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Abstract

Aspect-oriented programming and the development of aspect-oriented languages are rapidly gaining momentum,
and the advent of this new kind of programming language provides interesting challenges for compiler developers,
both in the frontend semantic analysis and in the backend code generation. This paper is about the design and
implementation of theabccompiler for the aspect-oriented language AspectJ.

In this paper we show how we can leverage existing compiler technology by combining Polyglot (an extensible
compiler framework for Java) in the frontend and Soot (a framework for analysis and transformation of Java) in the
backend. We provide a software architecture which cleanly separates these existing tools from the aspect-specific
parts of the compiler.

A second important contribution of the paper is that we describe our implementation strategies for new challenges
that are specific to aspect-oriented language constructs. Although our compiler is targeted towards AspectJ, many of
these ideas apply to aspect-oriented languages in general.

Finally, we found that in developingabc we clarified many language issues which in turn simplified theimple-
mentation.

Our abc compiler implements the full AspectJ language as defined byajc 1.2 and is freely available under the
GNU LGPL.

1 Introduction

Aspect-oriented programming (AOP) is rapidly gaining popularity and AspectJ [10] is widely recognised as one of the
key aspect-oriented programming languages in use today. Todate, there has been only one compiler for AspectJ —
ajc, originally developed by the inventors of AspectJ at Xerox PARC [15] and currently developed and maintained as
part of the Eclipse AspectJ project [2].

This paper describes the design and implementation of a new compiler for AspectJ, theAspectBench Compiler,
abc [1], which is intended as a workbench for researchers interested in AOP language design and implementation.1

Whereas the development ofajc has focused on integration with the Eclipse framework and onincremental and fast
compilation, our motivation and design goals were quite different. Our original goals and resulting contributions can
be summarised as follows:

Clearly defined and articulated compiler architecture for an AOP language: The overall architecture of a com-
piler for mainstream programming languages is very well understood and documented in numerous textbooks.
However, AOP languages provide new challenges for compilerwriters and the architecture of a compiler for
an AOP language must reflect those challenges. Although the basic structure of the compiler as a frontend
and backend remains, there are important differences. Our main contribution is a systematic description of
AOP-specific issues in compiler construction.

For example, while in a standard compiler the frontend and backend need only communicate through an in-
termediate representation and symbol table, in an AOP compiler detailed aspect-related information must be
transmitted. In addition, several of the components of sucha compiler (eg. the name matcher, pointcut matcher,
intertype declaration weaver and advice weaver) have no equivalent in a traditional compiler. Finally, some
compilation phases, semantic checking for one, are made substantially more complicated, and new phases are
introduced both to the frontend and backend.

Support for language extensions and optimisation of generated code: Our abccompiler is intended for use in re-
search, and as such must be able to handle both AOP language research and compiler research. To that end,
our design allows researchers to simply implement new language extensions and to implement new compiler
analyses and optimisations (indeed,abc is already being used in this way).

Use of existing tools without modification: As researchers in the compiler field, we felt that it was important for us
to leverage previous work in the area of compiler toolkits for building Java frontends and backends. Thus, an
important contribution of this paper is to show how we combined the Polyglot framework for extensible Java
frontends [14] with the Soot framework for analysis and optimisation of Java [19].

1Readers who are not familiar with AOP languages such as AspectJ may wish to read Section 2 before proceeding with the rest of this introduc-
tion.
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A substantial part of the design ofabc’s architecture stems from the need to cleanly separate the Java part of
AspectJ programs from the aspect-specific parts in a way thatcan be used by both the frontend and backend
Java tools. Ours is the first AspectJ compiler to achieve a clean separation of the implementation of aspect-
oriented features from these underlying tools (in particular, these tools have not been modified for use inabc).
An important consequence of cleanly separating the AspectJ-specific parts of the implementation from the Java
tools is that this separation provides a clear specificationof how AspectJ extends Java.

Finally, a crucial goal in the design ofabcwas to apply Soot’s existing frameworks for sophisticated analyses
to aspect-specific optimisations. As these analyses work onpure Java intermediate representations, the design
allows for weaving (producing pure Java), followed by analysis. The weaving process can then be undone so
that a better weave, using analysis results, can be applied.This architecture for an optimising AOP compiler is
another novel result of the development ofabc.

In building the compiler, we also made some further contributions concerning the clarification of the language:

Clarification of the AspectJ language definition: When we started theabcproject we searched for all relevant lit-
erature defining the AspectJ language. We found that the onlycomplete language specification of the AspectJ
language was theajc compiler itself and its associated test suite. Thus, as we designed and implementedabcwe
had to reverse engineer much of the language specification.

This need to reverse engineer was evident even at the grammarlevel. Theajc grammar is a combination of
a modified LALR(1) Java grammar specification and a hand-coded top-down parser. Thus, one of our first
contributions was to develop a complete LALR(1) grammar specification using Polyglot’s grammar extension
mechanism to cleanly separate the Java part of the grammar from the AspectJ-specific part. This grammar is
part of theabcdistribution.

We also found several other places where the language specification needed to be clarified, for example the
scope rules for intertype declarations, the precise meaning of thedeclare parentsconstruct, the scope of name
matching and the rules for matching pointcut expressions with alternative bindings. These clarifications have
also helped improve theajc compiler as recent releases ofajc incorporate many of the clarifications pioneered
in abc.

Finally, language clarification has suggested improved implementation strategies. As an example, we noted that
the AspectJ pointcut language is not as cleanly factored as it could be (perhaps unsurprisingly, as it developed
over time). We have developed a regularised pointcut language that better separates orthogonal concerns. This
has led to a simpler specification and implementation (inabc, weaving is done for the regularised language, and
AspectJ pointcuts are simply translated into this form).

The structure of this paper is as follows. In Section 2 we provide a brief introduction to the most relevant features of
AspectJ.2 In Section 3 we briefly summarise our building blocks, Polyglot and Soot. Section 4 provides a description
of the architecture ofabc, and how this architecture fits together with our building blocks. Section 5 discusses details
of how specific aspect-oriented features have been addressed. In Section 6 we provide a comparison between theajc
compiler and ourabccompiler. Finally, Section 7 reviews related work and Section 8 gives conclusions and future
work.

2 An overview of AspectJ

An AspectJ program consists of two kinds of entities: ordinary Java classes andaspects, which are instructions for
injecting code into the classes at specific points and under specific conditions. Aspects are applied to classes (and
the aspects themselves) by a process known asweaving: an AspectJ compiler reads in the aspects and classes to be
compiled and produces classes in which the aspect code has been injected as specified in the aspects.

To introduce AspectJ’s features, we have chosen a small expression interpreter in Java, to which we will apply
five example aspects. As illustrated in Figure 1(a), most of the interpreter was generated using the SableCC parser

2We assume that many researchers are not yet familiar with AspectJ; readers with previous knowledge of AspectJ may skip this section.
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generator, and the generated code is in four packages providing the lexer, parser, tree nodes, and various tree traversal
visitors. In addition to the generated code there are two small programmer-defined Java classes:tiny/Main.java
contains the main method which reads in input, applies the parser and then evaluates the resulting expression tree. The
actual expression evaluation is performed by the methodeval defined in the classtiny/Evaluator.java . An
example of running thetiny interpreter is given in Figure 1(b).

