
The abc Group

Optimising AspectJ

abc Technical Report No. abc-2004-3

Pavel Avgustinov1, Aske Simon Christensen2, Laurie Hendren3, Sascha Kuzins1,
Jennifer Lhoták3, Onďrej Lhoták3, Oege de Moor1, Damien Sereni1,

Ganesh Sittampalam1, Julian Tibble1

1 Programming Tools Group 2 BRICS 3 Sable Research Group
Oxford University University of Aarhus McGill University
United Kingdom Denmark Montreal, Canada

November 12, 2004

a s p e c t b e n c h . o r g

Contents

1 INTRODUCTION 3

2 BACKGROUND AND DEFINITIONS 4

3 OPTIMISING AROUND ADVICE 5

3.1 Implementation Issues 5

3.2 General Implementation 6

3.2.1 Closures 6

3.2.2 Inlining 6

3.3 Around weaving in abc 7

3.3.1 The Generic Implementation 7

3.3.2 Context and Advice Formals 7

3.3.3 Local and anonymous classes 8

3.3.4 Special Cases 8

3.4 Empirical Results 9

4 OPTIMISING CFLOW 10

4.1 Intraprocedural Optimisations 11

4.1.1 cflow without Bound Variables 11

4.1.2 Sharingcflow States . 11

4.1.3 CSE ofcflow State Retrieval . 11

4.2 Interprocedural Optimisations 11

4.2.1 Analysis in abc 12

4.2.2 Call Graph 13

4.2.3 Interprocedural cflow analysis 13

4.3 Empirical Results 15

5 OTHER OPTIMISATIONS 17

6 RELATED WORK 18

7 CONCLUSIONS 18

1

List of Figures

1 Reweaving in theabcbackend . 12

2 Jedd code implementing Algorithm 1 15

List of Tables

I Execution Times and Code Size 9

II Static intra-procedural optimisation counts 16

III Benchmark running times (seconds) 16

IV Static inter-procedural optimisation counts 17

2

Abstract

AspectJ, an aspect-oriented extension of Java, is becomingincreasingly popular. However, not much work has
been directed at optimising compilers for AspectJ. Optimising AOP languages provides many new and interesting
challenges for compiler writers, and this paper identifies and addresses three such challenges.

First, compilingaroundadvice efficiently is particularly challenging. We providea new code generation strategy
for aroundadvice, which (unlike previous implementations) both avoids the use of excessive inlining and the use
of closures. We show it leads to more compact code, and can also improve run-time performance. Second, woven
code sometimes includes run-time tests to determine whether advice should execute. One important case is thecflow
pointcut which uses information about the dynamic calling context. Previous techniques forcflowwere very costly in
terms of both time and space. We present new techniques to minimize or eliminate the overhead ofcflowusing both
intra- and inter-procedural analyses. Third, we have addressed the general problem of how to structure an optimising
compiler so that traditional analyses can be easily adaptedto the AOP setting.

We have implemented all of the techniques in this paper inabc, our AspectBench Compiler for AspectJ, and we
demonstrate significant speedups with empirical results. Some of our techniques have already been integrated into
the production AspectJ compiler,ajc 1.2.1.

1 INTRODUCTION

Aspect-oriented programming is a new programming paradigmthat is rapidly growing in acceptance, in large part due
to the popularity of AspectJ [4], an aspect-oriented extension of Java that is compatible with existing Java programs.
Aspect-oriented programming encompasses many different language features, which can be separated into two cate-
gories:static features, essentially a version of open classes; anddynamicfeatures. While the static features incur no
substantial performance penalty, that is not necessarily the case for the dynamic features. New optimisation strategies
are required to improve the performance of programs writtenusing the dynamic features of AspectJ.

Challenges The execution model for (the dynamic features of) AspectJ isthat execution of the main program is
monitored for certain programmer-specified events. When these occur, control is passed toadvice, a special kind of
method that contains the extra code to be executed. Advice can be run before or after the event that triggers it, or it
can be executed “around” it (instead of it).

The monitoring of the base program to find points where adviceshould apply can be expensive. Of course, the
AspectJ language has been designed so that most of the conditions that cause advice to be triggered can be determined
statically, and so do not induce overheads. A nice explanation from the viewpoint of partial evaluation can be found
in [17].

However, some features of AspectJ require the insertion of dynamic checks in the base programs, resulting in
performance loss. Furthermore, “around” advice, which we describe in more detail in Section 2, is a powerful language
feature that is difficult to implement efficiently. It has been shown that the combination of these factors can result in
substantial overhead in AspectJ programs [9]. Here,overheadshould be understood as the additional cost for matching
events to advice, not the execution of advice code itself. Inaddition, we must considerspace overhead. This is the
size of the extra code introduced when aspects are applied toa program.

These problems highlight the need for novel aspect-specificoptimisation strategies.

The ajc Compiler The reference implementation of AspectJ, originally developed by the language’s designers, is
theajc compiler [4], maintained as part of the Eclipse project. Theajc compiler has been designed with compilation
speed in mind, and supports incremental compilation. Thesedesign aims reduce the opportunities for optimisation,
and indeedajc performs only a small amount of intraprocedural analysis and no whole-program analysis. This results
in substantial overhead in programs produced byajc when using certain features of AspectJ [9].

The AspectBench Compiler The observation that aspects can introduce substantial overheads has prompted us
to build a new compiler for the AspectJ language, the AspectBench Compiler (abc) [1], which is freely available under
the GNU LGPL. Whileabcuses a weaving strategy similar toajc in many ways, by contrast its design was motivated
by two goals: to beextensible(so that new features can be added to the input language) and provide a powerfulanalysis

3

and optimisation framework. This second feature, which aims to reduce the overheads of AOP, is the main focus of
this paper.

To achieve this,abcuses the Soot program analysis and transformation framework [22] as a backend. Soot provides
a typed, three-address intermediate representation (called Jimple) and a library of standard program analyses. In
addition, it is straightforward to define new analyses in Soot, both intraprocedural and interprocedural. In particular,
the Jimple IR is extremely well-suited to program analysis and transformation.

Contributions This paper is the first systematic study of the analysis and optimisation of aspect-oriented programs,
in particular for the AspectJ language. We present the following novel contributions:

• A novel implementation strategy for ‘around advice’. Around advice is executed instead of the event that
triggered it. Our implementation strategy avoids the use ofclosures in all but some pathological examples, unlike
earlier implementations, which relied heavily on closures. Furthermore, our implementation makes judicious
choices about inlining, thus producing compact code.
• A number of intraprocedural optimisations to reduce the overheads of ‘cflow pointcuts’. This feature of AspectJ

is used to intercept method calls in the dynamic scope of others, and its naive implementation can be very costly.
• An interprocedural analysis to completely eliminate the overheads of usingcflow in most cases. This analysis

and the associated transformations illustrate our final contribution:
• A general technique for leveraging analyses and transformations for pure Java on AspectJ programs. The tech-

nique consists of first compiling the program naively, possibly inserting too many dynamic checks (for the
applicability of advice) into the base program. We then analyse the resulting intermediate code, and reconsider
the decisions to insert dynamic checks, based on the analysis results.

