
The abc Group

Adding trace matching to AspectJ

abc Technical Report No. abc-2005-1

Chris Allan1, Pavel Avgustinov1, Aske Simon Christensen2, Laurie Hendren3,
Sascha Kuzins1, Onďrej Lhoták3, Oege de Moor1,

Damien Sereni1, Ganesh Sittampalam1 and Julian Tibble1

1 Programming Tools Group 2 BRICS 3 Sable Research Group
University of Oxford University of Aarhus McGill University

United Kingdom Denmark Montreal, Canada

March 23, 2005

a s p e c t b e n c h . o r g

Contents

1 INTRODUCTION 3

2 TRACEMATCHES 4

2.1 Examples . 6

3 DESIGN CONSIDERATIONS 14

3.1 Definition of Traces . 14

3.2 Class of Language Used to Describe Traces . 15

3.3 Matching a Pattern to a Trace . 16

3.4 Binding Variables . 16

3.5 Behaviour with multiple matches . 17

3.6 Behaviour with multiple threads . 18

4 SEMANTICS 18

4.1 Roadmap . 18

4.2 Events, Symbols and Tracematches . 21

4.3 Semantics of Tracematches . 21

4.4 Operational Semantics . 23

4.5 Equivalence of the Semantics . 24

4.6 From Semantics to Implementation . 25

4.7 A Reference Implementation . 26

5 IMPLEMENTATION 29

5.1 Avoiding Space Leaks . 29

5.2 Executing advice . 31

6 Optimisations 31

7 RELATED WORK 33

8 CONCLUSIONS 35

1

List of Figures

1 Grammar for a tracematch . 5

2 An example tracematch . 19

3 An example trace. 20

4 Matching a trace to a word. 24

5 The automaton for the obs tracematch. 28

6 Example use of safe iterator tracematch . 32

2

Abstract

An aspect observes the execution of a base program; when certain actions occur, the aspect runs some
extra code of its own. In the AspectJ language, the observations that an aspect can make are confined
to the current action: it is not possible to directly observe the history of a computation.

Recently there have been several interesting proposals for new history-based language features, most
notably by Douence et al. and also by Walker and Viggers. In this paper we present a new history-based
language feature called tracematches, where the programmer can trigger the execution of extra code by
specifying a regular pattern of events in a computation trace. We have fully designed and implemented
tracematches as a seamless extension to AspectJ.

A key innovation in our tracematch approach is the introduction of free variables in the matching
patterns. This enhancement enables a whole new class of applications where events can be matched not
only by the event kind, but also by the values associated with the free variables. We provide several
examples of applications enabled by this feature.

After introducing and motivating the idea of tracematches via examples, we present a detailed seman-
tics of our language design, and we derive an implementation from that semantics. The implementation
has been realised as an extension of the abc compiler for AspectJ.

1 INTRODUCTION

Aspect-oriented programming offers a new set of language features to increase modularity and separation
of concerns. One could think of an aspect as a special kind of object that observes a base program: when
certain patterns of actions happen in the base program, the aspect runs some extra code of its own. The
actions that may be intercepted are called joinpoints, and the patterns are called pointcuts. The most popular
implementation of these ideas is AspectJ, an extension of Java.

In AspectJ, pointcuts can only refer to the current program state, or more precisely, the current joinpoint,
including an abstraction of the call stack. It is natural to explore a richer pointcut notation, which refers to
the whole history of a computation, as a trace of the joinpoints encountered so far. There have been several
such history-based approaches recently proposed. Walker and Viggers have introduced the idea of tracecuts
as a history-based generalisation of pointcuts [23]. Other history-based proposals have been put forward by
Douence et al. [7–10].1

Inspired by these pioneering efforts, the present paper takes an important step forward by extending the
trace patterns with free variables. This innovation, which we term tracematches, enables a whole new class
of applications, which we illustrate in Section 2. The key point is that matches can be made not just based
on the kind of events, but also on the values bound to free variables. Thus, a tracematch can be used to
pick out a trace of events relevant to individual objects.

Our motivating examples in themselves help to settle a number of important language design decisions,
and we discuss those decisions in Section 3. A major goal of our design was to achieve a seamless integration
of tracematches into the existing AspectJ language.

Although our examples provide a general feeling for our new tracematch language feature, we felt that
it was important to give a rigorous definition and use this definition to lead to a correct and sound imple-
mentation. We first define a reasonably obvious declarative semantics, then we give a non-trivial operational
semantics that could be used to guide a reference implementation, and finally we prove that the declarative
and operational semantics are equivalent. These two semantics and the equivalence proof are given in Section
4.

We feel that proceeding in this principled fashion is an important contribution of the paper, since despite
the fact that the meaning of tracematches is intuitive and crystal-clear, their implementation is quite subtle.
The key problem to address is that tracematches must perform two interacting functions. First, tracematches
filter the current trace so that they only match on symbols that are explicitly declared in a tracematch
declaration. This is important because it means that the patterns don’t need to be cluttered with irrelevant
details and can focus on the events of interest. Second, tracematches must consistently bind variables across
the whole match. This makes it easier to track the behaviour of individual objects in the pattern.

1A detailed comparison of our approach to these approaches is given in Section 7.

3

The declarative semantics makes these two notions of filtering and consistent binding precise, and serves
to pin down exactly what behaviour we want. It is tricky to combine filtering and consistent binding in an
implementation, however: intuitively, you only know what symbols to filter out once you have a binding
for all the variables. In the implementation, you have to “guess” whether a symbol can be skipped and
the operational semantics formalises that idea. In our experience it is very hard to get the implementation
correct, and indeed, we got it wrong several times before we formally showed the equivalence of the declarative
and operational semantics.

We have derived a concrete reference implementation from the operational semantics. Section 5 discusses
some further implementation issues, in particular the choice of concrete representations for the main ab-
stract data types. It is also here that we address the very important question of memory usage — a naive
implementation of tracematches would suffer severe memory leaks. We also briefly discuss optimisations
for tracematches in Section 6. The design has been fully implemented as an extension to the AspectBench
Compiler abc [1] for the AspectJ language.

Finally, in Section 7 we discuss in more detail how our design differs from the works cited above, and we
conclude in Section 8.

In summary, this paper presents the following original contributions:

• An important generalisation of earlier proposals for history-based approaches. Our approach, trace-
matches, introduces the notion of free variables in trace patterns.

• A new class of applications of history-based advice, enabled by this generalisation.

• A careful review of the design decisions for tracematches, in the light of these applications.

• A seamless integration of tracematches into the existing AspectJ language.

• A declarative semantics of tracematches, as well as an operational semantics, and a proof of their
equivalence.

• A reference implementation that is derived from the operational semantics.

• A detailed discussion of implementation decisions, in particular regarding memory usage of compiled
code.

In what follows, we shall assume the reader has a nodding acquaintance with AspectJ, and in fact most
of our pure AspectJ code should be self-explanatory. There is a wealth of textbooks available on the subject,
including [6, 13, 16, 17, 19].

2 TRACEMATCHES

Traditional aspects allow programmers to define advice – pieces of code that are run when the current
program execution state (or ‘joinpoint’) meets some specified criteria. Tracematches extend this so that the
program’s entire execution history (or trace) can be examined to determine when the advice should run. The
program’s trace is modelled as a sequence of entries and exits from standard AOP joinpoints. To wit, the
following aspect (in standard AspectJ) prints out a formatted version of a program trace. An enter event
occurs before every joinpoint, and upon its completion we have an exit event.

1 aspect TraceGen {
2 before () : ! within (TraceGen) {
3 System . e r r . p r i n t l n (” en te r : ”+
4 thisJoinPoint) ;
5 }
6 after () : ! within (TraceGen) {
7 System . e r r . p r i n t l n (” e x i t : ”+
8 thisJoinPoint) ;
9 }

10 }

4

〈

tracematch

〉

::=
[

strictfp
]

tracematch (
〈

variable declarations

〉

)
{

〈

token declaration

〉

+
〈

regex

〉

〈

method body

〉

}

〈

token declaration

〉

::=

sym
〈

name

〉 〈

kind

〉

:
〈

pointcut

〉

;

〈

kind

〉

::=
before

∣

∣ after
∣

∣ after returning
[

(
〈

variable

〉

)
]

∣

∣ after throwing
[

(
〈

variable

〉

)
]

∣

∣

〈

type

〉

around
[

(
〈

variables

〉

)
]

〈

regex

〉

::=
〈

name

〉

∣

∣

〈

regex

〉 〈

regex

〉

AB — A followed by B
∣

∣

〈

regex

〉

|
〈

regex

〉

A|B — A or B
∣

∣

〈

regex

〉

∗ A* — 0 or more As
∣

∣

〈

regex

〉

+ A+ — 1 or more As
∣

∣

〈

regex

〉

[
〈

constant

〉

] A[n] — exactly n As
∣

∣ (
〈

regex

〉

) (A) — grouping

Figure 1: Grammar for a tracematch

A tracematch defines a pattern and a code block to be run when the current trace matches that pattern.
The grammar for a tracematch is shown in Figure 1. Each tracematch consists of three parts: the declaration
of one or more symbols (events of interest), a pattern involving those symbols, and a piece of code to be
executed. A match occurs when a suffix of the current program trace, when restricted to the symbols declared
in the tracematch, is a word in the regular language specified by the pattern. Here is a very simple example
of a tracematch:

1 tracematch () {
2 sym f before : ca l l (∗ f (. .)) ;
3 sym g after : ca l l (∗ g (. .)) ;
4

5 f g
6

7 { System . out . p r i n t l n (” fg ! ”) ; }
8 }

Line 1 is the tracematch header, which defines any tracematch variables (none in this case). Next, on lines
2-3, we define two symbols. The symbol f matches enter events on joinpoints that match the pointcut
call(∗ f(..)). Similarly, the symbol g matches exit events on joinpoints that match the pointcut call(∗ g(..)).
The regular expression on line 5 specifies that advice is triggered on traces that end with a call to f and g.
Finally, line 7 gives the advice body to be executed.

In matching the pattern to the trace, any events in the trace that are not declared as symbols in the
tracematch are ignored, and only events declared as symbols can trigger the match. Hence, this tracematch

5

matches any exit from a call to g which was preceded by an enter of a call to f without any exits from calls
to g in between.

2.1 Examples

We present a number of typical examples to demonstrate the practical uses of tracematches and to motivate
our design. For each example, we describe a problem, give a straightforward solution in terms of tracematches,
and show an equivalent solution in plain AspectJ. The various features of the tracematch extension will be
explained alongside the examples as they are used.

Autosave Consider an editor of some sort. We wish to add an ‘autosave’ feature that ensures a copy of
the file is saved to disk after every five actions. This is easy to do with a tracematch. We begin by declaring
two symbols: the first one for saves — either those explicitly initiated by the user, or automatic ones (lines
2-4). The other symbol is a call to execute a command — this is what we mean by an ‘action’ (lines 5-
6). Whenever we see five consecutive actions (as specified by the regular pattern on line 8) the autosave()
method is called (line 10). Here, the syntax ‘[5]’ means exactly 5 repetitions of the same symbol. Any
constant-valued expression can go here, so the actual value could be put into a static, final field for clarity.

This example illustrates an important design decision: all events are ignored, except those that match
one of the explicitly declared symbols. The save symbol is included in the alphabet, but not in the regular
expression, in order to prevent the expression from matching if the actions are interrupted by a save action.