Generated packages:
(must not be directly modified)

lexer/
parser/
node/
analysis/

User-defined package:
tiny/Main.java

/Evaluator.java

> java tiny.Main
Type in a tiny exp:
3 + 4 * 6 - 7
The result of evaluating:
3 + 4 * 6 - 7
is: 20

(a) code base (b) example run

Figure 1:tiny interpreter example

public aspectStyleChecker{
declare warning :

set(!final !private * *)
&& ! withincode(void set*(..) ):
“Set of field outside of a set method.”;

}

public classValue{
private int value;// a new field
public void setValue(int v)

{ value = v;}
public int getValue()

{ return value;}
}
public aspectValueNodeParent{

declare parents:
node.NodeextendsValue;

}

public aspectAddValue{
private int node.Node.value;
public void node.Node.setValue(int v)

{ value = v;}
public int node.Node.getValue()

{ return value;}
}

public aspectCountEvalAllocs{

int allocs;// counter

pointcut mainEval() :
call(* *.eval(..)) && within (*.Main);

before () : mainEval()
{ allocs = 0;}

after () : mainEval()
{ System.out.println(

“*** Eval allocations: ” + allocs);}

before () : cflow(mainEval()) && call(*.new(..))
{ allocs ++;}

}

public aspectExtraParens{
Stringaround() :
execution(String node.AMultFactor.toString())||
execution(String node.ADivFactor.toString())
{ String normal =proceed();

return “(” + normal +“)” ;
}

}

(a) static features (b) dynamic features

Figure 2: Illustrative AspectJ examples

The AspectJ language can be divided intostaticanddynamicfeatures. Static features are defined and implemented
with respect to the static structure of a program, whereas dynamic features relate to the dynamic trace of a program
execution. Figure 2 shows the five example aspects which we apply to our exampletiny interpreter code base.
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2.1 Static Features

Declare Warning. TheStyleChecker aspect in Figure 2 illustrates an interesting use of AspectJ, thedeclare
warningconstruct3. This construct allows the programmer to specify a pattern,known as apointcut, and a warning
string. For each place in the program matching the pointcut,a compile-time warning is issued, using the string as
the warning message. In our example we have specified a pointcut that matches all places where a field is set, and
which are not within a method whose name starts with “set”. In fact, the pointcut is a bit more precise than this,
because it will only match sets to non-private, non-final fields. When we compile thetiny code base with the
StyleChecker aspect (abc StyleChecker.java */*.java ) several warnings are given, mostly relating
to the generated parser code, for example:

parser/TokenIndex.java:14: Warning --
Set of field outside of a set method.

index = 0;
ˆ-------ˆ

Declare Parents and Intertype Declarations. When using SableCC (or other tools) to generate compilers, it is
very important not to modify the generated code, so that it can be regenerated without clobbering the user’s changes.
SableCC generates all the classes representing the AST, with classnode.Node as the root (extendingObject ), and
a hierarchy of subclasses for other kinds of nodes belownode.Node , as indicated by the grammar specification.
This hierarchy is fixed in the generated code and since one should not edit these generated classes, it is not possible to
add new fields to the nodes. The recommended method is to associate values with nodes using a hash table. However,
using static features of AspectJ there are two ways of addingfields, without touching the generated code, without
resorting to the use of external hash tables, and giving fullsemantic checking of the added fields.

The aspectValueNodeParent from Figure 2(a) illustrates the AspectJdeclare parentsconstruct. In this exam-
ple the programmer defines an ordinary class,Value , to implement the new field and accessor to that field. Then, the
declare parentsconstruct is used to inject the newValue class as a parent of the generatednode.Node class. In
general, thedeclare parentsconstruct can be used to introduce newextendsandimplementsrelations.

Sometimes it is not possible (or desirable) to add new fields and methods by injecting new classes into the hierarchy,
and AspectJ provides a general form of injecting new fields, constructors and methods into classes and interfaces,
calledintertype declarationsor ITDs. The aspectAddValue in Figure 2(a) illustrates ITDs for injecting a new field
and two new methods into thenode.Node class. The declarations look like normal Java declarations, but the name
of the field/constructor/method being defined is prefixed by the name of the class/interface into which it should be
injected (in our examplenode.Node ). Since AspectJ also allows one to inject new members into both classes and
interfaces, ITDs can be quite powerful (and tricky to implement correctly in a compiler).

2.2 Dynamic Features

The dynamic features of AspectJ are quite different from thestatic features. While the static features are merely new
incarnations of old ideas (in particular ITDs are a form of open classes), the dynamic features are generally regarded as
the defining characteristic of aspect-orientation. They are defined with respect to a trace of the program execution. This
trace is comprised of various kinds of observable events, such as getting/setting fields, calling methods/constructors
and executing method/constructor/initialiser bodies. These events may correspond to exactly one instruction (for
example, getting/setting fields), or they may correspond toa group of instructions (for example, the body of a method).
Each event has a starting point in the trace (just before it happens), and an ending point (just after it happens). The
dynamic features of AspectJ allow one to specify a pointcut to match certain events, and then advice (extra code) to
executebefore, after or around the matching events. The pointcuts take the same form as those used withdeclare
warning, but the language is slightly richer because they can dependon runtime events whereas those used with
declare warningmust be entirely statically evaluated. The events are usually called join points in the literature on
aspect-oriented programming, because these are places during program execution where an aspect can join in.

3There is also an analogousdeclare errorconstruct.
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Advice. The aspectCountEvalAllocs in Figure 2(b) demonstratesbeforeandafteradvice. The purpose of this
example is to count the number of allocations that occur during the evaluation of an expression, starting from the call to
eval in theMain class. In this example we define a pointcutmainEval to specify that thecall must be to a method
calledeval , and this call must occurwithin theMain class. Then we definebeforeadvice to initialise a counter just
before the call, andafter advice to print out the value of the counter just after the call. The tricky part of this aspect
is thebeforeadvice used to increment the counter. The second conjunct “call(*.new(..))” of this pointcut matches all
constructor call events. The first conjunct restricts the pointcut to those events that occur within the dynamic scope of
a call toeval (i.e. in the time span between the beginning and end of the call), using thecflowconstruct. This is of
particular interest, as matching ofcflowdepends on runtime context, and in general runtime checks are necessary (this
is also the case for other AspectJ pointcuts not covered here).

Around advice. TheExtraParens aspect contains a very simple example ofaroundadvice. This example is
intended to slightly modify the output of the pretty print ofexpressions, by inserting parentheses around each factor.
For example if the base program is compiled with this aspect (abc ExtraParens.java */*.java ), the pretty
print of the output in Figure 1(b) would be changed to3 + (4 * 6) - 7 , instead of3 + 4 * 6 - 7 .

The advice declaration in theExtraParens aspect specifies a pointcut to capture the execution of the two
relevant methods. In the advice body, theproceedconstruct is used to specify that the original method body should be
executed, the parentheses are added to the result, and this new result is then returned.

The use ofproceedcan be quite complex — it can be executed many times or not at all, saved for later execution
in a local class, and arguments can be changed. This makesaroundadvice substantially more complicated thanbefore
andafter, as it does not reduce to just injecting advice code, but can change the execution of existing code.

It should also be noted that our advice examples are very simple and do not illustrate all features of the language.
In particular, advice may haveparametersthat are bound to runtime values in matching (this may involve runtime type
checks). Readers who wish to know more details of the AspectJlanguage and its applications may wish to consult one
of the growing number of textbooks on the subject,e.g.[12].

3 Building Blocks

In the following sections, we briefly introduce the buildingblocks ofabc, Polyglot and Soot, focusing on the features
that are most relevant to theabcdesign.

3.1 Polyglot

Polyglot [14] is an extensible frontend for Java that performs all the semantic checks required by the language. It is
structured as a list of passes that rewrite an AST and build auxiliary structures such as a symbol table and type system.

The extensibility of Polyglot is achieved in a number of ways. Polyglot allows a grammar to be specified as an
incremental set of modifications to the existing Java grammar, and the tree rewriting portion can be extended without
modifying the base compiler. New AST nodes may be added; theyextend existing nodes and give definitions of the
specific methods required by compiler passes that are relevant to them. New passes may be added between the existing
passes. In addition, the behaviour of existing nodes in existing passes can be modified usingdelegates[14], achieving
the same task in Java as intertype declarations do in AspectJ. Strict use of interfaces and factories throughout Polyglot
makes it easy to modify structures such as the type system.