All these contributions have been implemented inabcand, at our suggestion, some have also been adopted byajc.
We present experiments to confirm that the above techniques can result in dramatic improvements in run time as well
as code size. While this paper illustrates the techniques inthe context of the AspectJ language, they equally apply to
other aspect-oriented programming languages.

Outline This paper is structured as follows. We first briefly introduce the relevant features and terminology of As-
pectJ in Section 2. Then, we describe the optimisations usedin abc’s implementation ofaround advice in Section 3.
Subsequently, optimisations specific to thecflow construct of AspectJ are given in Section 4. Section 5 summarises
further efficiency improvements achieved byabc. Finally, we give related work in Section 6 and conclude in Sec-
tion 7.

2 BACKGROUND AND DEFINITIONS

The execution events in an AspectJ program that can be monitored and associated with advice code are calledjoin
points. A join point is a span of time in the execution of the program.Example join points are a call of a method, an
execution of a method body, a field read or an execution of an exception handler. For any particular join point, the
textual part of the program executed during the time span of that join point is called theshadow of the join point.

AspectJ contains a query language for picking out join points. Such a query is called apointcut. An advice
declaration consists of an advice kind (before, after, around), a pointcut, and a body of code, calledadvice. The
advice is to be executed before, after, or instead of any joinpoint which matches the pointcut. Whenever multiple
pieces of advice apply at the same join point, precedence rules determine the order in which they execute.

A pointcut consists of a number ofpointcut designators connected by boolean connectives. Each pointcut desig-
nator is either static (defining a set of join point shadows) or dynamic (defining a run-time condition). Some examples
of static pointcuts arecall andexecution, which match all calls to and executions of a method matchinga pattern;
within , which matches all join points within class matching a pattern; andhandler, which matches exception han-
dlers. Some examples of dynamic pointcuts areargs (a), which matches when actual arguments of a method have
specified run-time types;if (e), which matches when the arbitrary Java expressione evaluates to true; andcflow (p),
which matches when a join point is within the dynamic scope ofa join point matched by pointcutp. In addition

4

to testing runtime conditions, dynamic pointcut designators may also bind context values to variables to make them
available to the advice code and to the code inif pointcuts. For instance, theargs pointcut designator may bind the
actual arguments.

AspectJ also contains standalone pointcut query constructs. Thedeclare error anddeclare warning constructs
take a pointcut consisting of only static pointcut designators along with a message. If the pointcut matches any join
point shadow, the message is printed as a compile-time erroror warning, respectively.

The process of compiling AspectJ programs is known asweaving. The base program and advice declarations are
woven together into one program which behaves as if the aspects were monitoring execution of the base program, and
invoking the relevant advice.

Weaving is a two-step process. The first step,pointcut matching, checks for each possible join point shadow in the
program and each advice declaration, whether the pointcut could possibly match a join point at that shadow. If so, it
constructs adynamic residue of the runtime checks to be performed at the shadow to determine whether the pointcut
actually matches.

The second step isadvice weaving. At each join point shadow where a piece of advice may apply, code is generated
to evaluate the dynamic residue and, if it matches, to bind the context values and invoke the advice.

3 OPTIMISING AROUND ADVICE

Most advice in AspectJ programs adds some code to a join point, either before or after it.around advice is unique in
that it is executedinsteadof each join point it applies to. It can, however, invoke the original join point at any time by
using aproceedstatement.

The following caching aspect demonstrates the usefulness of this interception mechanism. The aspect intercepts
calls to a method namedfooand only executes a call if the result is not in the cache already:
aspectCache{

pointcut methodsToCache(Object arg) :
call(Object foo(Object)) &&args(arg);

Objectaround(Object arg) : methodsToCache(arg){
if (!cacheContains(arg))

setCache(arg,proceed(arg));

return getCachedValue(arg);
}
booleancacheContains(Object arg){...}
void setCache(Object arg, Object value){...}
Object getCachedValue(Object arg){...}

}

Like all forms of advice,around advice can have arguments. Each of these arguments has to be bound to an
exposed context value by the pointcut expression: in the above example,args(arg) binds the argument offoo to arg.
A proceedstatement looks like a method call with the same number of arguments as the advice, and it executes the
original join point with the bound context values set to the arguments of theproceedcall. Theproceedcall can
thereforechangethe values of context values (such as method arguments).

3.1 Implementation Issues

A number of difficulties arise in the implementation ofaround advice (and particularly theproceedstatement), which
we briefly outline before giving possible solutions.

The first problem is thataround advice can apply in multiple places within the base program.For example,
consider somearound advice with pointcutexecution(void foo(..)) || execution(void bar(..)). This will apply to
the bodies of methodsfoo andbar, and any occurrence ofproceed in the advice body will pass control back to the
method that was matched. Furthermore, thecontextof the advice applications (the values of locals used in the advised
statements) can certainly differ between applications tofoo andbar. This polymorphic behaviour ofproceedis the
main difficulty in its implementation.

5

Matters are complicated further by the fact thatproceedcan occur in arbitrary places within the advice body,
including local and anonymous classes. An important implication is thatproceedstatements may be executed after
the control flow has left the advice body. Any context values needed for theproceedcall must therefore outlive the
execution of the advice in this case.

Finally, aspects are not restricted to observing the base program, and in fact advice can apply to other advice. In
particular, a piece ofaround advice can apply to the execution of itsownbody, directly or indirectly. Suchcircular
adviceexecution applicationsare very rare, and usually pathological and a symptom of an error in the program. It is
important to observe that these can occur, however, as we shall have to treat such applications as special cases. Note
that the application ofaround advice to any other advice other than itself, or to a statement within its body (but not
the whole body) is not considered circular. These other cases are common, but circular applications are rare.

3.2 General Implementation

Any piece of advice, regardless of its kind, is turned into a plain Java method (theadvice method) both byabcandajc.
The interest lies in the translation of theproceedstatement, minding the issues described above. The polymorphic
behaviour ofproceed, coupled with the need to store execution context, motivates the use ofclosuresas a default and
straightforward implementation strategy.

As a preparatory step to implementingaround, any shadow that is advised by somearound advice is lifted into
a separate method (theproceed method) that can be invoked byproceed. Note that this is necessary as shadows need
not be entire method bodies.

3.2.1 Closures

We shall now give a brief description of the closure strategy.

This approach works by defining a suitable interface type (orclass type) for each advice method. All calls to
proceedare then translated to calls on this closure interface.
public interface Around$1{

{ public [ret-type] proceed$1([arg-type] arg1, ...);}

[ret-type] adviceMethod$1(Around$1 closure,
[arg-type] arg1, ...){ ...

[ret-type] result=closure.proceed$1(arg1”, ...);
... }

For each advice application, a specialised closure type is defined that implements the interface, and for each advice
invocation, an instance of the closure class is passed to theadvice method. This closure must then call the proceed
method.

The major drawback of the closure approach is performance. Each time advice is triggered, a closure object has to
be allocated on the heap, which can be a significant overhead.

3.2.2 Inlining

In all cases apart from the case of advice applying to itself (either the whole advice or a statement within it), it is
possible to avoid closures by duplicating the advice methodfor each point in the program where the advice applies.
This so called inlining (inajc terminology) eliminates the need for polymorphism as theproceedstatements in this
specialised advice method always invoke the same join pointshadow, and the join point context can be transferred
using method arguments.