1 tracematch () {
2 sym save after :
3 ca l l (∗ App l i cat ion . save ())
4 | | ca l l (∗ App l i cat ion . autosave ()) ;
5 sym act ion after :
6 ca l l (∗ Command . execute ()) ;
7

8 act ion [5]
9 {

10 App l i cat ion . autosave () ;
11 }
12 }

Now consider how the same effect is achieved in pure AspectJ. We maintain a counter to keep track of
the number of actions since the last save (line 2). Whenever a save event happens, the counter is reset to 0
(lines 4-7). Furthermore, upon the completion of each action, we increase the count by 1: if the total reaches
5, the autosave() method is called (lines 10-12).

1 aspect Autosave {
2 private int a c t i o n s s i n c e l a s t s a v e = 0 ;
3

4 after () : ca l l (∗ App l i cat ion . save ())
5 | | ca l l (∗ App l i cat ion . autosave ()) {
6 a c t i o n s s i n c e l a s t s a v e = 0 ;
7 }
8

9 after () : ca l l (∗ Command . execute ()) {
10 a c t i o n s s i n c e l a s t s a v e ++;
11 i f (a c t i o n s s i n c e l a s t s a v e == 5)
12 App l i cat ion . autosave () ;
13 }
14 }

Note how the state of the matching process (the counter) is explicit in the AspectJ solution. In this example,
that leads to only minor complications, but as we shall see below, often the burden of such state maintenance
is much greater.

6

Previous program state can be exposed to tracematches by capturing variables in the symbol pointcuts.
These variables are defined in the tracematch header (similarly to the definition of pointcut variables in
ordinary pointcuts) and bound by the normal pointcut variable binding constructs in the symbol pointcuts.
Unlike ordinary pointcuts, symbol pointcuts in tracematches do not define variables of their own. A trace-
match variable is visible in the advice body and in the symbol pointcut by which it is bound. All tracematch
variables that are used by the advice body must be bound by at least one symbol in any symbol string
matching the pattern. This ensures that these variables have always been given a value whenever the body
is executed.

Whenever the same tracematch variable is bound more than once in a trace (by the same symbol or by
different symbols) the variable is not rebound to the new value. Rather, it is checked that the old and the
new value are equal (in the sense of ==). If this is not the case, the new symbol is ignored for this particular
trace. In other words, a program trace is defined to match the regular expression when there exists some
set of values that can be consistently substituted for the pointcut variables in such a way that the program
trace matches the defined expression. When more than one set of variable bindings exists that cause the
expression to match, the code block is executed multiple times, once for every possible match. This allows
the tracematch to match patterns in the behaviour of individual objects, for example to enforce conditions
on the order in which the object’s methods are called (by reporting runtime errors when the conditions are
violated).

Contextual logging Our next example is intended to illustrate the use of variable binding in tracematches.
The application is to log the actions of the users of a database: whenever a user has logged in, we want to
report the queries of that user. For simplicity, we consider a system where only one user is logged in at any
time.

Variables that are to be bound in the pattern of a tracematch are declared in its header (line 1). Here
there are two such variables, namely the user u and a query q. The first symbol we declare is the one that
binds u, via a call to the login(..) method (lines 2-4). We also track logout actions, so that we stop logging
when the user has finished (lines 5-6). Finally, we declare a symbol for query events (lines 7-9), and intercept
the value of the query in variable q. The pattern is then very simple: we just look for queries that follow a
login event (line 11). Whenever this matches a suffix of the current trace, we print an appropriate logging
message that reports both the user u and the query q (lines 13-14).

1 tracematch (User u , Query q) {
2 sym l o g i n after returning :
3 ca l l (∗ LoginManager . l o g i n (User , . .))
4 && args (u , . .) ;
5 sym l ogout after :
6 ca l l (∗ LoginManager . l ogout ()) ;
7 sym query before :
8 ca l l (∗ Database . query (Query))
9 && args (q) ;

10

11 l o g i n query+
12 {
13 System . out . p r i n t l n (u +
14 ” made query ” + q) ;
15 }
16 }

Note that it does not make sense to replace + in the above pattern (line 11) by ∗, for that would imply
that the q parameter might not have been bound. It is a requirement (checked statically by the compiler)
that any variable that is used inside the advice body must be bound by some symbol in all possible traces
matched by the regular expression.

Now consider how the same functionality is encoded in pure AspectJ. We need a boolean variable to keep
track of whether a user has been logged in, and another variable to record the user (lines 2-3). (At a pinch,
the two might be combined, as the user field is null precisely when the boolean field is false — but we

7

find that less transparent.) Whenever the login() call succeeds, we set the boolean to true, and update the
user field as well (lines 5-11). Corresponding updates are made upon a logout (lines 13-17). When a query
happens, and a user is logged in, the logging message is output (lines 19-26).

1 aspect Logging {
2 private boolean loggedIn = fa l se ;
3 private User user ;
4

5 after (User u) returning :
6 ca l l (∗ LoginManager .
7 l o g i n (User , Password))
8 && args (u , . .) {
9 loggedIn = true ;

10 user = u ;
11 }
12

13 after () :
14 ca l l (∗ LoginManager . l ogout ()) {
15 loggedIn = fa l se ;
16 user = null ;
17 }
18

19 before (Query q) :
20 ca l l (∗ Database . query (Query))
21 && args (q) {
22 i f (loggedIn) {
23 System . out . p r i n t l n
24 (user + ” made query ” + q) ;
25 }
26 }
27 }

Apart from being more verbose, this AspectJ solution is also less flexible than the one based on a tracematch.
Suppose we wanted to extend this logging aspect to log the actions of multiple users who can be logged in
at the same time. For the tracematch version, all we would have to do would be to extend the login, logout
and query symbols to capture some unique information such as a session id (assuming this is made explicit
in the base program). This would then tie the login and query events together by their shared session id,
allowing the user from the login symbol to be available to the advice body. To add the same functionality to
the AspectJ version, the variables would have to be replaced by mappings and the code changed accordingly.

Observer This example demonstrates a way of implementing the well-known Observer design pattern. Here
we have a set of Subject objects, which represent the state of some entity being modelled, and a set of Observer
objects which are attached to a particular Subject and need to be notified in any changes to their Subject’s
state. The solutions below both provide a way of doing this without the Subject needing to be aware that
it is being observed.

The tracematch based solution declares two events of interest, in lines 2-7: the creation of an observer o

(where the subject s is passed as an argument), and updates to that same subject s. We then specify the
sequence of events that will cause the view of the observer to be updated, on line 9. In words, we perform an
observer update upon creation of the observer, and subsequently upon each update of the subject that follows
the creation of the observer. Note how this example illustrates our use of variable bindings in patterns: it is
the observer creation that binds variables s and o. The update symbol then only matches execution events
with those same variable bindings.

1 tracematch (Subject s , Observer o) {
2 sym c r e a t e ob s e r v e r after returning (o) :
3 ca l l (Observer .new (. .))
4 && args (s) ;

8

5 sym update sub jec t after :
6 ca l l (∗ Subject . update (. .))
7 && target (s) ;
8

9 c r e a t e ob s e r v e r update sub jec t ∗
10 {
11 o . update view () ;
12 }
13 }

A similar AspectJ solution is shown below. It needs to maintain a vector of observers for each subject.
The association of the vector to each subject is achieved via a so-called intertype declaration on lines 2-3.
This inserts a new field called observers into the Subject class (or, if it is an interface, into each implementor
of that interface). When a new observer is constructed, we add it to the observers of subject s (line 8), and
we also update its view (line 9). Then, whenever the subject is updated, we update each of its observers
(lines 15-20). A comparison of the AspectJ solution with our formulation in terms of tracematches highlights
an important point, namely that in a tracematch, the advice is executed for all matching bindings. The
iteration that is explicit in the AspectJ solution is implicit when using tracematches.

1 aspect Observer {
2 private Vector Subject . ob se rve r s
3 = new Vector () ;
4

5 after (Subject s) returning (Observer o) :
6 ca l l (Observer .new (. .))
7 && args (s) {
8 s . ob se rve r s . add (o) ;
9 o . update view () ;

10 }
11

12 after (Subject s) :
13 ca l l (∗ Subject . update (. .))
14 && target (s) {
15 I t e r a t o r ob s i t = s . ob se rve r s . i t e r a t o r () ;
16 while (ob s i t . hasNext ()) {
17 Observer o
18 = (Observer) ob s i t . next () ;
19 o . update view () ;
20 }
21 }
22 }

For brevity, we have chosen a minimal implementation of the observer pattern, but the use of tracematches
also simplifies the more advanced formulation in [15]. In that seminal paper, Hannemann and Kiczales
demonstrate convincingly that many design patterns are more easily expressed in AspectJ than in Java.
Here we present a further significant improvement over that work.

In addition to before and after, symbols can also be declared as around. An around symbol matches
enter events of the corresponding joinpoints, just as before does. However, the advice body gets executed
instead of the original joinpoint, rather than just before it.

There are certain restrictions on how around symbols can be used. We require that either all the events
that could be the last in the matched sequence are of around type, or none are. This restriction is necessary
as advice bodies for around advice are incompatible with the ones for before and after, for two reasons:
first, around advice must return a value of the return type declared for the advice (declared just before the
around keyword); second, similarly to ordinary around advice, around advice in tracematches can call the
special method proceed() to invoke the original join point. We will say more about proceed() in Section 3.5.
Additionally, we require that around symbols can only appear at the end of matched sequences, as there is

9

no sensible meaning for around if there is no advice to be executed at the matched joinpoint.

Flyweight We now consider the Flyweight design pattern. The purpose of this pattern is to avoid a huge
number of small objects being created. To achieve that, a pool of instances is maintained; where possible,
each constructor call is intercepted and instead an object from the pool is returned. For simplicity we
stipulate that objects of the FlyWeight type that were created with the same argument to the constructor
are considered equivalent. An implementation of the flyweight pattern thus requires that we cache the result
of constructor calls, only creating one object for each different argument value.

The flyweight pattern has a natural description in terms of a tracematch. We look for the first object
creation with a given argument; and after that, any constructor call with the same argument is intercepted.
We therefore declare two symbols (lines 2-7). Note that the latter symbol is an instance of around. The
advice body does not call proceed(), which means that the original constructor call is not performed.
Instead, it just returns the value returned the last time the constructor was called with the same argument.
(line 11).

1 tracematch (Flyweight fw , Object arg) {
2 sym r e t u rn an ob j after returning (fw) :
3 ca l l (FlyWeight+.new(Object))
4 && args (arg) ;
5 sym c r e a t e ano th e r ob j FlyWeight around :
6 ca l l (FlyWeight+.new(Object))
7 && args (arg) ;
8

9 r e t u rn an ob j c r e a t e ano th e r ob j
10 {
11 return fw ;
12 }
13 }

We now consider an encoding of the flyweight pattern in pure AspectJ, as displayed below. Again this is
a minor simplification of the code of Hannemann and Kiczales [15]. It explicitly maintains a table of those
objects that have previously been used as arguments to a flyweight constructor, and the associated object
that was returned (lines 2-3). An IdentityHashMap is used for this to mimic the object identity behaviour of
the tracematch version. Then, upon each constructor call (lines 6-7), we check whether a table entry exists
for the given argument (line 9). If so, the corresponding object is returned (lines 10-11). Otherwise, a new
object is created, and stored in the table before returning (lines 14-16).

1 aspect FlyWeightAspect {
2 private Map const ruc t edObjec t s
3 = new IdentityHashMap () ;
4

5 FlyWeight around(Object arg) :
6 ca l l (FlyWeight+.new(Object))
7 && args (arg)
8 {
9 i f (cons t ruc t edObjec t s . containsKey (arg))

10 return (FlyWeight)
11 const ruc t edObjec t s . get (arg) ;
12 else

13 {
14 FlyWeight fw = proceed (arg) ;
15 const ruc t edObjec t s . put (arg , fw) ;
16 return fw ;
17 }
18 }
19 }

10

The code using a tracematch is marginally shorter, but in our view that is not its main advantage. The true
merit of the tracematch is that it directly states the programmer’s intention, crisp and clear, without a need
to encode the essential idea.