3.2 Soot

Soot [19] is a Java bytecode analysis toolkit based around the Jimple IR, a typed, three-address, stack-less code.
Jimple is low-level enough for pointcut matching, in that the granularity of any join point is at least one entire Jimple
statement. It is high-level enough for weaving and easy analysis; in particular, during weaving, we need not worry
about implicit operations on the computation stack, because all operations are expressed in terms of explicit variables.

7



Soot can produce Jimple from both bytecode and Java source code. The source frontend, JAVA 2JIMPLE, makes use
of Polyglot to build an AST and perform frontend checks, and then generates Jimple. As output, Soot generates Java
bytecode. This process includes important optimisations for generating efficient bytecode [19]; these are necessary
even for today’s JITs. Soot also supports an annotation framework [17] which allows arbitrary tags to be attached to
the code and automatically propagated through all transformations and all its intermediate representations. We make
extensive use of tags to track information flowing throughabc.

4 Architecture

In Section 2 we introduced the static and dynamic language features that must be handled by an AspectJ compiler,
and in Section 3 we discussed our basic building blocks, Polyglot for building the frontend and Soot for building the
backend. Of course, the big question is how to fit these building blocks together so that in the end, one has a nicely
structured AspectJ compiler that can handle both the staticand dynamic features of AspectJ. In this section we address
the design of the architecture, and then in Section 5 we focuson how to handle specific language features in more
detail, where the implementation of some language featurescrosscuts several parts of architecture.

Figure 3 shows a high-level view of theabcarchitecture: the compiler takes.java and.class files as input,
and produces woven.class files as output. An important point about AspectJ compilers is that the files given to it as
explicit input are considered differently from classes that are found implicitly when the compiler must resolve classes
from the class path. Classes corresponding to the explicit inputs are said to beweavable: aspects can weave into these
classes, and it is the woven version of these classes that will be output by the compiler. Classes that are not explicitly
input are not weavable.

As shown in Figure 3 we have split the architecture into four major components, two in the frontend and two in the
backend. Compiler writers will immediately see that this architecture is different from the usual view of a compiler as
a frontend and a backend connected via an intermediate representation.

The first major difference is that the frontend and backend ofabcare connected via two data structures, the IR of
the program (Java AST) and the AspectInfo data structure. The interesting point here is that in order to use standard
Java compiler tools, we must be able to tease apart the incoming AspectJ program into a standard Java part, represented
as Java ASTs, and an aspect-specific part that captures all ofthe key information about aspects and how the aspects
relate to the Java IRs. This process is represented by theSeparatorbox in Figure 3.

The second major difference between an AspectJ compiler anda standard Java compiler is that the backend must
deal with weaving, both the static language features (static weaving) and the dynamic features (advice weaving). As
shown in Figure 3 the static weaving is performed in conjunction with the code generation of the Jimple IR, and the
advice weaving is performed on the Jimple IR.

In the remainder of this section we visit each of the four major components of the architecture, discussing the
relevant details of each component.

4.1 Polyglot-based Frontend

We used Polyglot as the building block for our frontend. Polyglot allows us to define the AspectJ grammar in a
separate definition file, as a natural extension to the Java grammar. It turns out that the exercise of specifying a
complete LALR(1) AspectJ grammar had not been done before, and so this is another contribution of our project.

The main issue in the design of the frontend is the large number of new semantic checks that AspectJ requires (in
addition to those required by pure Java). In particular, thedeclare parentsconstruct imposes restrictions on the class
hierarchy and the affected children classes (see Section 5.2), while intertype declarations require the implementation of
new scope and visibility rules (see Section 5.3). Furthermore, unlike in Java where all semantic checks are performed
in the frontend, when compiling AspectJ programs some checks must be delayed until after weaving in the backend
(in particular, exception checking, see Section 4.4).

Semantic checking is further complicated by the subtle dependencies between phases of static weaving and cer-
tain checks. For example, to checkdeclare parents, the class hierarchy must be available, both for name matching
(Section 5.1) and for checking validity of hierarchy introductions. However, disambiguation of class names in method
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Backend

.java

Aspect
Info

.class

Code generation and static weaving

Separator

AspectJ
AST

Java
AST

IR

Java
bytecode

Advice weaving and postprocessing

Jimple

Polyglot−based frontend

Frontend

Figure 3: High-level overview of the components of theabccompiler

signatures requires the final hierarchy, and so must occur afterdeclare parentsinstructions have been processed.

These complex checks and dependencies between them motivate the design of the frontend. The semantic checks
were implemented by extending certain Polyglot passes, andadding some entirely new passes, in the order dictated
by dependencies between the first phases of weaving and checks. The structure of the frontend is outlined below in
Figure 4.

Type check of binary weavable classes

Type check

Disambiguate bodies

Add members to types

Disambiguate signatures

Build types, disambiguate inner classes and supertypes

Parse

Evaluate patterns and declare parents

Advice and pointcuts

Advice bodies

Add ITD members to host class

Advice headers and pointcuts

New types for aspects and pointcuts

Extra productions and AST nodes

Misc. checks (initialization, reachability etc.)

Check pointcut dependencies

Figure 4: Simplified list of the compiler passes of Polyglot and howabcextends them. The solid boxes on the left
show the original Polyglot passes for pure Java. On the right-hand side, in overlapping boxes, we have indicated which
passes were changed. Finally, the dashed boxes with arrows indicate where we inserted new passes.

The design of the frontend was successful in separating AspectJ from the pure Java checks — we only overrode
14 AST nodes of pure Java in minor ways; everything else was handled with new AST nodes and new visitor passes.
In total, the number of passes for semantic checking inabc is 27, compared to 13 in the original Polyglot compiler.
The large number of passes forabc is a result of the design goal of having each pass perform onlyone task to avoid
creating further dependencies between passes.
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4.2 Separator

The key to our compiler architecture is the Separator, whichsplits the AspectJ AST (with associated type information)
into a pure Java AST and theAspectInfostructure to record aspect-specific information. TheAspectInfoincludes all
information that the backend needs from the Polyglot AST, sothe backend does not use the AST at all, only the Jimple
representation and theAspectInfo.

We now list the main components of theAspectInfostructure:

• All AspectJ-specific language constructs. For all constructs that contain Java code, the code is placed into
placeholder methods in the Java AST, and theAspectInforeferences these methods. It is important not to weave
into some methods created by the compiler, so these are identified.

• An internal representation of the class hierarchy and innerclass relationships.

• A list of weavable classes.

• Information about fields and methods whose names have been name mangled, or to which extra arguments have
been added.

• A representation of types, classes and signatures that can be used throughout the whole compiler. This represen-
tation is independent of both Polyglot and Soot, and it provides a bridge for communicating type information
between the two frameworks.

• Information about relative precedence between advice.

The separation process runs in roughly four steps, implemented as a number of Polyglot passes. The four steps of
separation are:

1. Name mangling. The names of some intertype declarations must be mangled (see Section 5.3).

2. Aspect methods. Code from AspectJ constructs is inserted into pure Java methods, and dummyproceedmeth-
ods are generated for proceed calls inaround advice.

3. Harvesting. All AspectJ constructs are harvested from the AST and put into designated data structures in
AspectInfo.

4. Cleaning. All AspectJ constructs are removed, leaving a pure Java AST. JAVA 2JIMPLE sees aspects as plain
Java classes containing the placeholder methods.

4.3 Code Generation and Static Weaving

The AST passed to JAVA 2JIMPLE might not correspond to a valid Java program in itself, sinceit may refer to members
to be introduced by intertype declarations. Furthermore, it might depend on the class hierarchy being updated by
declare parents. For these reasons, the translation from Java AST to Jimple code cannot happen as one atomic action.

To solve this problem, we take advantage of an existing feature of Soot. In Soot, the translation of both source and
class files to Jimple happens in two stages: one to generate a skeleton, consisting of just the class hierarchy and the
member structure of classes, but without any method bodies.The second stage generates the bodies in Jimple.

Figure 5 shows how the static weaving fits in between these twostages. After the skeleton generation, we adjust
the hierarchy according to parent declarations and intertype declarations. The woven skeleton is then input into the
Soot Jimple body generation. Finally, delegation code for intertype field initialisers is generated.