While inlining may be a good optimisation in certain situations, the duplication of the advice method for every
advice application can lead to code bloat and thus is unsuitable as the general approach.

Theproceedstatement is implemented inajc using these two strategies, a generic strategy based on closures and
an inlining strategy that is used in certain cases. We shall now describeabc’s approach.

6

3.3 Around weaving in abc

We present a novel approach for weaving around advice. Our approach is generic: the same strategy can be employed
everywhere, and it does not rely on inlining. The only exception is the pathological case of circular adviceexecution
applications, described previously. We will return to thatcase in Section 3.3.4.

When compared to the dual strategy ofajc, abc’s around weaver never performs significantly worse and in many
cases performs significantly better. Particularly,

• wheneverajc resorts to closure creation,abccan be expected to produce faster code
• when the advice code is big and applies at many locations,abcavoidsajc’s code bloat
• with circular adviceexecution applications,abcproduces fewer closure objects and hence faster code.

We shall now describe our weaving strategy in detail.

3.3.1 The Generic Implementation

Instead of creating a closure class for each join point shadow where around advice could apply,abcplaces the proceed
code from all join point shadows of a class in a single static proceed method in the class. Each join point shadow at
which around advice applies is replaced with a call to the advice body. Into the advice body, we pass a static class ID
to identify the class from which we are calling it, and a shadow ID to identify the join point shadow within the class.
To implement theproceedcall, the advice body uses the static class ID (using a switchstatement) to select the class
from which it was called, and calls the static proceed methodin that class. The static proceed method uses the shadow
ID to select the shadow whose proceed code it must execute. Because we keep the code of each join point shadow in
the class where it originally occurred, there is no need to generate accessor methods for private members.
ret-typeadviceMethod$1(Around$1 closure,

int shadowID,int staticClassID,args) {
...
switch (staticClassID){
case0: closure.proceed$1(shadowID,args); break;
case1: ShadowClass.proceed$1(shadowID,args); break;
...dispatch to other classes to which the advice applies...

}
public classShadowClass{

public static ret-typeproceed$1(int shadowID,args) {
switch(shadowID){
case0: ... do what the first shadow did...
case1: ... do what the second shadow did...
...handle further cases...
}

}
...

}

3.3.2 Context and Advice Formals

In addition to calling the right piece of code we must also ensure that values are passed for free variables used by this
code (thecontext). We describe the implementation of context passingnext.

Passing context Context from the join point shadow is needed in two places. First, it is used by the code of the
shadow itself. Since we have moved this code out from the original join point shadow to the static proceed method,
we must pass the required context into this method. Second, the AspectJ pointcut designatorsargs, this, andtarget
allow values from the context of the join point to be bound to formal parameters of the advice, and used in the advice
body. Therefore, these values must be passed from the join point shadow site to the advice method that is called.

The dynamic residue of the pointcut guarding the advice may or may not match at run time. If the residue does
not match, the advice is not executed, and the static proceedmethod is called directly from the shadow, so the context
values are passed to it directly. If the residue does match, the advice body is called from the shadow, and it may in

7

turn call the static proceed method (if the advice contains aproceedcall). Therefore, from the shadow, we must pass
to the advice body both the context needed by the advice body itself and the context needed by the proceed code, so
that the advice body can pass it to the static proceed method.

One complication is that one advice method can apply to many different join point shadows with different context
values. Therefore, we add a sufficient number of parameters of each type to the method implementing the advice
to cover the context at all shadows at which the advice may apply. To keep the number of parameters reasonably
small, we only add parameters of the types Object, int, float,double and long, since context values of any type can be
converted to one of these types to be passed into the method.

A second complication is that the context value to be bound toan advice parameter may not be known until run
time. Consider the following pointcut:
void around(Foo x) : args(x,..) || args(..,x)

In this case, x may be bound to the first argument of a method (ifit has typeFoo), or the last argument.1 The
dynamic residues at the join point shadow determine which part of the pointcut matches, so at the shadow, at run time,
we know whether the x in the advice should be bound to the first or last parameter.

A third complication is that the advice may modify the context that is to be passed to the proceed code for the
shadow. Theproceedexpression in the advice body accepts the same number of arguments as there are parameters to
the advice body. In theproceedcall to the original code from the shadow, these arguments replace the context values
that were bound to the corresponding advice parameters whenthe advice was invoked. In the above example, if we
call proceed(null) from the advice, the code of the shadow must be executed with its first or last argument replaced
with null, depending on which clause of the pointcut matchedat the join point before the advice was executed. Since
this binding is only known at the dynamic residue and only at run time, we must communicate it from the residue to
the advice method, which then communicates it to the static proceed method. To do this, at the dynamic residue, we
create a bit vector specifying the bindings, and pass it through to the relevant methods.

3.3.3 Local and anonymous classes

As we have observed previously,proceedstatements can occur in local and anonymous classes within advice methods,
and thus theproceed invocation can occur after control flow has left the advice method (and so its context must be
stored). Our implementation strategy conveniently extends to this case, as all the necessary context is available in
the advice method. We simply need to add new fields to the localor anonymous class to hold the context values and
initialise these fields when the classes are instantiated.

3.3.4 Special Cases

In the previous sections we have described the generic implementation ofaround advice inabc. As mentioned above,
in the pathological case of circular adviceexecution this cannot be used, and we resort to closures instead. Furthermore,
for efficiencyabcalso chooses to inline advice methods in some cases (when theadvice is small and does not apply
numerous times, to avoid code bloat). Hereinlining is not taken in theajc sense, but rather in the usual sense of
substituting the body of the method (in this case, the advicemethod) at the point where it is called. We now describe
these two special cases in greater detail.

Circular advice applications The execution of advice is a join point itself, so advice can apply to the execution
of advice (the entire body of the advice method). These advice-on-advice applications can be expressed as a directed
graph structure. When weaving into the execution of a method, the whole body of the method is moved into the
corresponding proceed method. To simplify the weaving process, a topological sort is performed on the graph structure
prior to weaving. This ensures that once an around advice method has been woven into, it itself is not applied to any
join point shadows anymore.

Obviously, a topological sort fails in the presence of cycles in the graph, and the weaver will encounter situations
where the advice method to be woven has already been woven into. This is the only case where we resort to the

1ajc as of version 1.2.1 avoids this complication by issuing a compiler limitation error when encountering multiple bindingpointcut primitives
for the same advice formal.

8

Time (s) Size (instr.)
Benchmark abc abc ajc abc abc ajc

(inline) (inline)

sim-nullptr 24.0 21.3 22.0 6440 6811 7327
sim-nullptr-rec 24.0 21.5126.6 6512 14502 9206
weka-nullptr 17.0 15.4 14.1 80199 78949 85590
weka-nullptr-rec 16.9 15.5 43.4 80296150298 112372
ants-delayed 17.6 17.7 18.3 3768 4361 3785
ants-profiler 22.0 20.2 21.7 7619 17815 13401

Table I: Execution Times and Code Size
creation of closure objects. The semantics of AspectJ dictate that in a cyclical graph, the order of the execution of
advice methods is determined by the dynamic residues beforeany advice is executed. Because those residues and the
resulting execution order can be arbitrarily complex, we decided that closures offer a clean, general solution.