Safe iterators Our next example concerns the safe use of iterators. It is usually the case that the data
source that underlies an iterator may not be changed during the iteration process. It is fairly common to
explicitly encode that behaviour in the implementation of iterators, by throwing an exception if an iterator
is used after the collection has changed, but it would be nicer to specify it as a separate concern, once and
for all.

There are three symbols of interest here: the creation of an iterator on a particular data source (lines
2-4), the next() operation on that same iterator (lines 5-7), and update operations on the given datasource
(lines 8-10). Then, whenever we see a creation, followed by some iteration steps, an update and then another
iteration step, we know that an error has occurred. This is captured by the pattern on lines 12-13.

1 tracematch (I t e r a t o r i , DataSource ds) {
2 sym c r e a t e i t e r after returning (i) :
3 ca l l (I t e r a t o r DataSource . i t e r a t o r ())
4 && target (ds) ;
5 sym c a l l n e x t before :
6 ca l l (Object I t e r a t o r . next ())
7 && target (i) ;
8 sym update source after :
9 ca l l (∗ DataSource . update (. .))

10 && target (ds) ;
11

12 c r e a t e i t e r c a l l n e x t ∗
13 update source c a l l n e x t
14 {
15 throw new

16 ConcurrentModi f icat ionExcept ion () ;
17 }
18 }

In the AspectJ version, we keep track of the state of the DataSource explicitly, in a map from the
DataSource to some unique object (lines 3-4). We then reallocate this object each time the state changes
(line 30). For each Iterator object, we remember its associated DataSource (lines 5-6 and 13) and the state
the DataSource was in upon the creation of the iterator (lines 7-8 and 14). If the DataSource has changed
state since the iterator was created, the next() operation fails (lines 21-24).

1 aspect S a f e I t e r a t o r s
2 {
3 private Map d s s t a t e
4 = new IdentityHashMap () ;
5 private Map i t d s
6 = new IdentityHashMap () ;
7 private Map i t d s s t a t e
8 = new IdentityHashMap () ;
9

10 after (DataSource ds) returning (I t e r a t o r i) :
11 ca l l (I t e r a t o r DataSource . i t e r a t o r ())
12 && target (ds) {
13 i t d s . put (i , ds) ;
14 i t d s s t a t e . put (i , d s s t a t e . get (ds)) ;
15 }
16

17 before (I t e r a t o r i) :
18 ca l l (Object I t e r a t o r . next ())

11

19 && target (i)
20 {
21 i f (d s s t a t e . get (i t d s . get (i))
22 != i t d s s t a t e . get (i))
23 throw new

24 ConcurrentModi f icat ionExcept ion () ;
25 }
26

27 after (DataSource ds) :
28 ca l l (∗ DataSource . update (. .))
29 && target (ds) {
30 d s s t a t e . put (ds , new Object ()) ;
31 }
32 }

Again, the intent is clearly visible in the tracematch solution, whereas the pure AspectJ solution is for-
mulated in terms of how the constraint is actually implemented. Furthermore, this AspectJ implementation
will cause severe memory leaks. Any DataSource and Iterator ever used will end up in the maps and not be
garbage collected. For this example, this could be easily fixed by using weak references to ensure that map-
pings are removed from the maps when their keys are no longer in use.2 A näıve tracematch implementation
would of course suffer from the same problems, but in this case the compiler has the opportunity to analyze
the specification and use weak maps whereever applicable. We will return to the issue of weak references in
Section 5.

The AspectJ solution could be expressed a bit more simply (and without the memory leak problem) by
using intertype declarations on the DataSource and Iterator classes. However, in order to inject intertype
declarations, the AspectJ compiler must have access to modify these classes, either at compile time or by
using a weaving class loader. Such access is typically not available for the Java standard library classes, so this
proposed solution would not work with e.g. the standard collection classes. The tracematch implementation
does not require weaving access to classes bound to tracematch variables, so in order to achieve as close to
the same behaviour for the two solutions as possible, the hash map version was chosen.

Connection management In our final example, we use an aspect to control the opening and closing of
some form of ‘connection’, for example to a database system. For the sake of the example, we assume that a
Connection class has three methods, open(), query() and close(). The query() method should only be called
on a Connection that is in the open state. We assume that the open() and close() methods take some time
to execute, so should not be called unnecessarily, but also that open connections require some overhead, so
connections should not be left open and unused for large periods of time.

The aspects below allow users of the Connection class to ignore the open() and close() methods, and just
assume that they will be opened and closed when needed. To achieve this, a closed connection is opened
immediately before a query is called on it, and an open connection that has not been used ‘recently’ is closed.
We define a connection not having been used recently to mean “there have been 5 calls to some logging API
since its last use”, which in many systems would provide an acceptable heuristic.

The desired effect is achieved with two tracematches. The first is shown below. It declares symbols for
opening, closing, querying, and creating a new connection (lines 2-12). The connection must be opened
when we see the first query after a creation, or when we see that a query is performed immediately after
a close. This is captured with the pattern on line 14, and it illustrates that all declared symbols must be
matched: because open con is one of the symbols, the pattern rules out a situation where the connection is
open already.

1 tracematch (Connection c) {
2 sym open con after :
3 ca l l (∗ Connection . open ())

2No WeakIdentityHashMap exists in the Java Standard Library, but such a class could of course be written specifically for

this purpose.

12

4 && target (c) ;
5 sym c l o s e c on after :
6 ca l l (∗ Connection . c l o s e ())
7 && target (c) ;
8 sym query before :
9 ca l l (∗ Connection . query (. .))

10 && target (c) ;
11 sym c r e a t e after returning (c) :
12 ca l l (Connection .new ()) ;
13

14 (c r e a t e query) | (c l o s e c on query)
15 {
16 c . open () ;
17 }
18 }

The next step is to define a tracematch that closes a connection when it has been open too long. As said,
our heuristic rule defining ‘too long’ is that there have been 5 logging calls since the last query. Declaring
an explicit symbol for closing the connection (lines 2-4) guarantees that the connection has not been closed
after the matching query event.

1 tracematch(Connection c) {
2 sym c l o s e c on after :
3 ca l l (∗ Connection . c l o s e ())
4 && target (c) ;
5 sym query before :
6 ca l l (∗ Connection . query (. .))
7 && target (c) ;
8 sym l og before () :
9 ca l l (∗ Log . add (. .)) ;

10

11 query log [5]
12 {
13 c . c l o s e () ;
14 }
15 }

This example hints at the need for a language mechanism to name symbols outside a particular tracematch,
to allow the same symbol to be used in multiple tracematches. However, often the amount of repetition
can be minimised by naming the relevant pointcut, and therefore we have decided (at least for the moment)
against such a mechanism.

Let us now consider a similar solution in plain AspectJ (a much fuller discussion of this type of application
can be found in Laddad’s textbook [17]). To track the number of logs since the last query on each open
connection, we have a map from Connections to Integers (lines 2-3). An invariant of the code is that any
connection that is a key in this map is open, and all other connections are closed.

When a connection is opened, we record it in the age map and set its age to 0 (line 8). When a connection
is closed, we remove it from the map (line 14). When a query is intercepted, we must open the connection
if it is currently closed, and its age is then reset to zero (lines 20-22). Finally, whenever a log call happens,
we iterate over the set of all connections (lines 26-39). For each connection, we increase its age, and if this
pushes the age of a connection to 5, the connection is closed and removed from the map.

1 aspect AJConnectionManagement {
2 private Map connect ion age
3 = new IdentityHashMap () ;
4

5 after (Connection c) :
6 ca l l (∗ Connection . open ())
7 && target (c) {

13

8 connec t ion age . put (c , new I n t e g e r (0)) ;
9 }

10

11 after (Connection c) :
12 ca l l (∗ Connection . c l o s e ())
13 && target (c) {
14 connec t ion age . remove (c) ;
15 }
16

17 before (Connection c) :
18 ca l l (∗ Connection . query (. .))
19 && target (c) {
20 i f (! connec t ion age . containsKey (c))
21 c . open () ;
22 connec t ion age . put (c , new I n t e g e r (0)) ;
23 }
24

25 before () : ca l l (∗ Log . add (. .)) {
26 I t e r a t o r i t
27 = connect ion age . entrySet () . i t e r a t o r () ;
28 while (i t . hasNext ()) {
29 Map. Entry e = (Map. Entry) i t . next () ;
30 Connection c = (Connection) e . getKey () ;
31 int age = ((I n t e g e r) e . getValue ())
32 . in tValue () ;
33 age++;
34 e . setValue (new I n t e g e r (age)) ;
35 i f (age == 5) {
36 c . c l o s e () ;
37 i t . remove () ;
38 }
39 }
40 }
41 }

It is interesting to contrast this code with our earlier formulation in terms of tracematches. There, the
statement of the intended behaviour is purely declarative, and we do not need to create an explicit iteration.
Instead, the iteration happens automatically, for each binding that results from matching the regular pattern
to suffixes of the current trace. This is similar to the use of iteration in our earlier discussion of the observer
pattern.

3 DESIGN CONSIDERATIONS

We now review the crucial design choices for tracematches. In particular, we contrast our decisions with
alternatives, focussing on those cases where others have made a different choice. In doing so, it is our aim
to give a rational account of our design, deferring a detailed comparison with related work till Section 7. As
we shall demonstrate, all decisions were informed both by the examples in the preceding section, as well as
the desire to have a clean semantics that admits an efficient implementation.

3.1 Definition of Traces

A trace is a sequence of events in the execution of a program. Our events are defined as entries and exits
from joinpoints. In the tracematch declaration itself, we attach the standard AspectJ advice kinds before,
after and around to symbol declarations. Analogously to ordinary advice, around is treated similarly to
before for the purposes of matching but then executes in place of the matched joinpoint rather than before

14

it.

An alternative way to define a trace might be to use joinpoints as events directly, which is similar to the
way AspectJ defines the cflow pointcut. This means thinking of joinpoints as nodes in a program execution
tree (a generalisation of the dynamic call graph with nodes for all joinpoints, not just calls), and define the
trace as the sequence of joinpoints that have been visited so far. However, joinpoints are not atomic events –
in particular they can be nested inside each other. It follows that the ordering of events in the resulting trace
depends on the definition of ‘visited’ that is used. Whether a parent or child node is visited first depends on
whether the trace is defined in terms of a preorder or postorder traversal.

Our definition is more flexible than this alternative approach. The above scenario gives the trace ‘before
parent; before child; after child; after parent’. By writing appropriate patterns, the programmer can achieve
the same effect as either a preorder or postorder traversal would have done.

3.2 Class of Language Used to Describe Traces

Our trace patterns are described as regular expressions. The motivation for doing so is that regular expres-
sions provide a concise, easily understood notation. Indeed, in typical use cases of tracematches, regular
expressions offer just the right level of expressiveness. Furthermore, regular expressions lend themselves
to static analyses: for richer formalisms, the question of language inclusion is typically undecidable, for
example.

The only obvious alternative is to consider context-free language patterns instead. All examples in the
literature that motivate such a generalisation involve dependencies on balanced method calls and returns.
However, in these cases, the call stack dependencies can often be described using cflow pointcuts. These
pointcuts allow the programmer to assert that program execution is below one of a given set of joinpoints
in the execution stack. Together with cflow pointcuts regular trace patterns achieve a high degree of
expressiveness.