4.4 Advice Weaving and Postprocessing

Once weaving of static features is complete and Jimple has been generated, we weave advice. The structure of the
advice weaver and the final stages of theabcbackend is shown in Figure 6.
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The process consists of two main steps, matching and weaving(see Section 5.4). Matching determines the static
locations (shadows) where each pointcut may match, and which dynamic checks arenecessary to determine whether
it matches. Weaving inserts the checks and the advice into the code.

At the same time as pointcut matching and advice weaving, we handle certain features that turn out to fit neatly into
the same framework:per aspects (a construct for creating instances of an aspect),declare soft(for masking checked
exceptions),declare warninganddeclare error. One side effect of implementing thedeclare softconstruct is that we
cannot verify that checked exceptions are declared correctly until we have dealt with this construct, since it has the
effect of converting checked exceptions into unchecked exceptions. As a result, exception checking is carried out after
the advice weaving process, rather than in the frontend as would be normal for a Java compiler.

Since one major goal ofabc is to implement AspectJ features as efficiently as possible,we make it possible to
perform analyses on the woven code, and use the analysis results in the weaving process to produce improved code.
This is supported throughreweaving, illustrated in Figure 6. In reweaving, weaving is performed once naively to
produce pure Jimple code. The resulting code is then analysed, as a pure Java program. The original weaving is
then undone, and the aspects woven again, using informationobtained in the analysis. This process can be iterated to
improve precision. The upshot of this procedure is that aspect-specific analyses (for example, we have described an
analysis forcflow [4]) can leverage existing Java analyses, such as call graphconstruction, without needing to make
those aspect-aware.

Finally, abc runs a number of standard Soot optimisations, such as copy propagation and dead code elimination.
Some of these are extended to add special knowledge of theabc runtime library; for example, the intraprocedural
nullness analysis is extended to exploit the fact that certain factory methods in theabc runtime library never return
null.

5 Implementing Language Features

In the previous section, we have describedabcby giving its general architecture and points of interest about each of its
components. We now adopt a different viewpoint, and show howvarious AspectJ language features are implemented
within this architecture. The features that we focus on hereare: implementing AspectJ patterns (name matching), the
declare parentsconstruct,intertype declarations, and, finally, how the weaving ofadviceis implemented.
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5.1 Name Matching

Many AspectJ constructs use patterns to pick out specific classes or methods to act on. The basic component of these
is the name pattern; this selects classes textually by name.For instance, to select all classes in a package namedast
that need support for break labels in a compiler, you might write ast.*Loop|| ast.If || ast.Switch. This would match,
among others, a class namedast.WhileLoop.

Finding the set of classes matched by a name pattern corresponds to normal Java name lookup. It follows the same
scope rules, but it looks for all names matching a pattern, rather than a single name. To avoid performing this lookup
process every time the name pattern is queried (which can happen many times), these matching sets are explicitly
calculated for each name pattern before they are needed by any matching operations.

Name patterns need to be evaluated more than once during compilation, as they denote different sets of names
in different contexts. Name patterns range over all classesin the class path. However, all uses of patterns can be
reduced to two cases: ranging over all weavable classes (this is the case fordeclare parents, for example), and ranging
over all classes referred to in the program (this is used to match method patterns, among other things). All matches
performed in the frontend range over the former domain (weavable classes), while patterns must be re-evaluated for
use in the backend (after all classes referred to in the program have been loaded, and with the final hierarchy from
declare parentsin place).

5.2 Declare Parents

The declare parentsconstruct allows an aspect to inject classes into the inheritance hierarchy, and to make classes
implement additional interfaces. Figure 2(a) demonstrates a very simple use ofdeclare parents.

The validity of adeclare parentsdeclaration involves some constraints on the class hierarchy (classes can only be
inserted into the hierarchy chain, not completely replace the parent classes), plus some structural requirements on the
child class (must actually implement the methods of the interface, must contain appropriate constructor calls etc.). All
of these must be checked in the frontend.

The hierarchical constraints are checked in thedeclare parentsPolyglot pass itself. Care must be taken here, as the
validity of declare parentsdeclarations might depend on the order in which different declarations (or even different
classes matched by the same declaration) are handled. Handling the child classes in topological order, starting with
Object , ensures that a unique valid interpretation is found if one exists.

For child classes from source, the structural requirementsare taken care of by the normal Java checks, since these
take place after thedeclare parentspass. For classes from class files, the checks must be performed explicitly.

All checks are performed in the frontend; the weaver fordeclare parentsthen modifies the hierarchy in Soot.
Additionally, when a new superclass has been set on a class read from a class file, all superclass constructor calls must
be changed to call constructors in the new parent, as these calls are represented asinvokespecial instructions
with the old parent class as explicit receiver class.

5.3 Intertype Declarations

When implementing intertype declarations, the main challenge is that the type-checker must be aware of the new
members that are introduced by aspects. This was a surprisingly difficult step in the development ofabc and in
the process of resolving this problem we defined some precisescope and visibility rules, described below. Thus,
an important contribution of our work is the clear statementof these rules and their implementation, and careful
consideration of all corner cases. Several improvements toajc were prompted by this part of the development ofabc.

Populating class types Polyglot includes a pass called ADDMEMBERS that populates class types with their
members. In ourabcextension, intertype declarations add their own type to thehost class type during this pass. Note
that this isnot the same as actual weaving: we manipulate types only, not ASTs. The weaving of intertype declarations
happens much later, in the static weaver.
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public classA {

int x1;
classB {

int x2;
}
}

aspectAspect{
static int x3;
static int y4;
int A.B.foo() {

classC {

int x5 = 3;
int bar(){ return x5 + A.this.x1;}

}

return this .x2 + (newC()).bar() + y4;
}
}

Figure 7: Scope rules for intertype methods.

Visibility A type checker for Java must consider both visibility and scope rules. When dealing with intertype
declarations an extra complication is introduced by the fact that visibility is always interpreted from the originating
aspect. So for example, if we have two aspectsA andB, and both contain a declarationprivate int C.f, then there are
in fact two fields introduced inC, and they are only visible from their origin. This is dealt with by identifying class
members (constructors, fields and methods) that arise from ITDs as subclasses of the corresponding AST nodes that
keep track of the origin of the ITD. The accessibility test inPolyglot was further overridden to use that origin instead
of the host class of an intertype declaration.

Scope inside intertype declarations The visibility rules are similarly applied to resolve variable and method
references inside intertype declarations. The environment for an intertype methodC.foo()in an aspectA is built up as
follows: first, we have everything that is in scope insideC and which is visible fromA. Next, we have the scope ofA.
Note, however, that it is an error to refer to instance variables of the aspect: as far as the aspect is concerned, the body
of foo is a static context. The AspectJ rules for one intertype declaration overriding another are somewhat complex,
and omitted for reasons of space.

This environment (consisting of the visible scope of the host class followed by the aspect) is used to disambiguate
uses ofthisandsuperthat may occur in the body offoo: we have to distinguish whether they refer to the host classC,
to some local class, or to an aspect. Such disambiguation must also be applied to references that have an implicitthis
receiver. The example in Figure 7 illustrates this: each field has been labelled with a superscript to link declarations
and references.

Because Polyglot is based on the rewriting paradigm, it is easy to implement these rules by introducing appropriate
new AST nodes forthis andsuperin the host class. Furthermore, by subclassing the type of environments, we can
keep the necessary information about intertype declarations to decide for each variable whether it refers to the host
class or not.

Mangling The visibility rules also imply that names of non-public intertype declarations must be mangled prior to
code generation: a private ITD becomes a public member of thehost class, but only the originating aspect should know
its name. A subtle issue is that sometimes the mangling between several entities must be coordinated. For example, let
A be an abstract class andB a concrete class that extendsA. Now if we introduce a package-visible abstract methodfoo
into A, and an implementation offoo into B, both must be mangled to the same name. For this purpose, we introduced
a new pass that computes equivalence classes of intertype declarations that must get the same name. A subsequent
pass then carries out the name mangling, renaming both declarations and references.