As observed previously, cycles in the advice-on-advice application graph are very rare and usually pathological. It
therefore seems unnecessary to try to avoid closures under these circumstances. We have, however, strived to minimise
the cost of closures; we create specialised closure classeswith fields matching the types of context values, whereasajc
uses an expensive object array to store context values (requiring boxing of primitive types).

Inlining as an optimisation pass For very small advice, the most efficient strategy can be to inline the advice
directly into the join point shadow. This is implemented inabcas an optimisation pass running after the around weaver.

The inlining process is implemented as a series of plain Javaoptimisations. The advice method is first inlined into
the join point shadow as a normal Java method. A constant propagator and switch statement folder are then used to
remove checks on the static class ID. Finally, the proceed method is inlined also, and its switch statement removed.
Since multiple pieces of advice can apply at the same shadow,this whole process must be repeated until there are no
calls left to inline.

3.4 Empirical Results

To compare our strategy toajc’s and to experiment with the different tradeoffs of inlining strategies, we experimented
with three base programs and three aspects. The base programs areants, an aspect-oriented simulation of an ants
colony (following the specification of the ICFP 2004 programming contest) written by one of the authors (OdM) for
use in an undergraduate course;sim, a discrete event simulator for certificate revocation simulation [2]; andweka, part
of the weka machine learning library [23]. All benchmarks were run on a dual AMD Athlon 2000+ with 2GB RAM
and the Sun J2SE 1.4.2 JVM.

Table I shows the both the execution time (in seconds) and woven code size (in bytecode instructions). For each
benchmark we give results for:abc, usingabc’s generic around weaver;abc (inline), the same asabc, but with the
postpass inlining optimization; andajc, the result given byajc’s around weaver (which is either closure-based or
inlining, depending on the benchmark). For each benchmark,we have put the fastest time and the smallest code size in
bold. Note that in almost all cases eitherabcor abc(inline) gives the fastest code and thatabc’s code size is smallest,
sometimes by a significant margin.

To compareabc’s generic weaving strategy toajc’s closure-based and inlining strategies, we applied two versions
of thenullptr aspect [3] to two base programs,sim andweka(the first four lines in Table I). Thenullptr aspect is a
very simplearound aspect for enforcing coding standards that we found on the web when searching for examples of
aspects. It simply checks for methods returning and issues error messages in the cases where null is returned. We
used two different versions of the aspect, a recursive one (the original form) where the advice applies to itself and a
non-recursive version where we explicitly use!within(...) to avoid matches within the body of the advice. Theajc
compiler uses closure object creation for the first case (because of the recursion) and inlining for the second case,
whereasabcuses its generic implementation for both cases.

Comparing the execution times for the non-recursive (sim-nullptrandweka-nullptr) versions to the times for the
recursive versions (sim-nullptr-rec) and (weka-nullptr-rec), we can see that the execution time and code size forabc

9

is almost the same, whereasajc produces much slower code for the recursive versions (almost 6 times slower for
sim and 3 times slower forweka). For the the non recursive cases,abc is slightly slower thanajc, but abc (inline)
provides further performance improvement at the expense ofcode size.2 Even with our inliner theajc inlining strategy
is slightly faster for theweka-nullptrcase.

From these experiments we can see thatabc is fairly insensitive to whether the advice is recursive or not, butajc
pays a huge penalty when it must switch to an explicit closurestrategy.abc’s behaviour is beneficial since programmers
often make their advice recursive by accident and they need not pay a performance penalty. Furthermore,abcallows
for further performance improvement with the specialized postpass inliner.

There are other situations where theajc weaver uses closures, which is demonstrated by theants-delayedbench-
mark. This benchmark uses theDelayOutputaspect which captures calls to output methods and delays these calls until
the end of the base program. This is accomplished using a local class of typeRunnablein the advice method that calls
proceedin its run() method. Theajc weaver has to instantiate closure objects in addition to theinstances of the local
class. Our weaving strategy avoids this, which explains whytheabcresults are slightly faster.

To demonstrate the adverse effects of a naive inlining strategy, we applied a profiling aspect to our ants base
program (ants-profiler). The profiling aspect contains a relatively big piece of around advice that is applied to the
execution of every method in the base program. Note thatajc’s inlining strategy doubles the size of the resulting class
files due to the inlining of the advice code into every method.Note that this increase in code size can also be observed
with abc’s inlining strategy. However, with our weaving strategy, inlining is an entirely optional optimisation and
turning it off only has a slight effect on the efficiency of theresulting program. Inajc’s case, the only alternative to
inlining is the use of closures with the dramatic effects on performance shown in the table. Furthermore, with our
approach we can selectively inline and we are actively working on inlining heuristics specific to the around weaver.

4 OPTIMISING CFLOW

The cflow pointcut picks out join points that fall within the dynamic scope of certain events. Specifically, for any
pointcutp, cflow(p) applies at a point in the execution of the program ifp matchessomestate in the call stack at that
program point. Ifp contains variables to be bound, then these are bound to the actual values found in the match nearest
the top of the call stack. For example, the pointcut

call(∗ foo())&& cflow(call(∗ bar(∗))&& args(x))

matches all calls tofoo that occur within the dynamic scope of a call tobar, and bindsx to the value of the argument
of the last call tobar.

It is clear that the use ofcflow pointcuts requires, in general, the insertion of dynamic tests in the program to test
the current state against the conditioncflow(p). The naive implementation ofcflow associates a state with eachcflow
pointcut (this implementation is described in [17]) and updates this incrementally. The state is a stack of variable
bindings that represents an abstraction of the call stack. Each time a join point that matchesp is entered, a new item is
pushed onto the stack, with all the variables inp bound to the appropriate values. When this join point is left, the top
of the stack is popped. Finally, to check whethercflow(p) applies at a program point, it suffices to check whether or
not the stack is empty; if it is non-empty then the pointcut applies and the appropriate variable bindings can be found
on top of the stack.

The implementation ofcflow (as described above and used inajc) is clearly expensive, both because of the need
to update the state (which happens every timep applies) and because of the dynamic tests inserted (which can, in the
worst case, apply everywhere). Performance experiments confirm that the overhead introduced is substantial [9].

We introduce a number of optimisations forcflow, all implemented inabc. We first show a number of simple,
intraprocedural optimisations that reduce the overhead substantially. Then, we show how the overhead can be entirely
eliminated in many common cases by an interprocedural analysis. Finally, we give empirical measurements showing
that the optimisations are very effective.

2In some cases the inlined code can be slightly smaller because it removes calls that required a large number of arguments.

10

4.1 Intraprocedural Optimisations

The simplecflow optimisations focus on eliminating the more obvious inefficiencies in updating the state and checking
for applicability. They are straightforward but quite effective.

4.1.1 cflow without Bound Variables

The first optimisation applies to pointcuts of the formcflow(p), wherep does not bind any values. In this case, the
state of thecflow(p) reduces to a stack of empty sets of variable bindings. Inajc 1.2, this is represented by a stack of
arrays of length 0.

We improve on this in the obvious way, by replacing the stack with an integer counter that is incremented and
decremented whenp is entered and left respectively. This avoids repeated allocations of empty arrays. The case of a
parameterlesscflow appears to be quite common, so this optimisation is widely applicable.