There exist examples, however, where the use of cflow is not enough. In [23], Walker and Viggers describe
a program with mutually recursive methods safe and unsafe, and present the challenge of identifying traces
in which certain method calls happen when a call to unsafe encloses the call more closely than a call to safe.
The use of cflow pointcuts within tracematch symbols is not sufficient to express this behaviour.

It is our view, however, that the desired behaviour is easily achieved via a simpler language feature, in
conjunction with our design for tracematches. The hypothetical cflowdepth(pc, n) pointcut calculates the
number of joinpoints in the current execution stack that match the pointcut pc. This would allow the above
example to be expressed as follows:

1 pointcut s a f e () : execution(∗ ∗ . s a f e ()) ;
2 pointcut unsafe () : execution(∗ ∗ . unsafe ()) ;
3 tracematch(int i){
4 sym enterUnsafe before (int i) :
5 unsafe ()
6 && cflowdepth(s a f e | | unsafe , i) ;
7 sym ex i tUnsa fe after (int i) :
8 unsafe
9 && cflowdepth(s a f e | | unsafe , i) ;

10 sym ca l lX before () :
11 ca l l (∗ ∗ . x ())
12 && cflowdepth(s a f e | | unsafe , i) ;
13 enterUnsafe ca l lX
14 { /∗ do something ∗/ } }

Because cflowdepth is clearly useful in its own right, we do not present it as an inherent part of our
tracematch design. In combination with the regular patterns of our tracematches, however, it obviates the
need for context-free patterns.

15

3.3 Matching a Pattern to a Trace

An important design decision concerns the filtering of traces to the events of interest. We have decided to
explicitly declare all “interesting” symbols, and restrict the trace to events that match one of these declared
symbols. The pattern is then matched against this restricted trace. This decision avoids cluttering the
pattern with spurious symbols for events that are irrelevant to the problem in hand. One subtle point is
that we never discard the last event of a trace: this last event must match a declared symbol. This is to
ensure that advice is only executed at the point a match occurs, and not at each ignored symbol thereafter.

One could consider defining the set of captured events implicitly as all events matched by symbols that
occur in the regular expression (as opposed to all symbols defined in the tracematch). However, with this
definition, it would not be possible to explicitly exclude certain events from the trace. If an event was
included in the regular expression then by definition it could appear in some matched trace, and if it didn’t
appear then it would be completely ignored. As shown in the examples, being able to exclude events is
highly useful.

3.4 Binding Variables

The most prominent feature of our tracematch design is the handling of variable bindings in the symbol
pointcuts: multiple occurrences of the same variable in the pattern must be bound to a single value that is
consistent across all the occurrences.

To see the rationale for this fundamental decision, note that variable bindings in tracematches serve two
important purposes:

• To give code in the advice body access to context values at the joinpoints matched by the tracematch
symbols. This is similar to variable binding in ordinary advice.

• To allow the tracematch to match traces in the behaviour of individual objects or groups of objects,
rather than just control-flow traces. This mechanism is vaguely related to per-clauses for ordinary
aspects (in the sense that these too associate pointcuts with individual objects) but serves a quite
different purpose, as it is binding together traces of events rather than merely selecting an aspect
instance.

As long as a variable is only bound once in a trace, it is simply bound to the corresponding value. When a
variable is bound more than once in the same trace (whether by the same symbol or by different symbols),
there are a number of options for what the behaviour could be:

• Re-bind the variable, so that the value seen by the advice is the one bound most recently in the
trace. This is similar to what is done for cflow pointcuts, where the values bound by the most closely
enclosing joinpoint are the ones seen by the advice.

• Check for equality with the previous binding. The pointcut is extended with an implicit condition
that the values bound must be the same as was previously bound to the same variables. If the value
is different, the pointcut does not match, so the trace is rejected. In this design, the first value that is
bound to a variable in a given trace is the only possible value for that variable.

• Allow multiple sets of bindings for any given trace. For any given set of bindings, events that cause
symbols to bind with different values are ignored in the same way as events that are not matched by
any declared symbols.

The last option here is the only one that fulfils the second purpose above. By viewing the trace as a set of
parallel, object-specific traces, the behaviour of individual objects can be easily captured by the tracematch.
As witnessed by the examples in Section 2, this is highly useful.

This mechanism can in most cases simulate the other two options mentioned above. To only capture the
last binding of a variable, rewrite the regular expression so that only the last binding is part of the match.

16

To check equality between bindings, bind the values to different variables and check their equality as an
extra condition in the advice body.

In defining the equality of values above, we have used primitive or reference equality (for primitive and
reference types respectively), corresponding to Java’s == operator. One could consider whether it would
be more appropriate to define equality for reference types by the equals() method instead. The distinction
here is between tracking an object and tracking a value. However, “tracking a value” does not really make
sense, since the fact that two objects are equal according the the equals() method does not in any way imply
that these objects are related in the data flow of the program. As the examples clearly show, the tracking of
particular object instances is very useful in capturing properties of the program data flow. Again, equality
between variables based on equals() can be checked by extra code in the advice body.

3.5 Behaviour with multiple matches

The same pattern can match a single execution trace in multiple ways, producing different variable bindings
for each match. Our decision is to execute the advice once for each of the variable bindings. A typical
example where this feature proved crucial is that of the Observer pattern, where multiple Observers are
notified upon a change in the Subject.

This decision was motivated by our desire to mimick the behaviour of multiple pieces of ordinary advice
that apply to the same joinpoint. From this perspective, it is natural that the advice body is executed
multiple times, once with each different set of bindings for the tracematch variables. It is possible that a
trace can match the regular expression in two different ways, but result in the same values being bound.
When this happens the advice is still executed just once for those particular values. It is the bound values
that distinguish the traces.

It is not obvious how to define the order in which the advice for the different bindings are executed, as
this involves the ordering of sets of values. One could consider using the structure of the way the trace was
matched or the order in which the values were bound to define an ordering, but this would not give a unique
ordering, since different values can be bound by identical traces, and the same values could be bound in
several possible ways. This means that any given ordering is not particularly intuitive, since it would be
based on some underlying mechanism which is not visible to the programmer. Ordering based solely on the
actual values bound to the variables is not possible in general, since some values might not have a natural
ordering. At least until more work is done on exploring implementations and applications, we have chosen
not to define any particular ordering on the execution of tracematch advice.

Matters get more complicated when the final symbol is an around symbol. Similarly to ordinary around
advice, around advice in tracematches can call the special method proceed() to invoke the original join-
point. If more than one trace matched at the same joinpoint, proceed() invokes the next match, and only
during execution of the final match does proceed() invoke the original joinpoint. It is permissible for the
advice body not to call proceed() at all, in which case the original joinpoint is skipped and no more matches
are executed. Similarly, if proceed() is called multiple times, the original joinpoint (or the following match)
executes multiple times.

Normally, proceed() takes no arguments. A sometimes confusing feature of AspectJ is that the pro-
ceed() call can be given arguments which are used to replace the original value of variables bound by the
pointcut. We provide an analogous feature in tracematches by the following mechanism. An around symbol
can optionally declare a signature for proceed() by giving a list of tracematch variables after the around
keyword (similarly to ordinary around advice but without the types). The actual values passed to pro-
ceed() then replace the values at the original joinpoint to which the corresponding variables were bound. In
the case of multiple matches, the following match sees the passed values as new values for the corresponding
tracematch variables.

If any final symbols declare such a signature, all final symbols must give the same list of variables, all
these variables must be bound by all of the around symbol pointcuts, and they must be bound by the same
binding constructs. This ensures that these variables have the same values for all possible matches at a given
joinpoint. Thus, if the advice always passes the parameters directly to proceed(), the behaviour is the same
as if no variables were specified.

17

3.6 Behaviour with multiple threads

So far, we have implicitly assumed that all programs to which tracematches are applied are single-threaded.
We need to define how tracematches behave in the presence of multiple threads. There are at least two
sensible behaviours that could be defined in this case: the first is to treat each thread like a separate
program, and match the traces of each thread individually. The second is to create a single trace of the
entire program, by interleaving the events of each thread. Our decision is to allow either behaviour, leaving
the choice to the programmer.

The first possible behaviour, matching thread traces independently, is useful where a tracematch needs
to detect patterns in control flow. Examples of this are to detect control flow patterns that are known to
lead to error conditions, or to enforce rules such as “a thread should not use an object of type X until it first
acquires a lock on it”.

The second possible behaviour, interleaving thread traces, can be used when a tracematch needs to
detect a pattern of events with reference to a particular object, for example to enforce typestate restrictions.
Examples include “all Connection objects must be in an open state before being used” or “only one thread
may have a lock on an object at a time”.

Because both of these behaviours have important uses, we allow the programmer to select the desired
behaviour. The default is to interleave events across threads, but we introduce a modifer, perthread, which
can be added to a tracematch declaration to declare that the traces of each thread should be matched
independently.

Both of these kinds of tracematches have their own sources of extra overhead compared to the single-
threaded version. For the thread-local version, we have to keep track of the tracematch matching state per
thread, using thread locals or hash maps mapping from the current thread, similar to what needs to be
done in the implementation of cflow pointcuts. For global tracematches, we need to make matching and
tracematch state tracking code synchronized in order to ensure that atomic events are properly interleaved.

4 SEMANTICS

We now pin down the meaning of tracematches so that it is possible to give a high-level description of their
implementation. We first define the semantics in a declarative manner, and then refine this into a more
operational semantics, geared towards defining a reference implementation.

4.1 Roadmap

Before diving into the formalities, we first give a brief roadmap, motivating our formal decisions later on.

Declarative semantics For a tracematch without variables, we match every suffix of the current trace
against the pattern. In doing so, the trace is filtered, by ignoring all events that do not correspond to any of
the declared symbols. The last event in the trace should, however, always correspond to a declared symbol:
this is just the requirement that advice is executed immediately when a match occurs. These three ideas
(suffixes, filtering, and last event declared) are the three key features of the declarative semantics.

To give a declarative meaning to a tracematch that has free variables, we read it as a template for all
possible instantiations, where each of the variables has been replaced by a specific runtime value (there may
be an infinite number of such instantiations). Each of these instantiations is a tracematch without variables,
and we have already given a meaning to those.

To illustrate these points, consider the tracematch in Figure 2. and the sequence of calls

v.f(); v.h(); w.g(); w.f(); v.g();

To keep the example short and manageable, we assume that each of f , g and h has void return type and an
empty body. A full trace of the above call sequence is shown in Figure 3.

18

1 tracematch (X x)
2 {
3 sym f before :
4 ca l l (∗ f (. .))
5 && target (x) ;
6 sym g after :
7 ca l l (∗ g (. .))
8 && target (x) ;
9

10 f g
11

12 { System . out . p r i n t l n (” fg ! ”) ; }
13 }

Figure 2: An example tracematch

As described above, the above tracematch should be seen as a template for all possible instantiations
assigning values to x. In this case it is clear that the only relevant values for x are x = v and x = w. Consider
first the instantiation x = v. Then the events relating to v.h(), w.g() and w.f() are all filtered out, and the
resulting trace is just [e1, e20] (labels given in Figure 3). Now e1 matches the symbol f with x = v, while
e20 matches the symbol g. Hence this matches the pattern f g, and the tracematch applies with binding
x = v.

Now consider the instantiation x = w. Then the only events in the trace that match one of the symbols
f and g with x = w are e12 and e13. Hence the filtered trace is [e12, e13]. This trace does not match the
pattern f g, and so the tracematch does not match with binding x = w. In fact, this also fails to match for
another reason: the last event e20 of the trace is filtered out, while a tracematch only matches if the last
event of the trace matches a declared symbol.