In Polyglot, this is nicely implemented by storing the relevant information (about equivalence classes and mangled
names) inside the type for the intertype declaration. It is then very easy to fix up the references as required.

AspectInfo and code generation Our implementation strategy leaves the code for intertype methods as static
methods in the originating aspects. This avoids the use of accessor methods for accessing members of the aspect scope
(and that is the vantage point for visibility tests). Also, the method is then considered as part of the aspect for name
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matching, which is the desired behaviour. To illustrate, wereturn to theAddValueexample of Section 2. After the
ASPECTMETHODSpass, the code forgetValuein theAddValueclass will be:

public static getValue$4(final node.Node this$6) {
return this$6.AddValue$value$3;

}

This is then called by a delegating method inNodethat passes thethis pointer as an argument. Sometimes there is
still a need to generate accessor methods, for example if thehost class is nested and there is a reference to an enclosing
class in the intertype method. Accessor methods are also necessary for the implementation ofprivilegedaspects, which
by definition are able to override all the visibility rules and can access any members of any class in the system. Due to
space constraints, we omit a detailed discussion.

5.4 Advice

A piece of advice consists of the pointcut specifying when itshould apply, together with some code to be run. The
frontend ofabc constructs a method body with a synthetic name to hold this code, and places the pointcut and the
name of this method in theAspectInfostructure. The job of the backend is then to find the static locations in the code
where each pointcut might match (the join point shadows), and to insert code that will check at runtime whether or not
the pointcut does actually match, and call the method implementing the advice body with the appropriate parameters.

As well as advice that is defined directly in the user’s aspects, various forms of synthetic advice are used to
implement features of the AspectJ language such ascflowpointcuts,declare soft, and aspects that are only instantiated
conditionally (perthisetc). We return to this point after explaining the mechanicsof how normal advice is inserted.

In abc, finding where advice might apply (matching) and inserting calls to that advice (weaving) are done in two
distinct phases; the matcher produces a list of “advice applications” that is then passed to the weaver. We did this
(rather than immediately inserting code as advice is found to apply) for two reasons. Firstly, there are specific rules of
precedencestating in which order multiple pieces of advice applying atthe same join point should run, and it is most
convenient to weave advice in order of precedence. Unfortunately we cannot simply sort the complete list of advice
before matching, because it is legal to have a cycle in the precedence relationship, so long as that cycle is not actually
realised at any particular join point shadow. Having an intermediate list that we can sort before weaving is therefore
helpful. Secondly, as we mentioned in Section 4.4, we want tosupportreweavingto produce better runtime code using
analysis results from a first attempt at weaving. Again, the presence of an explicit intermediate list makes this process
easier.

5.4.1 Matching

Pointcuts can only match at specificjoin pointsduring the program’s execution. Each join point corresponds to a static
join point shadowin the program. The pointcut matcher first identifies all the join point shadows in the program. For
each shadow, it tests each pointcut to see if it could possibly match at that point.

Figure 8(a) shows an example of some Java code and a pointcut.ThemainEval() pointcut from theCountEvalAllocs
aspect picks out all join points within theMain class whereeval() is called, and so in particular the call from within
therun() method is a join point shadow at which thebeforeadvice in this aspect can apply.

Regularised pointcut language The problem of checking whether a particular pointcut applies at a given
shadow is made more complicated by the fact that many AspectJpointcuts check more than one property of a join
point, and that there is a significant amount of overlap between pointcuts. For example, the pointcutexecution(int
foo())picks out join points based on two properties: their type (execution join points), and the methods their shadows
occur in (only methods with signatureint foo()are considered). This results in a substantial amount of duplicated work
and makes the matcher unnecessarily complex if implementedin a straightforward manner.

As a result, we have defined a modified pointcut language in thebackend that avoids this problem. Each pointcut
in the regularised language checks exactly one of three properties of a join point: the type of the join point, the method
that it occurs in, and the class containing this method.
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public classMain {
. . .
public void run()

{ eval()}
. . .

}
public aspectCountEvalAllocs{

. . .
pointcut mainEval() :

call(* *.eval(..)) && within (*.Main);

before () : mainEval()
{ allocs = 0;}

. . .
}

public classMain {
. . .
public void run(){

Main this;
CountEvalAllocs theAspect;

this := @this; // give arg 0 a name
nop; // beginning nop for shadow
// get the singleton aspect instance
theAspect = CountEvalAllocs.aspectOf();
// run the before advice
theAspect.before$0();
nop; // jump here if residue fails
// run the original code at the shadow
this.eval();
nop; // ending nop for shadow
return ;

}
. . .

}

(a) Source Java and AspectJ code (b) Woven Jimple

Figure 8: An example of matching and weaving

The frontend transforms AspectJ pointcuts into this regularised language for use in the backend. In doing so,
certain pointcuts are transformed into a conjunction of more primitive pointcuts (for example,execution(int foo())
becomeswithinmethod(int foo()) && execution(), where each conjunct only checks one kind of property). As a
further simplification, certain pointcuts are split into cases. An example of this is the AspectJwithincode(...)pointcut.
This can pick out methods or constructors based on their signature; in our backend it is replaced by uses of the more
specific pointcutswithinmethod(...)andwithinconstructor(...). The use of a simple, orthogonal pointcut language
allows for a cleaner design of the backend.

Alternative pointcut bindings AspectJ allows pointcuts tobind certain values from the context of a join point
they match, and pass those values as parameters to advice bodies. For example, the pointcutthis(x) bindsx to the
current value ofthis (and fails to match if the current method is static). Similarly, target(x)bindsx to the receiver of a
join point where this makes sense (e.g. in the case of a call to a non-static method). The variablex is declared to have
a certain type, and if the appropriate runtime value is not ofthat type (or a subclass), the pointcut also fails to match.

One ambiguity in the existing specification of this feature is the treatment of pointcuts which combine variable
binding and disjunction. Pointcuts such asthis(x) ‖ target(x) will bind x using the left disjunct if possible, and will
try the right disjunct if that fails. We might now want to modify this pointcut to also impose an extra check onx, such
as checking that as well as having its declared type it also implements some interface:

(this(x) ‖ target(x)) && if(x instanceofSerializable)

The natural interpretation of such a pointcut would be to usebacktracking to allow the second disjunct to be tried
if the first one succeeds but the value ofx is later rejected. We have defined such a backtracking semantics for these
pointcuts, implementing it by rewriting all pointcuts to disjunctive normal form to avoid the runtime complexity of real
backtracking. Currently,ajc forbids multiple pointcuts within the same expression frombinding the same variable,
but it is the intention of theajc maintainers to implement the semantics we have defined in thefuture.

Dynamic residues Once the matcher has identified that a pointcut might apply ata join point shadow, it remains
to generate some runtime code for that shadow to determine whether the pointcut does actually apply each time the
control flow of the program reaches that shadow. This can be defined in terms of partial evaluation [13]. In some
cases, we will statically know that the pointcut will alwaysapply at the shadow, so the corresponding advice body will
be executed unconditionally.

As well as deciding whether an advice body should execute at all, it is necessary to gather certain values before
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calling it. All advice bodies run as instance methods in the aspect that defines them, and it is necessary to call the
staticaspectOf method in that aspect to obtain an instance for use as the receiver of the advice call. We can see an
example of this call in the woven code in Fig. 8(b), p. 15. TheaspectOf method itself is automatically generated in
an aspect body when compiling it into a class.

There are a number of features of the pointcut language whichrequire runtime checks or the passing of values.
Most important of these are thethis, targetandargspointcuts, which expose, where they exist, the value of the current
object instance, the receiver at the join point, and the arguments being passed at the join point. Each ofthis, targetand
argscan be given a variable name as an argument (such a variable must be declared with its type in the pointcut) or a
type. In both cases, a runtime type check is inserted if it cannot be statically determined that the types match. If the
variable is name, then the relevant value is exposed to the advice body.