4.1.2 Sharing cflow States

Another optimisation thatabcperforms is tosharethe state update and query code between related (or identical) cflow
pointcuts whenever possible. Consider the following pointcuts:

call(∗ bar())&& cflow(call(∗ foo(..))&& args(t,∗,∗))
call(∗ bar())&& cflow(call(∗ foo(..))&& args(∗,s,∗))

A naive implementation would keep a stack for eachcflow pointcut, and update and query them independently. We
optimise this by observing that a singlecflow pointcut can be written that covers the two existing instances. In this
case, it iscflow(call(∗ foo(..) && args(l1, l2,∗)) (wherel1 and l2 are fresh variables). Note that this binds variables
used in either one of thecflow pointcuts in the original program.

The implementation ofcflow in abc attempts tounify each pair ofcflow pointcuts that it finds. Unification of
two pointcuts succeeds if the pointcuts are syntactically equivalent with the exception of free variables, and returnsa
pointcut that carries enough state to cover both pointcuts (as in the above example).

In general, this sharing of state can improve performance substantially. In fact, cases similar to the above arise
frequently due to inlining of named pointcuts, a strategy used both inajc andabc. An added benefit is that some
method bodies can become smaller when this is performed (by avoiding duplication of bookkeeping code). We present
empirical measurements of the performance improvements inSection 4.3.

4.1.3 CSE of cflow State Retrieval

The final simplecflow optimisation is the caching ofcflow state objects (stacks or counters). The state of a given
pointcutcflow(p) is thread-local, as it is an abstraction of the call stack. Multiple copies are therefore kept, one for
each thread, and any operation oncflow state (updating or checking) involves retrieving the copy valid for the current
thread (in the worst case, a hash table lookup).

In general, multiple operations on the samecflow state can occur within the body of the same method. In fact,
updates to the state of acflow are always paired (the state is updated when entering and leaving a join point), so in
most cases the state is retrieved at least twice in any methodin which it is needed at all.

We can therefore improve on the original implementation by retrieving the appropriate state object only when it is
first used in a given method, and storing it for future uses in the same method.

4.2 Interprocedural Optimisations

The optimisations that we have described above reduce the overhead associated withcflow, but this can still be substan-
tial. Since thecflow construct depends on dynamic properties of the program in general, it is impossible to eliminate
such overhead entirely. However, many uses ofcflow can be statically determined, at least at some program points. To
take a simple concrete example, the pointcutcflow(call(∗ foo())) matches all points in the execution of the program

11

within the dynamic scope of a call tofoo. It is possible to determine statically that some program points canneverbe
in the dynamic scope offoo, and that some program pointsalwaysexecute in its scope. At each such program point the
cflow pointcut is statically known to be true or false, so the dynamic check can be eliminated. In addition, eliminating
such dynamic matching code can allow the compiler to eliminate some of the state-updating code for thiscflow (if its
effects can no longer be observed after dynamic checks are removed).

Our empirical results in Section 4.3 show thatcflow pointcuts can indeed be statically determined in almost all
cases. We will now describe the analysis used inabcto achieve this.

The idea for this analysis was introduced in [18] for a simpleprocedural language. The analysis has been adapted
to the much wider context of AspectJ and implemented withinabc. It requires an interprocedural analysis, but has two
substantial advantages:

• It eliminates the overhead forcflow completely in many common cases, and
• In those cases, it allowscflow to be used in constructs that require static pointcuts (suchasdeclare warning).

4.2.1 Analysis in abc

One of the design goals ofabcwas to make it possible to analyze the code being woven, and use the analysis results
to optimise the weaving process to produce more efficient code. In particular, we wanted to be able to leverage the
many analyses existing for Java code, without having to rewrite all of them to be specific to AspectJ. Therefore,abc
includes a hook to perform analyses on the Jimple code produced immediately after weaving, optimise the naive
weaving instructions originally produced by the matcher, and then repeat the weaving process on the original code
using the optimised weaving instructions. Because the woven code being analyzed has no AspectJ-specific constructs,
it is possible to apply standard analyses already in Soot. Ofcourse, we also implement analyses and optimisations
specific to AspectJ, but these are greatly simplified by beingable to use the results of Java analyses.

Matcher

Weaving
Instructions

Woven
Jimple

Bytecode
Generator

Analyses and
Optimizations

Aspect Info
from Frontend

Weaver

Figure 1: Reweaving in theabcbackend

The structure of theabcbackend which makes these analyses and optimisations possible is shown in Figure 1. In
normal operation, the phases are executed from top to bottom. The matcher takes as input information about all the
pointcuts and advice from the front-end, and produces a set of weaving instructions which specify where in the code
they should be woven. The weaver executes these instructions, producing woven Jimple, which is finally translated to
bytecode. When we want to perform optimisations, we feed thewoven Jimple back into our analyses, and use their
results to optimise the weaving instructions that were usedto produce the woven code. The weaver can then execute
the optimised weaving instructions on the original Jimple code. Note that this mechanism requires saving a copy of
the original Jimple code prior to the original weaving pass,whichabcdoes.

So far, we have implemented an interproceduralcflow analysis and a thisJoinPoint escape analysis, but the ap-
proach is general; other analyses can be added to the box labelled Analyses and Optimisations in Figure 1.

It is possible that an analysis will produce more precise results if executed not on the naively woven Jimple, but on
Jimple woven using optimised weaving instructions produced by an earlier pass of the analysis. Therefore,abcallows

12

the Analyses and Optimisations feedback loop to be repeatedif desired.

4.2.2 Call Graph

Estimating which shadows may or must be in the cflow of other shadows requires a call graph approximating which
methods may be called from which call sites. We base our analyses on a conservative call graph: every method invo-
cation possible at run-time must be included in the call graph. Call graph construction for object-oriented languages
like Java has been the subject of a significant amount of research (e.g.[5, 8, 20, 21]). Rather than reinvent the wheel,
we construct call graphs using Paddle, a successor of Spark [12,13], the points-to analysis and call graph construction
framework available in Soot [22].

In Java, most method calls are virtual, meaning that the method invoked depends on the run-time type of the
receiver object. The treatment of virtual calls is one of thekey features distinguishing different call graph construction
algorithms. The Paddle framework allows us to experiment with call graphs constructed using algorithms ranging
from CHA [8], which conservatively assumes that receivers could have any type admitted by their declared type, to
using a subset-based points-to analysis to compute possible run-time receiver types.

Some applications of call graphs, such as devirtualisation, only require call edges for explicit invoke instructions
present in the code. However, because methods invoked implicitly by the VM are defined to be in the cflow of
their calling context, our call graph must include these implicit calls. In particular, we include implicit calls to static
initialisers [16, section 2.17.4], calls through thePrivilegedAction interface, and implicit constructor calls by
the Class.newInstance method. For the latter, the user provides a list of all classes that may be instantiated
using reflection. To ensure that this list (and our call graph) is complete, we insert code into methods not reachable in
the call graph to abort execution and alert us to the error. Paddle handles these tricky but important details for us; we
do not need to consider them explicitly in our cflow analysis.

One type of implicit method invocation which we specificallyexclude from the call graph used for cflow analysis
is the invocation of therun method of newly created threads. Inabc, we strive to be consistent with the AspectJ
language as specified by theajc implementation. Inajc, cflow stacks are maintained separately for each thread, so
the code executed by a thread is not considered to be in the cflow of the code that created the thread. The call graph
produced by Paddle includes a type for each call edge, so we can remove these unwanted invocation edges.