Now suppose that we added one more symbol to the declarations in the above tracematch, namely

1 sym g2 after :
2 ca l l (∗ g (. .)) ;

We leave the pattern unchanged, however. Consider the (only possible) binding x = v, as in the above
example. The filtered trace from Figure 3 includes the same events as before (e1 and e20), but this time
the exit event from w.g() (event e12) also matches g2. The filtered trace is therefore [e1, e12, e20]. This
no longer matches the pattern f g, and now the tracematch does not match the trace, solely because we
introduced a new declared symbol and therefore reduced the amount of filtering. The reader may wish to
check for him/herself that the new tracematch would match the event sequence generated by

v.f(); v.h(); w.f(); v.g();

The declarative semantics is formally defined in Section 4.2 (the definition of events, symbols and trace-
matches) and Section 4.3 (the definition of matching).

Operational semantics The definition of tracematches with free variables via all possible instantiations is
attractive, because it is simple and it gives us an effective way of reasoning about tracematches. It does not
give any guidance on their implementation, however.

Without variables, it is not difficult to see how an implementation might go. Alongside the base program,
we run a finite automaton. This finite automaton recognises precisely the language of the regular expression,
interspersed with events that do not match any of the declared symbols. Furthermore, construct the au-
tomaton to match t if some suffix of t matches the given pattern. Finally, we stipulate that only transitions
labelled with a declared symbol can enter a final state. This way the automaton captures all three of the
important elements of matching in the declarative definition (filtering, suffixes and last event declared).

19

e1 enter: call(void FG.f()) on v
e2 enter: execution(void FG.f()) on v
e3 exit: execution(void FG.f()) on v
e4 exit: call(void FG.f()) on v
e5 enter: call(void FG.h()) on v
e6 enter: execution(void FG.h()) on v
e7 exit: execution(void FG.h()) on v
e8 exit: call(void FG.h()) on v
e9 enter: call(void FG.g()) on v
e10 enter: execution(void FG.g()) on w
e11 exit: execution(void FG.g()) on w
e12 exit: call(void FG.g()) on w
e13 enter: call(void FG.f()) on w
e14 enter: execution(void FG.f()) on w
e15 exit: execution(void FG.f()) on w
e16 exit: call(void FG.f()) on w
e17 enter: call(void FG.g()) on v
e18 enter: execution(void FG.g()) on v
e19 exit: execution(void FG.g()) on v
e20 exit: call(void FG.g()) on v

Figure 3: An example trace.

While the base program is running, we keep a flag on each state of the automaton, to track whether the
current trace moves the automaton into that state. Note that as the transitions are labelled by symbols, and
an event can be matched by more than one symbol, the automaton can be in multiple states simultaneously
(a new event causes the automaton to take all matching transitions).

To start with, the flags are set on the initial states of the automaton. Because every trace can be a prefix
of an accepted trace, the flags on the initial states remain set to true at all times. Now when a new event e

happens in the base program, we match it against each of the symbols, and make the corresponding changes
to the flags: if there is a transition from s′ to s labelled with symbol a, if the flag on s′ is set to true, and if
a match the new event e, the flag on s is set to true. If no such transition to s exists, the flag on s is set to
false. When a final state becomes reachable, advice is executed.

Now how can this be modified to take free variables into account? We use the same automaton construc-
tion, but instead of boolean flags to indicate reachability, we use constraints. A constraint label on state
s records any assumptions made in reaching s with the current trace. One may think of a constraint as a
logical formula that combines assignments of values to variables (x = 1), as well as the negations of such
expressions (y 6= 1). In the same way we updated the boolean flags on states, so one can also update the
constraint labels. New equations of the form x = value are generated by AspectJ’s pointcut matching.

To capture filtering of declared symbols on account of wrong variable bindings (for instance, filtering out
e12 in the first example above), however, it is not enough to match only on declared symbols. We introduce a
new symbol skip to capture events that are ignored in the matching (either because they match no declared
symbol, or because of wrong variable bindings). The skip symbol matches exactly under the conditions that
cause all declared symbols to fail to match. In particular, if an event is not matched by any declared symbol,
then it is matched by skip. Also, if there exists one declared symbol that matches with variable binding
x = value, then skip matches with binding x 6= value. This is the way negative bindings are entered into
constraints.

There are thus two important ideas in the operational semantics: the use of constraints and the anything-
but-a-declared-symbol skip. Together they allow us to do the filtering of events incrementally, without
knowing the variable bindings in advance.

In Section 4.4, we make the above intuition precise, and we give a formal definition of skip. Then, in

20

Section 4.5, a formal proof is presented that the declarative and operational semantics coincide. To avoid
cluttering that proof, we shall already introduce constraints while discussing the declarative semantics in
Sections 4.2 and 4.3. In Section 4.6, we spell out the incremental computation of the constraints that label
the automaton states. Finally, in Section 4.7, all this is made concrete, by generating AspectJ code that
directly implements the operational semantics.

4.2 Events, Symbols and Tracematches

Events and Traces An event occurs when a joinpoint is either entered or left. Accordingly, we define:

event = {enter, exit} × joinpoint

A trace is then simply a finite sequence of events. An example trace is shown in Figure 3.

Constraints We shall model variable bindings as constraints, that is equations combined with the usual
logical connectives. In particular a constraint may be an equation between a variable and a runtime value,
x = v, or an inequation, ¬(x = v). We write C for the set of all constraints. For a given tracematch, the
relevant variables are those that are declared in its header.

Symbols The symbols defined in a tracematch are just AspectJ pointcuts. However, it will be convenient to
abstract away from the precise details of matching AspectJ pointcuts to joinpoints. We will model symbols
as functions from events to constraints:

symbol = event → constraint

For a symbol a (a pointcut) and an event e, the constraint a(e) defines the assignments of values to the
variables of a obtained when matching a to e. If the pointcut does not match, then a(e) = false.

For example, in the example tracematch shown in Figure 2 with the trace shown in Figure 3, we have
f(e1) = (x = v) and g(e12) = (x = w), while g(e1) = false and f(e20) = false (the symbols f and g are
defined in Figure 2).

We will assume that for any event e, if a variable x appears in the constraint a(e), then x is one of the
variables declared in the tracematch. This is clearly satisfied by pointcut matching.

A symbol s is said to be a ground symbol if for any event e, s(e) is either true or false. A ground symbol
can match or fail to match, but does not bind variables.

Tracematches A tracematch is defined as a list of variables, a list of symbols, a pattern, and finally the
body of the tracematch (code to execute when the pattern matches). The pattern is a regular expression
over symbols. However, as we are only concerned with defining the semantics of matching here, we may
ignore the body of the tracematch and define:

tracematch = variable set × symbol set × symbol regexp

We will fix a tracematch tm = (F, A, P) in what follows. Hence F is the set of free variables of tm, A is the
set of defined symbols, and P the pattern.

4.3 Semantics of Tracematches

Valuations A valuation is defined as a mapping from identifiers to runtime values, assigning values to each
of the free variables of the tracematch:

valuation = F → value

21

We define valuation on symbols as follows: the constraint resulting from matching σ(a) to an event e is
obtained by applying the valuation σ to a(e):

σ(a) = λe. σ(a(e))

In particular, as σ assigns a value to each variable occurring in a(e), σ(a(e)) is a simple truth value.

For example, recall that f(e1) = (x = v). If σ = {x 7→ v}, then σ(f)(e1) = (v = v) = true, while if
σ′ = {x 7→ w}, then σ′(f)(e1) = (v = w) = false (provided v and w are distinct).

Valuations are lifted to patterns (regular expressions of symbols) by applying the valuation to each symbol
in the pattern (in place).

Matching a trace to a word We define the match operator to take a sequence of symbols and a trace
of events, and evaluate to the constraint that must be satisfied for the symbols to match the trace. If the
number of symbols is the same as the number of events, the constraint is the conjunction of the constraints
obtained by applying each symbol to the corresponding event. If the sequence of symbols and the trace of
events are of different length, there can be no match, so the constraint is false. This can be written as:

match(〈a1, . . . , an〉, 〈e1, . . . , em〉) =
{

(∧i : 1 ≤ i ≤ n : ai(ei)) if n = m

false otherwise

Note that we use the notation (⊕x : P (x) : v) in lieu of its equivalent
⊕

P (x) v throughout.

The constraint that must be satisfied to match a trace to a sequence of symbols is just the conjunction
of all the individual constraints obtained by matching each event to each symbol. If every symbol ai is a
ground symbol, the result is either true or false.

Filtering Recall that any events that do not match any defined symbol in a tracematch are simply ignored
when matching. To formalise this, we define the event set of a tracematch, and the restriction of a trace to
this set.

The event set of a tracematch tm under a given valuation σ is defined to be the set Ω(tm, σ) of events
that are matched by some defined symbol in tm, with variable bindings compatible with the valuation σ.
Formally, we define:

Ω(tm, σ) := {e ∈ event | (∃a : a ∈ A : σ(a(e)) = true)}

Finally, we write the trace obtained from t by removing any events not in a set S as t�S.

We can now define the match of a sequence of symbols to a sequence of events relative to an alphabet S.
This is the match of symbols to events, ignoring any events not in S. A minor complication is that we must
ensure that the last event in the sequence lies in S. This ensures that events that are ignored do not cause
the tracematch to match repeatedly. We therefore define:

matchS(as, t) = (last t ∈ S) ∧match(as, t�S)

The match of a pattern (regular expression over symbols) to a sequence of events, still relative to an
alphabet, is the disjunction of the matches of all strings denoted by the pattern to the given sequence of
events:

matchS(p, t) = (∨as : as in the language of p : matchS(as, t))

The semantics of tracematches The semantics of tracematches can now be defined as follows. A trace-
match tm is modelled by a function

[[tm]] : trace → valuation set

To wit, [[tm]](t) returns the set of valuations that cause tm to match some suffix of t. The body of tm will
be executed exactly once for each such valuation.

22

Informally, the set of such valuations can be found as follows: replace the pointcut tm by the (possibly
infinitely many) pointcuts obtained by applying every possible valuation σ to tm. Each of these involve no
variables and can be matched against a trace straightforwardly. The result [[tm]](t) is the set of valuations
that cause tm to match (some suffix of) t.

This can be formalised as follows. Write u ≺ v to mean that u is a suffix of v. Then

[[tm]](t) =
{σ ∈ valuation | (∃t′ : t′ ≺ t : matchΩ(tm,σ)(σ(P), t′))}

4.4 Operational Semantics

We have defined the semantics of tracematches in terms of applying all possible assignments of values to
variables to a tracematch, and matching the resulting tracematches against a trace. We now wish to derive
a more operational semantics that allows the resulting valuations to be effectively computed, leading to an
implementation of tracematch matching.

Alphabet As before, A is the set of symbols that are explicitely declared in the tracematch. In addition, we
introduce a symbol skip intended to capture both events that match no declared symbol (and so are ignored
in matching), and events that could match some declared symbol but are ignored because of inconsistent
variable bindings. This is defined by:

skip(e) :=
¬(∨a : a ∈ A : a(e)) =
∧a : a ∈ A : ¬a(e)

The constraint skip(e) defines the set of valuations that make e match no defined symbol a. We write
Σ = A ∪ {skip}.

To illustrate, consider the event e1 (see Figure 3) that occurs upon entering the call v.f(). Here we have
f(e1) = (x = v) and g(e1) = false, whence

skip(e1) = ¬(x = v ∨ false) = (x 6= v)

Pattern We now aim to construct a finite automaton to implement matching of traces. To achieve this, it
is necessary to transform the pattern P appearing in the tracematch to allow skip to occur.

For two sets of strings U and V , write U ||| V for the set of all possible interleavings of strings in U and
V . It is easily checked that the class of regular languages is closed under interleaving.