It is the role of the matcher to establish what checks need to be done at runtime and what information needs to
be gathered, but as described above it does not actually add runtime code. Therefore, it records this information in a
structure known as adynamic residue, which the weaver later processes.

5.4.2 Weaving

The role of the advice weaver is to actually generate the runtime code for running advice bodies where appropriate. At
this stage, the join point shadows have been identified, and lists of possible advice applications have been computed
for each shadow by the matcher. The weaver must insert code for advice and dynamic residues, ensuring that advice
is run in the correct order at each join point.

We use the facilities provided by Soot to make this process assimple as possible. For example, the Soot backend
carries out optimisations such as removingnop instructions and dead code, so our code generation strategydoes not
worry about leaving these in the code it outputs, which makesits design significantly simpler. In Figure 8(b), we see
the results of weaving before these optimisations are applied.

Another property of Soot that helps the design of the advice weaver is that since Jimple is a three-address code
with explicit variable names rather than implicit stack locations, we can simply refer to a variable at the place it is
needed, rather than having to make sure that its value is available on the stack. This is particularly useful when passing
values to advice bodies.

Preparing join point shadows One important problem is that we need to ensure that multiplepieces of advice
applying at the same join point are run in the correct order. In particular,after throwingadvice, a specific form ofafter
advice which only runs if an exception is thrown at the join point, needs careful treatment to ensure that it interacts
correctly with the existing exception behaviour of the joinpoint and of other advice applying at it. We also need to
make sure that jumps are fixed up correctly; statements that branch to the beginning of a join point shadow should now
branch to the first piece of advice that might run at that shadow (it is not possible for an existing statement to branch
to the middle of a shadow).

Our approach is to first insertnopstatements at the beginning and end of each shadow, and then to weave advice in
an “inside-out” order — that is,beforeadvice that should run “closest” to the original code of the join point is woven
first. The idea is that at each stage, thenop statements enclose the entire join point including advice that has been
inserted so far, and that the next piece of advice to be woven is inserted just inside thenopstatements — immediately
after the beginning one forbeforeadvice, and immediately before the ending one forafter advice. This keeps the
weaving process as simple and as modular as possible — the procedure for inserting thenop statements takes care
to ensure that jumps and exception handling ranges are correctly modified, and the subsequent weaving process can
largely ignore this. For example, if an exception range covers the original code at the shadow, it should cover the
entire join point after weaving, but if it has been introduced byafter throwingadvice, it should only cover the original
code and any advice that was woven before theafter throwingadvice; advice that is woven afterwards should not be
within the exception range. Thenopstatements allow us to tell the difference, because in the former case they will be
included in the exception range, but in the latter case they will not.

An added complication is that certain types of join point shadows do not fit nicely into the single-entry single-exit
(ignoring exceptions) model implied by the above approach.For example, an execution join point might terminate
at any one of a number ofreturn statements. Therefore, we first transform the code where necessary, replacing these
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return statements with jumps to a singlereturn at the end of the body, first storing the value to be returned ina local
variable if necessary.

Similarly, thepreinitialisationandinitialisation join points can span multiple constructors if one constructor calls
another in the same class usingthis(...). We therefore inline such calls to ensure that the code for each shadow is fully
contained within a single method.

Inserting advice Each type of advice (before, after andaround) has its own weaver, which inserts code in the
appropriate position of the join point shadow. As mentionedearlier,beforeadvice goes immediately after the beginning
nopof the shadow (an example of this can be seen in Figure 8(b), p.15), and all forms ofafteradvice go immediately
before the ending one. There are three forms ofafter advice:after returningadvice runs on normal termination and
is dual tobeforeadvice, whileafter throwingis implemented as an exception handler. Finally fullafter advice, which
runs in both cases, is implemented by weaving bothafter returningandafter throwing.

A novel strategy described in [11] is used foraroundadvice. The key detail for the purposes of this paper is that
it lifts all the code found between the twonopstatements at the time of weaving into a separate method, replacing it
with code to implement the advice, which can itself call backto the original code.

Once we have identified where the advice should go, the next step is to weave code for the dynamic residue. We
assume that any dynamic residue could fail; this may leave some dead code around in the case of residues that cannot,
but this is tidied up later by the Soot backend. Thus, each dynamic residue is woven with two exit points; one which
runs the advice body and one which skips it. In Figure 8(b), the noplabelled as “Jump here if residue fails” is the exit
point for failure (which is never jumped to in this example),and the call to the advice body immediately after is the
exit point for success.

5.4.3 Synthetic advice

Certain constructs in the AspectJ language other than advice have pointcuts associated with them, and require code
to be run at the join points picked out by these pointcuts. Forexample, users ofdeclare softspecify a pointcut where
certain exceptions should be softened, which requires inserting code at the relevant join point shadows to catch the
exception, wrap it up as aSoftExceptionand throw this new exception.

Of course, this is very similar to what is required to implement advice declarations; the main difference is merely
that the code to be inserted is not a call to an advice body. It is natural to use the same implementation strategy for
such constructs, and indeed the frontend ofabc transforms them into “synthetic” advice declarations to beprocessed
along with the normal pieces of advice.

The final constructs that the advice weaver deals with aredeclare warninganddeclare error. These also specify
pointcuts, but no code is inserted at the relevant join points; they merely cause the compiler to emit warnings or errors
if any such join points are found. Since they must be evaluated at compile-time, it is an error to specify a pointcut
which would require runtime code to check whether it appliedor not. In abc these constructs are also treated as
synthetic advice declarations, but instead of generating adynamic residue for the code weaving phase, a warning or
error is emitted as appropriate.

6 Comparison with ajc

ajc is the original compiler for the AspectJ language, and it waswritten by the language’s designers. It builds on a
modified version of the Eclipse Java compiler, while the backend makes use of a customised version of BCEL. The
design goals ofajc are quite different from those ofabc: it aims to be a production compiler, with very short compile
times and full integration with the Eclipse IDE. More information aboutajc, including a detailed description of its
weaver, can be found in [8]. By contrast,abc’s overriding design goals are extensibility and optimisation, as well as
a complete separation from the components it builds on. In this section, we make a detailed comparison between the
architecture ofajc andabc, in particular examining where the different design goals led to different design decisions.
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6.1 Separation from components

To examine the wayajc andabc use their respective building blocks, we first measured their size in lines of code,
making a distinction between the frontend and backend. The overall size ofajc andabcare comparable, as shown in
the following table. These numbers were obtained in consultation with the authors ofajc, using the SLOCcount tool:

ajc abc

frontend 10,197 16,444
backend 23,938 17,397
total 34,135 33,841

At first glance it appears thatajc’s frontend is much smaller than that ofabc. As we shall see shortly, this is
achieved at the cost of making numerous changes in the sourceof Java compiler it builds on — and these changes
are not listed here. Furthermore,abc uses Polyglot, which encourages the use of many tiny classesand requires a
fair amount of boilerplate for visitors and factories. Another notable point in the above table is the small size of the
backend ofabc, which performs the most complex part of the compilation process (weaving). This is explained by
the use of a clean intermediate representation, Jimple (which we present in more detail below in Section 6.3), as well
as the rich set of analyses available in the Soot framework. We now examine in some detail how wellajc andabcare
separated from the components that they build on.

Separation from base compiler: ajc. ajc builds on the Eclipse Java compiler. This compiler has been writ-
ten for speed: for example, it eschews the use of Java’s collection classes completely, in favour of lower-level data
structures. It also uses dispatch on integer constants in favour of inheritance whenever appropriate.

Unfortunately, the architecture of the Eclipse compiler implies thatajc needs its own copy of the source tree of
that compiler, to which local changes have been applied. These changes are by no means trivial: 44 Java files are
changed, and there are at least 119 source locations where explicit changes are made. Furthermore, the grammar from
which the Eclipse parser is generated has been modified. For pointcuts, the new parser simply reads in a string of
“pseudo-tokens” that are then parsed by hand (using a top-down parser) in the relevant semantic actions.