4.2.3 Interprocedural cflow analysis

Desired optimisation The customary implementation of acflow pointcut expressioncflow(p) incurs overhead
at two kinds of shadows. First, at each shadow matchingp, a cflow stack is pushed and popped to indicate when
we are in the dynamic scope of thecflow. We denote these shadows with the termupdate shadow. Second, at each
shadow where thecflow pointcut could possibly match, we insert a dynamic residue to test whether thecflow stack is
non-empty. We denote these shadows with the termquery shadow.

We wish to perform two kinds of optimisation. First, if we candeterminecflow stack emptiness at a query shadow
statically, we can remove the dynamic residue at the query shadow, and possibly other code that becomes unreachable.
Second, if we can prove that acflow stack update operation will not be observed by a stack query within the dynamic
scope of an update shadow, we can remove the stack update operations at the update shadow.

Analysis information required For each update shadowsh in the program, we define two sets of instructions
to be computed,mayCflow(sh) andmustCflow(sh). mayCflow(sh) contains every instructioni in the program such
that wheni is executed, we may be in the dynamic scope ofsh. That is,i may execute after the push operation ofsh
has been performed, but before the corresponding pop operation has been performed.mustCflow(sh) contains every
instructioni such that wheneveri is executed, we must be in the dynamic scope ofsh.

Whenever a query shadow is not inmayCflow(sh), we replace the dynamic test with a constant false pointcut
expression.3 Any query shadow inmustCflow(sh) is replaced with a constant true pointcut expression.

3Thecflow expression may be part of a more complicated pointcut expression. Constant folding of pointcut expressions is done in a separate
phase prior to weaving.

13

In addition, we calculate a subsetnecessaryShadowsof update shadows whose effect may be observed at a query
shadow. Each update shadowsh∈ necessaryShadowssatisfies two properties. First, some query shadowqsh that
has not been resolved statically may occur in the dynamic scope ofsh (i.e. qsh∈ mayCflow(sh)). Second,sh may
occur outside the dynamic scope of all update shadows for thesamecflow stack (i.e. 6 ∃sh′.sh∈ mustCflow(sh′)).
This second condition enables us to mark as unnecessary those update shadows at which the stack is always already
non-empty.

The optimisations become more complicated when thecflow binds arguments because, in this case, each query
shadow not only tests whether the stack is non-empty, but also observes the entry at the top of the stack. We can still
resolve statically those query shadows not inmayCflow (sh), since we know that the stack would always be empty
when they are executed. However, at the query shadows where we know the stack is non-empty, we must keep the
dynamic residues which read the entry from the stack. In addition, we can no longer remove update shadows just
because they are in themustCflow of some other update shadow which will make the stack non-empty, because we
also need the correct entry to be pushed onto the stack in addition to the stack being non-empty.

Computing analysis information The exact extent of acflow shadow depends on subtle details of advice prece-
dence and the distinction betweencflow andcflowbelow, and the weaver must respect these details when weaving
thecflow stack update operations. Because we perform the analysis onthe woven code, we need not consider these
details; we simply consider eachcflow shadow to start immediately after the point where the weaverwove thecflow
push instruction, and end immediately before the corresponding cflow pop instruction. We need to unambiguously
classify every instruction in the method as being either within or outside thecflow shadow. This requires that there be
no jumps into or out of the shadow, which would bypass the pushor pop instruction.

Due to details of the weaving process, this requirement is always satisfied, except in the case when the argument
p of the cflow expressioncflow(p) is not entirely static, and requires a dynamic residue. In this case, the weaver
generates the dynamic test at the update shadow. If the pointcut p does not match, we do not enter the dynamic
scope of thecflow, so a conditional jump skips the stack update operations. Therefore, whenp is not entirely static,
the instructions between the push and pop may execute withinor outside the dynamic scope of thecflow. Since no
instruction can be guaranteed to execute only in the dynamicscope of thecflow, mustCflow(sh) is the empty set in
this case.

Algorithm 1 is used to computemayCflow(sh). It begins with the statements in the intra-procedural shadow of sh.
Then, it adds the statements of all methods that may be calledfrom a statement already in the set, until a fixed point is
reached.

Algorithm 1 computemayCflow(sh)

mayCflow← {st | st is in intraprocedural shadow ofsh}
repeat

for all methodsm | ∃st∈mayCflow.st may callm do
mayCflow ←mayCflow ∪ set of statements inm

end for
until mayCflow does not change

We have implemented all of the inter-proceduralcflowanalyses using Jedd [14], an extension of Java for expressing
analyses using binary decision diagrams (BDDs), which it abstracts as relations. We chose to implement the analyses
in Jedd for two reasons. First, they can be expressed in Jedd concisely and clearly. As an example, Figure 2 shows the
Jedd implementation of Algorithm 1. Notice that the implementation closely mirrors the algorithm. Second, although
the sets computed in the analyses may become quite large, they are likely to share many similarities. BDDs make is
possible to represent these large sets compactly.

The setmustCflow(sh) is computed using Algorithm 2. Ifsh has a dynamic residue, it must return the empty
set. Otherwise, it starts with all statements in the program, and removes statements that can be reached from the entry
points of the call graph without passing throughsh. The statements to be removed are computed by starting with the
entry points, and adding statements of methods called from the set computed so far, but excluding statements in the
intra-procedural shadow ofsh, until a fixed-point is reached.

Computation ofnecessaryShadowsis shown in Algorithm 3. We begin with all the query shadows, and remove

14

<stmt> mayCflow(Shadow sh) {
<stmt> mayCflow = stmtsWithin(sh);
<stmt> old;
do {

old = mayCflow;
<method> targets =

mayCflow{stmt} <> callTargets{stmt};
mayCflow |=

targets{method} <> stmtsIn{method};
} while(mayCflow != old);
return mayCflow;

}

Figure 2: Jedd code implementing Algorithm 1

Algorithm 2 computemustCflow(sh)
if shhas a dynamic residuethen

mustCflow← /0
else

mustCflow← set of all statements
shadowStmts← {st | st is in intraprocedural shadow ofsh}
targets← set of entry points of call graph
repeat

targetStmts←
{st | ∃m∈ targets.st is an statement inm} \ shadowStmts

mustCflow ←mustCflow \ targetStmts
targets← {m | ∃st∈ targetStmts.st may callm}

until mustCflow does not change
end if

those known statically to be false. Unless thecflow binds arguments, we can also remove those known statically to
be true. This leaves us with the query shadows that will be tested dynamically. The necessary shadows are now those
update shadows in whosemayCflow any dynamic query shadow appears. Unless thecflow binds arguments, we can
also remove those update shadows which are already in themustCflow of another update shadow.

Algorithm 3 computenecessaryShadows
queries← set of all query shadows∩

⋃
shmayCflow(sh)

if cflow does not bind argumentsthen
queries← queries\

⋃
shmustCflow(sh)

end if
necessaryShadows←{sh| ∃st∈ queries.st∈mayCflow(sh)}
if cflow does not bind argumentsthen

necessaryShadows←
necessaryShadows\

⋃
shmustCflow(sh)

end if

4.3 Empirical Results

Thecflow optimisations we present in this paper have been empirically validated in two different AspectJ compilers.
First, we have implemented all the optimisations in ourabccompiler. Second, we suggested them to theajc team, and
they have implemented counters (Section 4.1.1) and sharing(Section 4.1.2) inajc 1.2.1.