The transformed pattern of the tracematch, named Pat, is the regular language

Pat = Σ∗(P ||| skip∗) ∩ (Σ∗A)

A string s lies in Pat precisely when some suffix of s, possibly interleaved with some occurrences of skip
representing ignored events, matches P . In addition, it is required that s end with a declared symbol (not
skip).

To illustrate, for the tracematch shown earlier, P = fg, A = {f, g}, whence Σ = {f, g, skip}. Then
Pat = Σ∗fskip∗g.

Executing advice We wish to execute advice whenever the current trace matches the pattern Pat. Unlike
the declarative semantics described previously, there is no need to filter the trace (as skip symbols deal with
events not in the alphabet) or to consider suffixes of the trace. We therefore execute the advice body for
each solution of the constraint:

match(Pat, t)

Of course, if the constraint is false, there are no solutions and the advice body is not executed at all.

23

event symbol constraint
e1 enter: call(void FG.f()) f x = v

e2 enter: execution(void FG.f()) skip true
e3 exit: execution(void FG.f()) skip true
e4 exit: call(void FG.f()) skip true
e5 enter: call(void FG.h()) skip true
e6 enter: execution(void FG.h()) skip true
e7 exit: execution(void FG.h()) skip true
e8 exit: call(void FG.h()) skip true
e9 enter: call(void FG.g()) skip true
e10 enter: execution(void FG.g()) skip true
e11 exit: execution(void FG.g()) skip true
e12 exit: call(void FG.g()) skip x 6= w

e13 enter: call(void FG.f()) skip x 6= w

e14 enter: execution(void FG.f()) skip true
e15 exit: execution(void FG.f()) skip true
e16 exit: call(void FG.f()) skip true
e17 enter: call(void FG.g()) skip true
e18 enter: execution(void FG.g()) skip true
e19 exit: execution(void FG.g()) skip true
e20 exit: call(void FG.g()) g x = v

Figure 4: Matching a trace to a word.

As an example, Figure 4 shows a match between the trace given in Figure 3 and the string fskip18g ∈ Pat,
together with resulting constraints. The complete constraint is (x = v) ∧ (x 6= w) ≡ (x = v) (assuming v

and w are distinct), whence the advice is run once, with valuation x 7→ v.

4.5 Equivalence of the Semantics

We have defined two semantics for the match of a tracematch tm to a trace t, which we now reconcile. The
two results of matching tm to t were defined as: the set of valuations

S = {σ | ∃t′ : t′ ≺ t : matchΩ(tm,σ)(σ(P), t′)}

and the constraint
c = match(Pat, t)

As a notational convenience, we identify a constraint with the set of valuations that satisfy it. We therefore
need to show that σ ∈ S ⇐⇒ σ ∈ c.

The proof is founded on the following crucial observation about our definitions. If we fix a valuation σ,
then for each event e,

e ∈ Ω(tm, σ) ⇐⇒ ∃a : a ∈ A : σ ∈ a(e) ⇐⇒ σ 6∈ skip(e) (1)

The first equivalence is just the definition of Ω, and the second equivalence follows directly from the definition
of skip. We denote the concatenation of sequences r and s by r ++ s.

(σ ∈ S ⇒ σ ∈ c) Let σ ∈ S. Then we can split t into p and q such that t = p++q and matchΩ(tm,σ)(σ(P), q) =
true. By the definition of match, there exists a sequence of symbols as = a1 . . . an in the lagnuage P such
that

(last(q) ∈ Ω(tm, σ)) ∧ match(σ(as), q �Ω(tm, σ))

24

Let q′ = q �Ω(tm, σ). First note that as match(σ(as), q′) = true, it is the case that σ ∈ match(as, q′).

Now, consider an event qi of q. Then there are two cases: either qi ∈ Ω(tm, σ), or qi is not in this set.
In the first case, qi is part of q′, say it appears at position j. Then by observation (1), σ ∈ aj(qi). In the
second case, again by observation (1), σ ∈ skip(qi). Therefore, it is clear that σ ∈ match(as ||| skip∗, q).

Also, as a consequence of observation (1), for any event e and valuation σ, there exists some a ∈ Σ
such that σ ∈ a(e). Hence σ ∈ match(Σ∗, p). Finally, last(q) ∈ Ω(tm, σ), so we can conclude that σ ∈
match(Σ∗(P ||| skip∗) ∩ Σ∗A, p ++ q), as required.

(σ ∈ c ⇒ σ ∈ S) Since σ ∈ match(Σ∗(P ||| skip∗) ∩ Σ∗A, t), we know that last(t) ∈ Ω(tm, σ), and we can
split t into p and q such that t = p ++ q and σ ∈ match(P ||| skip∗, q). Then q is an interleaving of two
strings of events r and s such that σ ∈ match(P, r) and σ ∈ match(skip∗, s). Since P is over the alphabet
A, for each event ri of r, ∃a : a ∈ A : σ ∈ a(ri), so ri ∈ Ω(tm, σ). For each event si of s, σ ∈ skip(si),
so si 6∈ Ω(tm, σ) (by observation 1). Therefore, r = q �Ω(tm, σ). Hence, matchΩ(tm,σ)(σ(P), q) = true, as
required.

4.6 From Semantics to Implementation

It is relatively straightforward to derive the implementation from the operational semantics defined above.
The main difficulty is to compute match(Pat, t) for the current trace t efficiently at runtime.

Let M be an automaton for Pat. For each state s of M , define L(s) to be the language obtained by
making s the only final state.

During execution, each state s of M is labelled by the constraint

lab(s, t) = match(L(s), t)

, where t is the current trace. It is shown below how to update these constraints when a new event is
appended to the current trace. After we have computed the new decorated version of M , the advice body is
executed for all distinct solutions of

∨s : s is a final state of M : lab(s, t)

Computing Labelled States We now turn to the question of how to compute lab(s, t) efficiently, making
an update when the trace t is extended by another symbol.

We define lab(s, t) by recursion on t. The base case is

lab(s, ε) := match(L(s), ε) =

{

true if s is an initial state
false otherwise

Now assume that we have computed lab(s, t) for a trace t, and we want to know its new value lab(s, te)
for an extended trace te. Write s′ →a s to indicate that there is a transition labelled a from s′ to s in M .
Then for all states s, it is straightforward to derive that

lab(s, te) = ∨a, s′ : a ∈ Σ ∧ s′ →a s : lab(s′, t) ∧ a(e)

This is almost ready to translate into executable code, but note that the formula treats declared symbols and
the newly introduced symbol skip on the same footing. That is not quite possible in the implementation,
for we have an explicit pointcut that corresponds to each a ∈ A, but not for skip. We therefore split off
skip as a special case. Since Σ = {skip} ∪ A, the above formula may be rewritten as

lab(s, te) = (∨s′ : s′ →skip s : lab(s′, t) ∧ skip(e))
∨ (∨a, s′ : a ∈ A ∧ s′ →a s : lab(s′, t) ∧ a(e))

(2)

Our strategy upon occurrence of a new event e, then, is to first compute skip(e), and subsequently to apply
the above formula.

25

4.7 A Reference Implementation

This abstract reference implementation may, at first sight, appear expensive. Note, however, that in AspectJ
most of the pointcut matching the computation of e(a)) can be carried out statically [18], and consequently
the above transition from lab(s, t) to lab(s, te) is also mostly static: it can be pre-computed at compile-time,
except for variable bindings.

Let us assume that there is some suitable implementation of constraints, through a class called Constraint.
It is worthwhile to generate a specialised implementation for each tracematch, but for simplicity we assume
it is generic. The Constraint type has the obvious operations for the logical operations. A new equality
constraint is generated by the static factory method eq(varname, value).

The key step is the computation of lab(s, te) from lab(s, t) for all states s, whenever the trace t is
extended by one event. The implementation maintains variables labs and labs′ for each state s — the value
of labs is lab(s, t) for the current trace, and labs′ is an intermediate result in the computation of lab(s, te).
Furthermore, a variable skip is used to store the constraint skip(e) for the current event e.

This computation is done in two stages: the first stage computes labs′ as the disjunction of all labsj ∧
skip(e), where sj →skip s. That is the first part of Equation (2). The second stage adds disjuncts for each
matching symbol (thereby computing lab(s, te) completing the formula given in Equation (2)).

It is straightforward to define an action to be taken when a symbol a matches: it suffices to define a piece
of advice with pointcut a. Furthermore, variable bindings are given by AspectJ’s advice mechanism.

Suppose that the defined symbols of the tracematch are named pointcuts a1(vs1), . . . , an(vsn) (where
for each i, vsi is the list of variable names bound in ai). Define a pointcut

some : a1(∗) ∨ a2(∗) ∨ · · · ∨ an(∗)

that matches when some of the ai do, ignoring variable bindings. Also, for a list of variable names vs and a
list of runtime values os, let eqs(vs, os) denote the constraint (∧ : 1 ≤ i ≤ |xs| : eq(vsi, osi)).

Then the pseudocode for the implementation of a tracematch is the following aspect:

1 aspect Tracematch
2 {
3 // For each i n i t i a l s t a t e s j (1<=j<=N)
4 private Constra int l a b s j = true () ;
5 private Constra int l ab s jp = fa l se () ;
6 // For each non− i n i t i a l s t a t e s j (1<=j<=N)
7 private Constra int l a b s j = fa l se () ;
8 private Constra int l ab s jp = fa l se () ;
9

10 private Constra int sk ip = true () ;
11

12 // Pass I
13 // f o r each symbol a i (1<=i<=n)
14 a i (y1 , . . . , yk) :
15 { sk ip = and(skip ,
16 not (eqs (vs i ,
17 [y1 , . . . , yk]))) ; }
18

19 some :
20 { for each s t a t e s j
21 l ab s jp = fa l se () ;
22 for each s t a t e s l with s l −>sk ip s j
23 l ab s jp = or (lab s jp ,
24 and (l ab s l , sk ip)) ;
25 sk ip = true () ; }
26

27 // Pass I I
28 // For each symbol a i (1<=i<=n)

26

29 a i (y1 , . . . , yk) :
30 { for each s t a t e s j
31 for each s t a t e s l with s l −>a i s j
32 l ab s jp = or (lab s jp ,
33 and (l ab s j ,
34 eqs (vs i ,
35 [y1 , . . . , yk]))) ; }
36

37 some :
38 { for each s t a t e s j
39 l a b s j = l ab s jp ;
40 for each f ina l s t a t e s j
41 for each s o l u t i o n s o f l a b s j
42 run the adv ice body
43 with b ind ings s }
44

45 }

This pseudocode cannot be directly expanded into AspectJ. For, we have omitted to consider the before,
after or around qualifiers for each piece of advice. These have an impact on advice precedence, and we
must ensure that the events described above happen in exactly this order at each event.

There are two ways to remedy this. The first is a more careful source-to-source translation that takes
these into account. In this case, the some advice may be duplicated into before and after versions. Note
that any event is unambiguously matched by one of before and after, but never both, so that we can freely
perform this duplication. The case of around advice does not require duplication of this advice, by our
requirement that if any final symbol is of type around, then all possible final symbols are.

The other strategy for a concrete implementation is to implement tracematches as an extension to advice
weaving, and to insert the above code at the appropriate points directly.

Finally, the main aim of the above translation is clarity, but it should be obvious that opportunities for
further specialisation of the code abound. We shall explore these and related issues in Section 5.