The 119 changes that are made to the Java source are by no meanstrivial. For example, the class that implements
Java’s scope rules needs to be changed in 8 places. It is because of such changes to the Eclipse source tree that it can
be fairly painful to mergeajc with the latest version of the Eclipse compiler.

Separation from base compiler: abc. By contrast,abcdoes not require any changes to the source of its base
compiler, which is Polyglot. Polyglot has been carefully engineered to be extensible, and indeedabc is just another
Polyglot extension. The changes to the scope rules are handled by introducing a new type for environments and a new
type system. These are implemented as simple extensions of the corresponding classes in Polyglot. It is thus very easy
to upgrade to new versions of Polyglot, even when substantial changes are made to the base compiler.

There are 14 types of AST node in Polyglot where it is necessary to override some small part of the behaviour.
This is necessary, for example, becausethis has a different semantics in AspectJ when it occurs inside anintertype
declaration. However, since Polyglot has been designed to allow changes of this nature to be made by subclassing,
rather than by changing the source of Polyglot itself, no extra work is required when updating to a new version of
Polyglot.

Finally, as we have described earlier,abc provides a clean LALR(1) grammar, presented in a modular fashion
thanks to Polyglot’s parser generator, which allows a neat separation between the Java grammar and that of an exten-
sion such as AspectJ.

Separation from bytecode manipulation: ajc. ajc uses BCEL, a library for directly manipulating bytecode,
in order to perform weaving and code generation. As in the case of the base compiler, however, a special version of
this library is maintained as part of theajc source tree. Originally this was regularly synchronised with the BCEL
distribution, using a patch file of about 300 lines. The specialised version is now developed as part ofajc, as BCEL is
no longer actively maintained. The modified BCEL consists of23,259 lines of code.
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Separation from bytecode manipulation: abc. abc is completely separate from the Soot transformation and
code generation framework; no changes to Soot are required whatsoever.

We conclude thatabc is the first AspectJ compiler to achieve a clean-cut separation between the components
it builds on. It seems likely that it will be possible to port the ideas that helped achieve this to extending other
programming languages with aspect-oriented features.

6.2 Compile time

It is natural to enquire what the impact of using aspects is onthe time taken to compile a program: an AspectJ compiler
does a lot more work than a pure Java compiler. To assess this issue, we decided to compare four different compilers:
normalajc, ajc plus an optimisation pass of Soot over its output (ajc + soot), abcwith all optimisations turned off (abc
-O0), andabcwith its default intraprocedural optimisations (abc). We measured compile times for seven benchmarks
from [7], as shown in Table I. Our experiments were done on a dual 3.2GHz Xeon with 4BB RAM running Linux
with a 2.6.8 kernel. We compiled using abc 1.0.1, soot 2.2.0,ajc 1.2.1 and javac 1.4.2.

benchmark sloc ajc ajc + soot abc -O0 abc javac

bean 126 3.59 6.03 5.27 5.37
bean-java 109 2.83 4.87 4.53 4.63 1.93

figure 94 3.39 5.33 4.49 4.76
figure-java 98 2.82 4.58 3.90 4.36 2.03

nullcheck 1487 4.92 15.40 15.56 17.25
nullcheck-java 1551 3.33 9.10 11.49 12.19 2.38

productlines 715 4.59 9.50 9.10 10.15
authorization 685 3.24 7.37 8.02 9.35

DCM 1668 5.49 22.09 20.88 24.60
LoD 1586 7.10 58.18 29.46 42.83

Table I: Compile times usingajc, abcandjavac(seconds)

The first three AspectJ benchmarks (bean,figure,nullcheck)have Java equivalents, where the weaving has been
performed by hand (bean-java,figure-java,nullcheck-java). As expected, aspect weaving has a significant impact on
compile times. The main reason is that an AspectJ compiler needs to make a pass over all generated code to identify
shadows and possibly weave in advice. It may be possible to curtail such a pass, for example by determining from
information in the constant pool that no pointcut can match inside a given class. We plan to investigate such ways of
reducing the extra cost of aspect weaving in future work.

The last four benchmarks make heavy use of aspects so there are no hand-woven Java equivalents. The productlines
benchmark makes heavy use of inter-type declarations, while the others use mostly advice. Overall, the compile times
indicate thatabc is significantly slower thanajc. This is no surprise, asabc’s code has not been tuned in any way for
compile time performance, whereas short compile times are an explicit design goal forajc. The nullcheck benchmark
is typical: the difference betweenabcandajc for programs of a few thousand lines is usually a factor between 3 and
4. For examples whereabcdoes a lot of optimisation, such as LoD, the gap can be a factorof 6. For very large inputs,
such asabccompiling itself, the difference can be a factor of 14.

The compile times ofabc reflect the cost of its powerful optimisation framework. In particular, an appropriate
comparison is not withajc (which lacks such optimisation capabilities), but withajc + soot. This comparison shows
that the compile times ofabcandajc + soot are very similar, which is encouraging.

It is furthermore pleasing that a research compiler such asabc can cope with very sizeable examples (such as
compiling itself); we believe that one natural use ofabcwould be for optimised builds of programs whose day-to-day
development is carried out withajc.
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6.3 Weaving into Jimple (abc) versus weaving into bytecode (ajc)

We illustrate the advantage of weaving into the three-address Jimple representation (asabcdoes) compared to weaving
directly into bytecode (asajc does) with a simple example of weaving a piece of advice before the call to methodbar
in the Java code shown in Figure 9(a). The results of weaving into this code both directly on bytecode and through
Jimple are shown in Figure 9(b)-(d). In all cases, the instructions inserted in weaving are shown in boldface.

public int f(int x,int y,int z)
{

return bar(x, y, z);
}

(a) base Java code

public int f(int x,int y,int z)
0: aload_0
1: iload_1
2: iload_2
3: iload_3
4: istore %4
6: istore %5
8: istore %6
10: astore %7
12: invokestatic

A.aspectOf ()LA;
15: aload %7
17: invokevirtual

A.ajc$before$A$124 (LFoo;)V
20: aload %7
22: iload %6
24: iload %5
26: iload %4
28: invokevirtual Foo.bar (III)I
31: ireturn

(b) direct weaving into bytecode (ajc)

public int f(int,int,int)
{ Foo this;

int x, y, z, $i0;
A theAspect;

this := @this;
x := @parameter0;
y := @parameter1;
z := @parameter2;
theAspect = A.aspectOf();
theAspect.before$0(this);
$i0 = this.bar(x, y, z);
return $i0;

}
(c) weaving into Jimple (abc)

public int f(int x,int y,int z)
0: invokestatic A.aspectOf ()LA;
3: aload_0
4: invokevirtual

A.before$0 (LFoo;)V
7: aload_0
8: iload_1
9: iload_2
10: iload_3
11: invokevirtual Foo.bar (III)I
14: ireturn

(d) bytecode generated from Jimple (abc)

Figure 9: Weaving into bytecode versus weaving into Jimple

Figure 9(b) shows the bytecode for the method after the call to the before advice has been woven byajc. Note
that of the inserted bytecodes, only those as offsets 12 through 17 implement the lookup of the appropriate aspect and
the call to the advice body. All of the remaining bytecodes are stack fix-up code that must be generated to fix up the
implicit bytecode computation stack.

Figure 9(c) shows the Jimple code for the same method after the call to the before advice has been woven byabc.
The key difference is that Jimple does not use an implicit computation stack. Instead, all values are denoted using
explicit variables. Prior to weaving, the Jimple code is as in Figure 9(c), but without the three lines in boldface. To
weave,abc needs only declare a Jimple variable, then insert the two lines to lookup the aspect and call the before
advice. No additional code to fix up any implicit stack is needed.