We tested thecflow optimisations on benchmarks from a wide range of sources. Welist the benchmarks and
their sizes (non-comment SLOC) in the first column of Table II. Figure is a demo from the AspectJ documentation.
Quicksort is the example from [18] with modifications suggested by Gregor Kiczales. Sablecc is a compiler written
using the SableCC compiler generator, with an aspect applied to count memory allocations in each of its phases. The
base programs ants, certrevsim(sim) and weka were introduced in Section 3.4. Law of Demeter [15] is a style-checking

15

aspect that we have applied to two code bases: Certrevsim andweka. Cona [19] is a framework for specifying and
checking pre- and post-conditions using aspects. We applied it to the stack example mentioned in the paper, and to the
simulator.

No opt. Intra-proc
Benchmark SLOC Stacks Stacks Counters

figure 94 5 0 1
quicksort 72 2 0 1
sablecc 31233 2 0 2
ants 939 1 1 0
LoD-sim 1586 13 0 1
LoD-weka 3912 13 0 1
Cona-stack 291 10 0 1
Cona-sim 1942 46 0 8
Table II: Static intra-procedural optimisation counts

In Table II, we present the static effects of our intra-procedural optimisations implemented inabc. The column
labelled “no opt. stacks” shows the number of different stacks before our optimisations; the “intra-proc” column
shows the number of stacks and counters after intra-procedural optimisations have been applied. In most cases, sharing
reduces the number ofcflow stacks (or counters) significantly, often down to one. In allbenchmarks except ants, all
cflow stacks are replaced with counters. A counter cannot be used for ants because thecflow pointcut binds a value.

abc ajc
Benchmark No opt. Intra-proc Inter-proc 1.2 1.2.1

figure 2139.32 39.53 2.04 506.28 219.71
quicksort 124.88 27.08 27.21 124.07 29.26
sablecc 34.23 24.01 21.16 30.42 24.87
ants 34.40 32.70 13.17 34.66 34.30
LoD-sim 615.31 28.32 22.394801.64 39.05
LoD-weka 1969.77 83.35 62.642372.80 126.22
Cona-stack1153.66 32.93 23.511151.63 65.25
Cona-sim 77.12 73.10 71.28 76.77 69.76

Table III: Benchmark running times (seconds)

We present the benchmark running times in Table III. The middle section lists the running times of benchmarks
compiled usingabcwith cflowoptimisations disabled, with the intra-procedural optimisations described in Section 4.1,
and with the inter-procedural optimisations described in Section 4.2. The rightmost section lists running times when
the benchmarks are compiled withajc versions 1.2 and 1.2.1. Between these two releases, two of the intra-procedural
optimisations presented in this paper, counters (Section 4.1.1) and sharing (Section 4.1.2), were added toajc in re-
sponse to our suggestions.

Using theabc compiler, the speedups due to our intra-procedural optimisations are very significant (up to 54-
fold) not only for small benchmarks (e.g. figure, quicksort), but also for large benchmarks which usecflow (e.g.
the LoD benchmarks). We observe similar speedups with theajc compiler between version 1.2 and 1.2.1, in which
intra-proceduralcflow optimisations were added.

Static results of our inter-proceduralcflow analysis are shown in Table IV. The “query shadows” column shows,
for eachcflow pointcut designator (corresponding to a stack or counter),the total number of query shadows and, of
those, how many the analysis determined to be unreachable, how many are determined to never or always match, and
how many cannot be determined statically and therefore still require a dynamic test. The “update shadows” column
shows the total number of update shadows and the number that the analysis determines to be necessary, and must
remain as dynamic updates even after the analysis.

With the exception of onecflow pointcut designator in sablecc, the analysis was able to statically determine the
outcome of allcflow queries, and therefore entirely remove the dynamic updatesand queries of thecflow stacks or
counters. The imprecision in the sablecc case is due to queryshadows in a static initialiser; to deal with this case, we
are developing a simple analysis to reduce the number of spurious static initialiser edges in our call graph.

Even though thecflow pointcut in ants binds an argument, we can eliminate it because it is never queried. This

16

Benchmark Query shadows Update shs.
Total Unreach. Never Always DynamicTotal Dynamic

figure 6 0 2 4 0 6 0
quicksort 6 0 2 4 0 3 0
sablecc 985 388 299 298 0698 0

985 388 332 260 5 1 1
ants 84 0 84 0 0 1 0
LoD-sim 1313 798 515 0 0 41 0
LoD-weka 7031 3501 3530 0 0 41 0
Cona-stack 16 0 14 2 0 27 0
Cona-sim 2 0 2 0 0 2 0

3 3 0 0 0 18 0
4 3 1 0 0 31 0
0 0 0 0 0 2 0
7 5 2 0 0 20 0
0 0 0 0 0 6 0
4 0 4 0 0 5 0
0 0 0 0 0 3 0

Table IV: Static inter-procedural optimisation counts

is because the pointcut is being used as an assertion to find anerror condition. By determining that thecflow never
matches, we have statically verified the assertion. The success of the static analysis inspired us to begin experimenting
with AspectJ extensions to allow “dynamic” pointcuts such ascflow in “static” declare error constructs. This provides
a way for a programmer to specify properties of the program tobe checked. When the analysis cannot prove the
properties at compile time, a warning is issued and a run-time check inserted.

We were pleasantly surprised that the inter-procedural analysis was so effective in resolvingcflow statically. To
ensure that these analysis results are indeed correct, we ran all the benchmarks with a special dynamic residue woven
in to check that the static analysis results always agreed with the run-time behaviour.

The performance improvements due to the removal of update shadows, query shadows, and the code of unreachable
advice are shown in the “abc inter-proc” column of Table III. On benchmarks making significant use ofcflow, both
small (e.g. figure) and large (e.g. LoD), these optimisations provide large speedups, even on top of the already large
speedups from the intra-procedural optimisations and the use of cheapcflow counters. Furthermore, when thecflow
binds an argument, the cheap counters cannot be used, so the inter-procedural optimisations enable the removal of
expensivecflow stacks, resulting in a 2.5-fold speedup in ants.

5 OTHER OPTIMISATIONS

abcimplements a number of other optimisations, and we now give abrief overview of these. They fall into two groups:
those that affect reflective access to the current join pointin pointcuts and advice; and the backend optimisations
afforded by the Soot framework.

It is very common for advice to only access the static part of the thisJoinPointobject. abc performs a simple,
conservative analysis to determine whether this is the case, and if so, it replaces the use ofthisJoinPointby a smaller
structure,thisJoinPointStaticPart, which can be completely computed at compile-time.thisJoinPointStaticPartis in
fact part of the AspectJ language; this optimisation thus relieves the programmer from the burden of deciding whether
thisJoinPointor thisJoinPointStaticPartis preferable. In cases where we do need to keep the dynamic version, it is
initialised lazily. In particular it is not constructed prior to the dynamic pointcut matching, as such construction might
turn out to be in vain if the pointcut fails to match. These optimisations are also present inajc.