An Example To conclude this section, we illustrate the translation of tracematches into AspectJ with an
example. Recall the Observer example from Section 2. The code is repeated below for ease of reference:

1 aspect ObserveAspect
2 {
3 tracematch(Subject s , Observer o){
4 sym c r e a t e ob s e r v e r
5 after returning (o) :
6 ca l l (Observer .new (. .)) &&
7 args (s)
8 sym update sub jec t after :
9 ca l l (∗ Subject . update (. .)) &&

10 target (s) ;
11 c r e a t e ob s e r v e r update sub jec t ∗
12 {
13 o . update view () ;
14 }
15 }
16 }

For brevity, call the creation event c and the update event u. The set of declared symbols is A = {c, u}. The
finite automaton implementing the pattern Pat derived from this tracematch is shown in Figure 5. State 1
is the only initial state, and state 2 is the final state.

The concrete implementation of the pseudocode for this tracematch is given below (taking the source-to-
source transform approach):

27

� � �
�

�

�

� � �

�

�

Figure 5: The automaton for the obs tracematch.

1 aspect ObserveAspect
2 {
3 private Constra int lab1 = true () ;
4 private Constra int lab1p = fa l se () ;
5 private Constra int lab2 = fa l se () ;
6 private Constra int lab2p = fa l se () ;
7 private Constra int lab3 = fa l se () ;
8 private Constra int lab3p = fa l se () ;
9

10 private Constra int sk ip = true () ;
11

12 pointcut c (Subject s) :
13 ca l l (Observer .new (. .)) && args (s) ;
14 pointcut u(Subject s) :
15 ca l l (Subject . update (. .)) && target (s) ;
16

17 pointcut some () : c (∗) | | u (∗) ;
18

19 after (Subject s) returning (Observer o) :
20 c (s) {
21 Constra int cons t r =
22 and (eq (” s ” , s) , eq (”o” , o)) ;
23 sk ip = and (skip , not (cons t r)) ;
24 }
25

26 after (Subject s) : u (s) {
27 Constra int cons t r =
28 eq (” s ” , s) ;
29 sk ip = and (skip , not (cons t r)) ;
30 }
31

32 after () : some () {
33 lab1p = fa l se () ;
34 lab2p = fa l se () ;
35 lab3p = and(lab2 , sk ip) ;
36

37 sk ip = true () ;
38 }
39

40 after (Subject s) returning (Observer o) :
41 c (s) {
42 Constra int cons t r =
43 and (eq (” s ” , s) , eq (”o” , o)) ;
44 lab2p = or (lab2p , and (lab1 , cons t r)) ;
45 }
46

47 after (Subject s) : u (s) {

28

48 Constra int cons t r =
49 eq (” s ” , s) ;
50 lab2p = or (lab2p ,
51 or (and (lab2 , cons t r) ,
52 and (lab3 , cons t r))) ;
53 }
54

55 after () : some () {
56 lab1 = lab1p ; lab2 = lab2p ; lab3 = lab3p ;
57 for (s : lab2 . s o l s ()) {
58 adviceBody ((Subject) s . valOf (” s ”) ,
59 (Observer) s . valOf (”o”)) ;
60 }
61 }
62

63 void adviceBody (Subject s , Observer o) {
64 o . update view () ;
65 }
66

67 }

This highlights a clear optimisation — avoid recomputation of the constraints for each symbol by storing
the value between the execution of the first and second pieces of advice for that symbol. This has been left
out for clarity.

5 IMPLEMENTATION

We have implemented our design as an extension to abc, the extensible AspectJ compiler [1]. abc uses
Polyglot, an extensible Java compiler [20], as its front-end. Polyglot works by defining a number of passes
that transfrom the abstract syntax tree (AST). The source transformer of our extension is defined as such a
polyglot transformation pass. This pass transforms the tracematch specific AST nodes into pure AspectJ,
which is then compiled by abc.

The implementation given in the previous section is almost complete: it remains to decide on a concrete
representation of the abstract type of constraints. We chose the simplest option, namely keeping the logical
formula in disjunctive normal form. Below we shall refer to each component of that normal form as a disjunct:
a constraint is a represented as a set of disjuncts. The type of disjuncts is specialised to the free variables of
a tracematch. That is, a disjunct has a flag for each variable to say whether it is bound, and if not, a set of
values it should not be equal to. If the flag is true, then the disjunct records the value bound.

5.1 Avoiding Space Leaks

A naive implementation of tracematches has the possibility of introducing memory leaks into a program.
For example, consider the following tracematch which matches if a certain sequence of calls is made on an
object.

1 tracematch {
2 sym f i r s t c a l l after (Object o) :
3 ca l l (Object +.method1 ()) &&
4 target (o)
5 sym s e c on d c a l l after (Object o) :
6 ca l l (Object +.method2 ()) &&
7 target (o)
8 f i r s t c a l l s e c on d c a l l
9 {

10 System . e r r . p r i n t l n (”Error ! ”) ;

29

11 }
12 }

The obvious tracematch compiler implementation would store a reference to every object that ever had
method1() called on it to detect any subsequent calls to method2(). The problem is that if the base program
calls method1() and then discards its references to the object, the second symbol will never match, but a
reference to the object is still held by the tracematch implementation. This is not necessarily obvious to the
programmer. Therefore, an implementation should use weak references as part of its strategy.

One can make the following observations. If an object is no longer referenced by the base program, sym-
bols that bind the object cannot match. This means as far as the matching is concerned, the implementation
only needs to keep weak references to the bound objects. If such a weak reference becomes invalid, a disjunct
can be discarded if it is guaranteed that all paths through the DFA to a finishing state contain a transition
that binds the same variable, because this transition can never be made. A disjunct can always use weak
references for the values in the ’not’ sets. Whenever one of these becomes invalid, it should be removed from
the set as we can be certain that the corresponding variable will never be bound to that value.

However, if the variable is used in the tracematch body, it must be ensured that if the body is executed,
the object is still alive. In this case, the implementation must keep a strong reference to the object if there
is some path through the DFA to a finishing state that does not include a transition that binds the variable.

Given an implementation that follows the above strategy, it is useful to classify tracematches in terms
of their memory behavior. Particularly, we want to detect if a tracecut could potentially lead to a memory
leak. Tracecuts that cannot lead to memory leaks will be referred to as safe.

There are two classes of memory leaks to consider with tracematches.

• Leaking bound objects. The tracematch implementation potentially never releases bound objects.

• Leaking disjunct objects. The tracematch implementation creates an unbounded number of disjunct
objects which are possibly never released.

Whenever the implementation creates a strong reference to a bound object, there is the potential for a
memory leak of the first category. However, as long as at least one of the references held by the disjunct
is weak and a future state is guaranteed to depend on this reference, this disjunct will be cleaned up when
that reference becomes invalid, thus eliminating the strong reference.

If a simple value is bound by a tracematch variable, disjuncts cannot be discarded based on an invalid
reference, so stricter safety rules are required. Furthermore, if a bound reference value is null, the same
problem occurs. Generally, nullness cannot be determined at compile time.

Based on the above observations, we formulate the following safety conditions. First, to be safe in terms
of null references, one of the following must hold.

• Only one tracematch variable with reference type is used

or

• Reference values bound by symbols that are not strictly final are not null at runtime.

To establish the latter, the compiler should do a simple nullness analysis for bound reference values. If the
compiler cannot establish non-nullness, the safety condition is only partially fulfilled. To avoid this, the
programmer can satisfy the nullness analysis by explicitly testing for null in an if pointcut.

If one of the above conditions holds, a tracematch is safe if

• Simple values are only bound by finishing symbols.

and

• No tracematch variables with reference types are used in the body or at least one tracematch variable
with a reference type is bound by all finishing symbols. As soon as the object referenced by this variable
is collected, the disjunct can be discarded.

30

This safety classification is a conservative one. It is possible for a programmer to construct a tracematch
based on knowledge about the base program that is classified as unsafe but does not produce memory leaks.
Therefore, an implementation should allow unsafe and partially safe tracematches, but issue a warning.

5.2 Executing advice

The implementation described in the previous section did not go into the details of how advice is executed
once the matches have been found. The DNF representation of constraints means that each solution to a
constraint can be obtained from the solution to a single disjunct (and similarly each disjunct’s solution is a
solution to the whole constraint). After the constraint for each state has been updated, the implementation
needs to take the set of disjuncts for each final state and extract the substitutions needed to solve that
disjunct. The advice is then executed for each of those substitions.

Conceptually, the repeated execution of the tracematch’s advice is equivalent to the execution in AspectJ
of multiple copies of the same advice body at the same joinpoint. However, as the number of matches is
only determined at runtime, we have to simulate the effects of this ourselves.

If the final symbol in the trace is before or after, the implementation is straightforward; it simply needs
to iterate through the list of substitutions, running the tracematch’s advice once for each.

The only complication is that the set of disjuncts in each constraint must first be duplicated, in case the
advice itself contains joinpoints that cause transitions in the DFA, thus modifying the constraint.

Executing around advice is somewhat more complicated, because it must be run in a nested fashion if
there are multiple substitutions, in the same way as for multiple pieces of normal AspectJ around advice
applying at the same joinpoint. A call to proceed should execute the advice again with the next substitution,
and when the last substitution has been executed, the original joinpoint should be invoked. As with ordinary
around advice, the execution should return to where it left off before proceed was called. Also, the advice
may call proceed an arbitrary number of times, or wrap it within a closure object for later execution.

To achieve the described behavior, the implementation creates a specialized method that takes in a stack
of substitutions and has the same return type as the around symbol. When the stack is non-empty, the top
of the stack is removed and used to provide the substitution needed to execute the code block. Any calls to
proceed in the advice are replaced with recursive calls to this generated method, passing in the remainder
of the stack. Before the method returns, the current substitution is restored to the top of the stack to allow
proceed to be called multiple times in the advice. When the stack is empty, a genuine call to proceed is
made, resulting in the execution of the original joinpoint.

As described in Section 3.5, it is possible to define a signature for around which allows the modification
of bound values in the call to proceed, before they reach the join point. If such a signature is defined, the
implementation adds the corresponding parameters to the specialized method and to the advice method. For
the first call to the method, the corresponding values from one of the substitutions are taken as arguments.
Note that the choice of substitution is irrelevant since our restrictions on which variables can be part of
the signature ensure that these variables have the same values for all substitutions. When the specialized
method calls the advice method, it passes on its arguments, and when the advice method in turn calls the
specialized method, it passes the values specified by the programmer in the proceed call.

6 Optimisations

A key issue in the design of a language feature is the balance between being sufficiently expressive to be
practical, while being restrictive enough to make it possible to reason about the code (both by humans and
by automated tools). As we have seen in Section 2, many useful tracematches can be expressed with our
design. At the same time, a key goal of our design is to provide enough information to enable compiler tools
to analyze tracematch behaviour and optimize their implementation. In this section, we propose analyses
and optimizations that our design makes possible, and that we intend to implement in the future.

The state that a tracematch implementation must represent at run-time is a set of configurations of the

31

form (q, σ), where q is a state of the machine M matching Pat, and σ is the partial substitution of actual
run-time values for tracematch variables that were implied by the events that caused M to transition to the
state q. Whenever the executing program encounters a joinpoint matching a symbol of the tracematch (an
event), and the variable bindings are consistent with σ, the state q is changed to the appropriate successor
in M , and the substitution σ is updated with any new bindings implied by the match. In optimizing the
implementation of tracematches, our goal is to reduce the size of set of configurations that must be maintained
by removing configurations which can be proven to never lead to an accepting state.