Figure 9(d) shows the bytecode that Soot generates from the Jimple code from Figure 9(c). This bytecode has the
same effect as theajc-generated code in Figure 9(b), but it is significantly smaller because of Soot’s standard backend
optimisations. In addition, it uses only three local variables, compared to seven required by theajc-generated code. We
have observed that, even with modern JITs which perform register allocation, the excessive number of local variables
required when weaving directly into bytecode has a significant negative impact on the performance of the woven code.

6.4 Using Soot Optimisations in Weaving

The use of Soot as a backend forabcenables it to leverage Soot’s existing optimisation passesto improve the generated
code. This simplifies the design of the weaver (see Section 5.4.2), but also enables aspect-specific optimisations that
would be difficult or impossible to apply directly during weaving. In these cases, the Java optimisations are typically
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augmented with AspectJ-specific information.

For example, AspectJ makes a special variable namedthisJoinPointavailable in advice bodies. This variable
contains various reflective information about the join point that must be gathered at runtime and is relatively expensive
to construct, so bothabcandajc implement “lazy” initialisation for this variable, so thatit is only constructed when it
will really be needed by an advice body, but that it is never constructed more than once even if more than one piece of
advice applies at a join point. This is done by first setting the variable tonull, then initialising it with the proper value
just before advice is called, but only if it still containsnull.

In ajc, the implementation does not work if there is any around advice at the join point (for technical reasons),
and it is special-cased to avoid the unnecessary laziness ifthere is only one piece of advice at the join point. Inabc,
the lazy initialisation is used in all cases, and a subsequent nullness analysis is used to eliminate the overhead of the
laziness in most cases (including the one where there is onlyone piece of advice). The analysis is a standard Java one,
which has been given the extra information that the AspectJ runtime library method which constructs thethisJoinPoint
object can never returnnull. Thus, the implementation is simpler and more robust than theajc version.

6.5 Performance of object code

It is beyond the scope of the present paper to do a detailed comparison of the efficiency of code generated byajc and
abc. Because optimisations are an explicit design goal ofabc, it is important that such experiments are thorough and
realistic. In a companion paper [4], we provide a detailed account of the most important optimisations inabc, and of
their effect on run times. The first of these is an improved implementation ofaround advice, giving a 6-fold speedup
of on some benchmarks. The second is a set of intraproceduralimprovements tocflow. Compared to version 1.2 of
ajc, these yield improvements of 23×; and some of these optimisations have now been incorporatedinto ajc 1.2.1.
Finally, we have implemented an interprocedural analysis to completely eliminate the cost ofcflow, and this can lead
to improvements of up to a 100-fold overajc 1.2.1.

7 Related work

In the previous section we have provided a detailed comparison between theajcAspectJ compiler andabc. The general
strategy of weaving dynamic features in AspectJ, leaving dynamic residues where needed, is nicely explained in terms
of partial evaluation in [13]. AspectJ is by no means the onlyaspect-oriented language, however, and in the remainder
of this section, we give a quick overview of the most important alternatives and their implementation strategies.

AspectC++is an extension of C++ with aspects, which provides pointcuts and advice, but there is no support for
advanced static weaving features such asdeclare parents[9]. It is implemented as a source-to-source transformer. As
explained earlier, we believe much is to be gained from weaving on an appropriate intermediate representation - not
only the ability to weave binaries, but also to simplify the implementation of the weaver.

AspectWerkzis a framework for the application of aspects to Java programs. The instructions to the weaver can
be given in a variety of meta-notations, including XML and Java 1.5 attributes. The AspectWerkz framework is of a
highly dynamic nature, allowing aspects to be enabled and disabled at run-time. This is achieved via a mechanism
akin to the observer pattern: each piece of advice becomes a kind of listener, while joinpoints generate events to notify
the advice. In his paper on the implementation of AspectWerkz [5], Jonas Bonér claims the overheads are negligible.
To assess that claim, we translated a few benchmarks from [7]into AspectWerkz, in particular a variant ofFigureand
of NullCheck. We found that the code produced by AspectWerkz forFigure runs 1000% slower than that produced by
abc, andNullCheckruns 600% slower — even when using theoffline weavingfeature of AspectWerkz, which performs
weaving at compile-time instead of load-time. Similar observer-style implementation techniques are employed in Eos
(an aspect-oriented extension to C#) [18] and JAC (a framework for distributed aspect-oriented programming) [16].
AspectWerkz aims for load-time weaving, and thus the efficiency of its weaver needs to be balanced with the efficiency
of the generated code.

JBoss AOPis an aspect oriented framework similar to AspectWerkz, butit is more targeted towards the JBoss
Application Server. The main implementation technique is aframework called Javassist [6] for writing bytecode
translators. Javassist has been carefully honed to produceefficient translators, again with a view towards load-time
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weaving. By contrast, our use of Soot was motivated by the desire to produce efficient object code, while the time
taken by the weaver itself is less important.

Neither AspectWerkz nor JBoss AOP appears to implement the level of static checking afforded to us by the
use of Polyglot: again this is motivated by the desire to produce efficient translators. Indeed, AspectWerkz lacks
certain features of AspectJ that require more transformation or checking than others. In particular it lacks initialisation
joinpoints, exception softening, precedence declarations and parents declarations. It also lacks the ability to issue
compile-time warnings and errors based on pointcut matching.

8 Conclusions and Future Work

We have presented the design and implementation of theabcAspectJ compiler, building upon two existing compiler
toolkits, Polyglot and Soot.abc is a complete implementation of the AspectJ language, whichcan be used as an
alternative compiler for AspectJ applications, or as a workbench for language extensions and compiler optimisations.

Our principal contribution is to show how the architecture of abcwas built around the Polyglot and Soot building
blocks. This demonstrates how the AspectJ-specific information can be cleanly separated from the Java part (using
theAspectInfostructure), enabling the use of Polyglot and Soot as Java tools. Theabccompiler is the first AspectJ
compiler to build on existing compiler tools without modification.

Building upon such powerful tools has had many benefits. The use of Polyglot as a frontend allowed a clean
specification of the AspectJ grammar as an extension of the Java grammar, while providing mechanisms to implement
the complex semantic checks required for AspectJ. Soot’s Jimple intermediate representation allowed theabcweaver
to be simpler and produce more efficient object code. Soot also provides a number of built-in optimisations to clean
up woven code, and provides the opportunity to implement AspectJ-specific optimisations in future. The price for the
use of these tools is a compile-time performance penalty, and we plan to investigate ways of reducing this in future
work.

In seeking a clean implementation of AspectJ as an extensionof Java, we have also clarified the AspectJ semantics,
which has had a beneficial effect not just onabcbut also on theajc compiler.

Another main contribution was to show, in some detail, how weimplemented the aspect-specific parts of our
compiler, in particular how we handle name matching, thedeclare parentsconstruct, intertype declarations and advice
matching and weaving. We believe that these implementationissues are relevant not just to AspectJ, but to compilers
for other aspect-oriented languages, by highlighting the issues that arise in the implementation of such languages. In
particular, the problems of ordering semantic checking phases in the presence of hierarchy introductions, determining
and implementing scope rules for intertype declarations and designing an appropriate intermediate representation for
advice matching are all important in the development of new aspect-oriented compilers.

Finally, abc incorporates a novel strategy for enabling painless optimisation of aspect-oriented constructs. This is
achieved by allowing the weaving process to be repeated, so that naively woven code can be analysed to permit more
precise weaving in subsequent passes. This is crucial tackling some of the performance issues inherent in aspect-
oriented programming.

The abc group found the project of building the compiler to beexceptionally fun, challenging and educational. We
have found that theabcarchitecture does meet our original goals of extensibilityand optimisation – we have recently
shown how to useabc to implement several language extensions [3] and we have also developed and implemented
several optimisations [4]. Several other research groups are already usingabcand we hope thatabcwill continue to
be a research platform for further work on extending and compiling aspect-oriented languages. Our group is actively
pursuing more optimisation opportunities, and also new language extensions that require more sophisticated static
analyses.
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