After all the aspect-specific transformations are complete, abc runs a number of generic optimisations for Java
bytecode, which are part of the Soot framework. These are: local packer (‘register allocation’ on bytecode), copy and
constant propagation, common subexpression elimination,partial redundancy elimination, dead assignment elimina-
tion unreachable code elimination, branch simplification.We have found these (in particular the local packer) to be
effective in producing good code for aspects.

17

6 RELATED WORK

This work is the first general study of analysis and optimisation strategies for aspect-oriented languages in general,
and for AspectJ in particular. As a consequence, the amount of related work is rather sparse. There are however a
number of other industrial strength implementations of aspect-orientation, and we discuss these here.

The ajc Compiler The reference implementation of AspectJ (and in fact the only other implementation of the
language) is theajc compiler. The weaving strategies ofajc andabcare similar, except for the optimisations described
in this paper. Following the early success of our optimisations inabc, two of them (cflow counters and sharing of
cflow stacks) have been incorporated intoajc 1.2.1. Further details on the implementation of weaving inajc (similar
to weaving inabcexcept for the optimisations described here) can be found in[10].

Other AOP Systems There are a number of other systems besides AspectJ that support the use of aspects. Perhaps
the most successful of these is AspectWerkz [7]; its features are in fact very similar to those of AspectJ. Aspects are
however deployed using annotations or scripts, rather thanin an extension of the Java language. Unlike AspectJ,
AspectWerkz supports dynamic weaving: enabling new aspects at runtime, and also disabling them:

The AspectWerkz system may however also be used in off-line mode, in the same way asajc or abc. Because
of its focus on runtime weaving, AspectWerkz employs an event-based implementation of join points, where advice
can register as a listener. In preliminary experiments, we have found this strategy leads to a slow-down of a factor
of 9 or more compared toajc or abc. Because of this huge gap and the different aims of dynamic weaving, we
focused on the most popular static weaving system, which isajc. The other leading AOP system is JBoss [11], and
this employs a similar implementation strategy to AspectWerkz. It is evident that both these systems could benefit
by the optimisations presented here, when used in off-line mode. For weaving at runtime, it would appear that our
intraprocedural optimisations may be helpful. The same applies to efforts to support aspects in a modified JVM, as
in [6].

7 CONCLUSIONS

The field of optimising compilers for AOP languages is just starting, but we believe that this area will provide many
interesting problems and challenges that can be met with both existing and new compiler optimisation technology.

In this paper we have presented three main contributions to the field in the context of a new optimising compiler
for AspectJ,abc. We have designed and implemented a new strategy for weavingaround advice which aims to avoid
both the code size explosion of a pure inlining approach and the time and space overhead of an explicit closure-based
approach. Our experimental results demonstrate that this technique works very well, it is much more efficient than the
closure-based approach, and produces much less code than the inlining-based approach.

Our second major contribution was to show how to reduce or eliminate the large overheads associated withcflow.
We gave some intra-procedural techniques that are both relatively simple and very effective at reducing large overheads
for the common case. These optimisations have already been adopted by the implementors of theajc compiler. We
then showed that we can go even further by applying inter-procedural analyses that can statically approximate dynamic
cflow properties. Our experimental results show that in many cases we can completely eliminate thecflow overhead.

Finally, the implementation strategies presented here showcase a novel methodology for defining new program
analyses and efficiency-improving program transformations for aspect-oriented languages. In particular, the inter-
proceduralcflow analysis shows thatreweavingis a useful technique. In reweaving, aspects are woven first naively
into the base program, the resulting program is analysed andthe results of the analysis are used to guide subsequent
weaving phases (so that better code can be produced). In general, reweaving can be iterated multiple times. The
abccompiler was designed specifically to support reweaving andthus can serve as a workbench for developing new
optimising transformations of AspectJ.

18

Acknowledgments

This work was supported, in part, by NSERC, EPSRC and IBM.

References

[1] abc. The AspectBench Compiler. Home page with downloads, FAQ, documentation, support mailing lists, and
bug database. Available from URL:http://aspectbench.org .

[2] André Årnes. PKI certificate revocation. Available athttp://www.pvv.ntnu.no/˜andrearn/
certrev/ .

[3] R. Dale Asberry. Aspect oriented programming (AOP): Using AspectJ to implement and enforce coding stan-
dards.http://www.daleasberry.com/newsletters/200210/20021 002.shtml , 2002.

[4] Eclipse AspectJ. The AspectJ Eclipse Project.http://eclipse.org/aspectj .

[5] David F. Bacon and Peter F. Sweeney. Fast static analysisof C++ virtual function calls. InOOPSLA 1996, pages
324–341, 1996.

[6] Christoph Bockish, Michael Haupt, Mira Mezini, and Klaus Ostermann. Virtual machine support for dynamic
join points. InAOSD 2004, 2004.

[7] Jonas Bonér. Aspectwerkz — dynamic AOP for java. Available from URL: http://codehaus.org/
˜jboner/papers/aosd2004_aspectwerkz.pdf , 2004.

[8] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs using static class
hierarchy analysis. InECOOP ’95, volume 952 ofLNCS, pages 77–101, 1995.

[9] Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor, Ganesh Sittampalam, and Clark Verbrugge.
Measuring the dynamic behaviour of AspectJ programs. InOOPSLA 2004, October 2004.

[10] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In K. Lieberherr, editor,AOSD 2004, 2004.

[11] jboss. JBoss Aspect Oriented Programming. Home page with downloads, documentation, wiki.
http://www.jboss.org/index.html?module=html&op=user display&id=developer%
s/projects/jboss/aop .

[12] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s thesis, McGill University,
December 2002.

[13] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using Spark. In G. Hedin, editor,CC 2003,
volume 2622 ofLNCS, pages 153–169. Springer, April 2003.

[14] Ondřej Lhoták and Laurie Hendren. Jedd: a BDD-based relational extension of Java. InPLDI 2004, pages
158–169, 2004.

[15] Karl Lieberherr, David H. Lorenz, and Pengcheng Wu. A case for statically executable advice: checking the law
of demeter with aspectJ. InAOSD 2003, pages 40–49, 2003.

[16] Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification. Addison-Wesley, second edition, 1999.

[17] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. A compilation and optimization model for aspect-
oriented programs. InCC 2003, volume 2622 ofLNCS, pages 46–60, 2003.

[18] Damien Sereni and Oege de Moor. Static analysis of aspects. InAOSD 2003, pages 30–39, 2003.

[19] Therapon Skotiniotis and David H. Lorenz. Cona: aspects for contracts and contracts for aspects. InOOPSLA
2004 Companion, pages 196–197, 2004.

19

[20] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick Lam, Etienne Gagnon, and
Charles Godin. Practical virtual method call resolution for Java. InOOPSLA 2000, pages 264–280, 2000.

[21] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction algorithms. InOOPSLA 2000,
pages 281–293, 2000.

[22] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, Patrice Pominville, and Vijay Sundaresan.
Optimizing Java bytecode using the Soot framework: Is it feasible? InCC 2000, pages 18–34, 2000.

[23] Ian H. Witten and Eibe Frank.Data Mining: Practical Machine Learning Tools and Techniques with Java
implementations. Morgan Kaufmann Publishers, 2000.

20

