off-linden For weaving at runtime, it would appear that our
intraprocedural optimisations may be helpful. The samdiepfo efforts to support aspects in a modified JVM, as
in [6].

7 CONCLUSIONS

The field of optimising compilers for AOP languages is justtihg, but we believe that this area will provide many
interesting problems and challenges that can be met withédxasting and new compiler optimisation technology.

In this paper we have presented three main contributiortsetdi¢ld in the context of a new optimising compiler
for AspectJabc We have designed and implemented a new strategy for weavinopd advice which aims to avoid
both the code size explosion of a pure inlining approach hadiine and space overhead of an explicit closure-based
approach. Our experimental results demonstrate thattiistque works very well, it is much more efficient than the
closure-based approach, and produces much less code ¢hiaafining-based approach.

Our second major contribution was to show how to reduce orieéite the large overheads associated wlw.
We gave some intra-procedural techniques that are botiivedlesimple and very effective at reducing large overtead
for the common case. These optimisations have already hmgtead by the implementors of tlagc compiler. We
then showed that we can go even further by applying intecqufaral analyses that can statically approximate dynamic
cflow properties. Our experimental results show that in manyscasecan completely eliminate tieow overhead.

Finally, the implementation strategies presented herevehge a novel methodology for defining new program
analyses and efficiency-improving program transformatifum aspect-oriented languages. In particular, the inter-
proceduraktflow analysis shows thaeweavingis a useful technique. In reweaving, aspects are woven fiisely
into the base program, the resulting program is analysedraencesults of the analysis are used to guide subsequent
weaving phases (so that better code can be produced). Imajereveaving can be iterated multiple times. The
abccompiler was designed specifically to support reweavingthod can serve as a workbench for developing new
optimising transformations of AspectJ.

18

Acknowledgments

This work was supported, in part, by NSERC, EPSRC and IBM.

References

[1] abc. The AspectBench Compiler. Home page with downlpBA®, documentation, support mailing lists, and
bug database. Available from URhttp://aspectbench.org

[2] André Ares. PKI certificate revocation. Available attp://'www.pvv.ntnu.no/"andrearn/
certrev/

[3] R. Dale Asberry. Aspect oriented programming (AOP):ngsAspectJ to implement and enforce coding stan-
dards.http://www.daleasberry.com/newsletters/200210/20021 002.shtml ,2002.

[4] Eclipse Aspectd. The Aspect] Eclipse Projdittp://eclipse.org/aspect]

[5] David F. Bacon and Peter F. Sweeney. Fast static analf€is+ virtual function calls. rOOPSLA 1996pages
324-341, 1996.

[6] Christoph Bockish, Michael Haupt, Mira Mezini, and Ka@stermann. Virtual machine support for dynamic
join points. INAOSD 20042004.

[7] Jonas Bonér. Aspectwerkz — dynamic AOP for java. Aualgafrom URL: http://codehaus.org/
“jboner/papers/aosd2004_aspectwerkz.pdf ,2004.

[8] Jeffrey Dean, David Grove, and Craig Chambers. Optitionaof object-oriented programs using static class
hierarchy analysis. IECOOP '95 volume 952 0. NCS pages 77-101, 1995.

[9] Bruno Dufour, Christopher Goard, Laurie Hendren, Oegévibor, Ganesh Sittampalam, and Clark Verbrugge.
Measuring the dynamic behaviour of AspectJ program©@PSLA 20040ctober 2004.

[10] Erik Hilsdale and Jim Hugunin. Advice weaving in Asp&cin K. Lieberherr, editorAOSD 20042004.

[11] jboss. JBoss Aspect Oriented Programming. Home pagh wownloads, documentation, wiki.
http://www.jboss.org/index.html?module=htmI&op=user display&id=developer%
s/projects/jboss/aop

[12] Ondrej Lhotak. Spark: A flexible points-to analysiamhework for Java. Master’s thesis, McGill University,
December 2002.

[13] Ondrej Lhotak and Laurie Hendren. Scaling Java matotanalysis using Spark. In G. Hedin, edito¢; 2003
volume 2622 oL NCS pages 153-169. Springer, April 2003.

[14] Ondrej Lhotak and Laurie Hendren. Jedd: a BDD-bas#dtional extension of Java. BLDI 2004 pages
158-169, 2004.

[15] Karl Lieberherr, David H. Lorenz, and Pengcheng Wu. Aector statically executable advice: checking the law
of demeter with aspectJ. WOSD 2003pages 40-49, 2003.

[16] Tim Lindholm and Frank YellinThe Java Virtual Machine Specificatiohddison-Wesley, second edition, 1999.

[17] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyncompilation and optimization model for aspect-
oriented programs. I&€C 2003 volume 2622 of NCS pages 46-60, 2003.

[18] Damien Sereni and Oege de Moor. Static analysis of aspBtAOSD 2003pages 30-39, 2003.
[19] Therapon Skotiniotis and David H. Lorenz. Cona: aspéat contracts and contracts for aspectsO@PSLA
2004 Companiofpages 196-197, 2004.

19

[20] Vijay Sundaresan, Laurie Hendren, Chrislain Razafiefi@ahRaja Vallée-Rai, Patrick Lam, Etienne Gagnon, and
Charles Godin. Practical virtual method call resolutionfava. INOOPSLA 2000pages 264—280, 2000.

[21] Frank Tip and Jens Palsberg. Scalable propagatioeebzm| graph construction algorithms. @OPSLA 2000
pages 281-293, 2000.

[22] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendreiri€k Lam, Patrice Pominville, and Vijay Sundaresan.
Optimizing Java bytecode using the Soot framework: Is isitda? InCC 200Q pages 18-34, 2000.

[23] lan H. Witten and Eibe FrankData Mining: Practical Machine Learning Tools and Technéguwith Java
implementationsMorgan Kaufmann Publishers, 2000.

20