Let us begin by considering the simple case of a tracematch with no tracematch variables. In this case,
every substitution is empty, so a configuration is just a machine state q. By identifying joinpoint shadows
in the program where each symbol may match, and by performing an interprocedural control-flow analysis
of the program, an analysis can construct a finite state machine N modelling the possible executions of the
program. Each state p in N is a joinpoint shadow matching a symbol m(p) of the tracematch, and there
is a transition from state p to p′ if there is a potential control-flow path from the joinpoint shadow p to
the joinpoint shadow p′, passing through no other shadow matching any tracematch symbol. Then, when
the program execution is at a joinpoint shadow p0, and the tracematch is in state q0 of M , it is possible
to reach an accepting state of M only if there is a sequence of joinpoint shadows p0, p1, . . . , pn such that it
both is a path in N , and that following the transitions m(p0), m(p1), . . . , m(pn) in M starting from q0 leads
to an accepting state. This can be determined at compile time by intersecting the automata M and N . If
it is not possible to reach an accepting state of M , then at p0, the compiler can generate code to omit the
configuration q0 from the set of configurations.

1 L i s t l ;
2 I t e r a t o r i ;
3

4 while (cond i t i on) {
5 l = new ArrayList () ;
6 l . add (” foo ”) ;
7 i = l . i t e r a t o r () ;
8 while (i . hasNext ()) {
9 System . out . p r i n t l n (i . next ()) ;

10 }
11 }

Figure 6: Example use of safe iterator tracematch

Dealing with tracematch variables requires a more sophisticated analysis, because whether a joinpoint
shadow matches a tracematch symbol depends on the values of the tracematch variables. Optimizing even
relatively simple tracematches requires analysis of the flow of these values and flow-sensitive alias information.

Consider, for example, the short program fragment in Figure 6, to which we apply the safe iterator
tracematch from Section 2. The example creates a collection, adds an element to it, and iterates through it,
all repeated within a loop. In an actual application, such code would likely be interspersed with other code,
and most likely spread out in different methods, but the general pattern of operations is fairly typical.

In a naive tracematch implementation, each time an iterator is created, a new configuration would be
created binding the tracematch variable ds to the current list object, and the tracematch variable i to the
iterator object just created. If an analysis could statically prove that the list will not be updated between the
creation of the iterator and a call to next() on the iterator, the tracematch would be known never to apply,
and the configuration would not have to be created. An analysis cannot prove this without information
about the values of l and i, however, because if l and i could arbitrarily point to any object, it would be
possible to create an iterator in line 7 of the first iteration of the loop, and in a second iteration, add an
element to the same list in line 6, and call next on the iterator in line 9.

To prove iterator safety for this simple example, an analysis would need to either know that the list to
which an element is added in line 6 is distinct from every list on which an iterator has ever been created
in line 7 in earlier loop iterations, or that the iterator on which next is called in line 9 is the iterator that

32

was created in line 7 of the same iteration of the loop, and that it is distinct from all other iterators created
earlier in the program. Obtaining this information requires a flow-sensitive analysis to track the flow of
objects through the program and determine whether objects are definitely equal (like a must alias analysis)
or definitely distinct (like a may alias analysis). However, optimizing tracematches requires more information
than an alias analysis can provide. While a traditional alias analysis determines the aliasing relationships
between different variables at the same point in the program execution, optimizing tracematches requires
knowing whether a variable points to the same or different object as some variable pointed to at a different,
earlier point in the program execution. Such information could be obtained by starting with alias information
about the earlier program point, and propagating it along all control flow paths to the later program point.
We leave further development of such an analysis to future work.

7 RELATED WORK

It has long been recognised that history-based advice is a powerful and desirable feature in aspect-oriented
programming. The contribution of this paper is to enhance the previous proposals through trace filtering and
consistent variable bindings, as well as a seamless integration into AspectJ. Below we discuss these previous
proposals, and we pin down how our own design differs from them. We also briefly review some related work
in property checking — although the techniques are not called ‘aspect-oriented’, there are many overlapping
ideas.

Douence et al. History-based advice first came to our attention through the work of Douence, Fradet,
Motelet and Südholt [7–10]. In these works, they put forward a calculus of aspects, where advice can be
triggered via a sequence of joinpoints. The syntax of their history advice is

A ::= µa.A recursion
| C . I; a base case of recursion
| C . I; A sequencing
| A�A choice

The first form is a recursive definition; the base case of such a recursion is the second form, where a stands
for the recursive call. Both in the second and third form, C stands for a pointcut, and I for a piece of
advice. Intuitively, if a joinpoint matches C, the advice I is executed, and control transfers to a (recursion)
or A. Finally, A1�A2 offers the environment a choice between two pieces of history advice A1 and A2: if A1

succeeds, that is the preferred option, and A2 executes only when A1 fails.

As a concrete example, consider the history advice below, which is taken from [9]. It logs file accesses
during a session (from a call to login to a call to logout):

µ a1 . login . skip

(µ a2 . (logout . skip ; a1)
�

(read(x) . addLog(x) ; a2))

The reader is encouraged to contrast this formulation with the contextual logging example presented in
Section 2.

As a formal calculus, the work of Douence et al. is more geared towards a formal understanding, and
somewhat less towards a production programming language than ours. Nevertheless, there are clear similar-
ities in the design: in particular, because only tail-recursive definitions are allowed, the patterns of execution
are essentially regular languages.

An important difference is the association of a piece of advice with every pointcut. In our setting, this
would mean that every symbol declaration has an associated piece of code. Clearly this is very powerful,
but it also makes it very difficult to track what is happening in the matching process, especially when the
advice has side effects. As we did not find any need for such expressiveness in our examples, we decided to
eschew those complications.

33

A second important difference concerns the treatment of the choice operator. In the design of Douence et
al., (�) is asymmetric, favouring the left-hand component where possible. In our proposal R|S and S|R are
equivalent patterns. Furthermore, if both R and S match, that may result in multiple variable bindings, and
the advice is executed once for each binding. Several of the examples in Section 2 (in particular Observer
and Connection Management) make essential use of such multiple bindings.

A very nice feature of the design of Douence et al. is that it enables interesting static analysis to
determine possible interactions between aspects [9]. Based on the close similarities with our work, we are
fairly confident that their results can be transferred to our setting, and implemented in abc.

There exists at least two implementations of the design of Douence et al., namely in the JaSCo [22] (an
integration with Java), and in the Arachne system [11]. Applications of the former are discussed in [5] and
of the latter in [12]. Especially the examples of [12] provide strong indication of the importance of matching
with variables as we have defined it: in that paper, the code is littered with explicit equality tests between
variables. In tracematches, such equality tests are expressed by simply using the same variable multiple
times.

Walker and Viggers The term ‘tracecuts’ was introduced by Walker and Viggers in [23]. Unlike the works
discussed above, their design has also been integrated with an implementation of AspectJ. It is particularly
interesting, therefore, to compare our design decisions to theirs.

An obvious difference is that their design uses an extension of context free grammars to define the set
of traces to match, rather than the regular expression presented here. The set of languages used are not
strictly context free, however. A ’semantic action block’ can be associated with each token, to be executed
whenever a current joinpoint matches a token. This block has access to information about the trace matched
so far and can reject a match using the fail keyword, which results in the computation continuing as if the
joinpoint had not matched the token. The presence of these blocks removes any restrictions on the set of
languages that can be used to identify matches. We believe there is merit in restricting the set of languages
that is recognised, not least from the point of view of program analysis: while it is trivial to decide whether
one regular language is included in another, the problem is undecidable for context-free languages.

These semantic action blocks can also have side effects, which complicate the relationship between the
tracecuts and the original program. Without side-effects, a tracecut simply observes the execution of the
base program until the point where a match is discovered (so if a match is never found then the behaviour
of the program is not altered.) When side-effects are allowed, a tracecut may interact with and modify the
behaviour of the base program during the matching process, making them more complex than straightforward
observers.

Another important difference is the way variable bindings are used. In Walker and Viggers’ design, no
context from a trace is stored automatically, but semantic action blocks can be used to explicitly store
context. With this method, the automata do not need to take the values collected by a pointcut into account
when deciding whether a token should match, instead they pass all the values into the semantic action blocks,
which can use them to decide whether or not to accept a match, and optionally store them for later use.

This behaviour means that each tracecut only binds a single set of values at a time. As a result, tracecuts
cannot be used to simultaneously track the behaviour of a set of individual objects, but only that of the entire
program. This limitation means that most of the example tracematches given above that bind variables can
not be expressed in their design.

The last important difference is that where the design above presents tracematches as a kind of higher-
order operator over pointcuts, tracecuts are just another type of pointcut. This is made possible by treating
a ’match’ as a predicate rather than and event, as discussed previously. The most significant effect of this
is that it permits one tracecut to be used in the definition of a token in another tracecut. That is, instead
of specifying a trace directly as a sequence of events, it is specified in terms of a sequence of completions
of other traces (which are themselves specified in this way). This idea is not possible in our design, where
tracematches can result in multiple sets of variable bindings, because allowing tracematches to be used as
pointcuts would break all constructs that assume a pointcut binds each of its variables to exactly one value.

34

Bockish et al. In [3], Bockish, Mezini and Ostermann put forward a very general notion of pointcuts
that capture dynamic properties. Their proposal is implemented in the Alpha language [21]. Alpha provides
Prolog queries over a rich representation of the program, including a complete representation of the execution
history up to the current joinpoint. It thus provides a flexible testbed for experimenting with radical new
pointcut idioms, albeit without regard for efficiency of the implementation. We believe it would be easy
to implement our design for tracematches in Alpha, although such an implementation cannot rival the
compilation techniques discussed here.

Property checking Recent years have seen a veritable explosion of work that aims to verify, either dynam-
ically or statically, the correct usage of an API. The Safe Iterators example in Section 2 is a typical instance
of the type of property involved. These works on property checking are almost entirely disjoint from the
aspect-oriented programming community.

Typically one specifies erroneous traces in a separate specification language, and then the specification
is statically checked against the code, or dynamic tests are woven in as appropriate. Examples of this line
of work are [2, 14].

An important difference with the proposal discussed here is that tracematches are intended as a feature
that is fully integrated in the programming language, here AspectJ. AspectJ has some very weak support
for static checking of properties, namely the declare warning and declare error constructs. These take a
pointcut and a message: when the pointcut is matched at compile-time, the error message is printed. An
obvious generalisation is to provide trace versions of these constructs, and then the formalism is very close
in expressive power to the works cited above. Such a feature would require a static analysis similar to the
one discussed in Section 6.

Bodden In [4], Bodden introduces the notion of concern-specific languages (CSLs), which are specific to
a cross-cutting concern like domain-specific languages are specific to a domain. He considers the concern
of Runtime Verification, and shows how it can be implemented with an example language, namely linear-
time temporal logic (LTL) over pointcuts. The language thus defined allows checking of certain run-time
properties — among the examples Bodden gives are checking that a user is logged in when performing certain
actions and proper use (i.e. timely acquiring and releasing) of locks during program execution. He exhibits
an implementation which uses the abc framework to translate the LTL expressions into pure AspectJ.

The LTL predicates, as defined in this work, offer functionality that is quite similar to tracematches –
properties of the program execution as a whole can be checked. Consequently, all the examples he presents
have natural equivalents that can be expressed using tracematches. The converse is not necessarily true;
in particular for tracematches that use variable bindings, LTL equivalents may be quite cumbersome or
even impossible. Also, the focus of the work is verifying properties of the program execution rather than
injecting code; tracematches offer more flexibility here. Bodden presents the idea that CSL implementations
could benefit from building on top of each other, and this seems justified here: translating his language into
tracematches seems easier than into pure AspectJ.

8 CONCLUSIONS

We have presented a novel design for integrating tracematches into the AspectJ language. The main inno-
vation is our treatment of free variables in trace patterns. By defining the meaning of a tracematch through
all consistent instantiations of these variables, many more examples are conveniently expressed. Inspired
by these applications, we carefully reviewed the design space for tracematches and motivated our design
decisions.

Of course the use of variables in trace patterns is non-trivial, and therefore we presented a precise
declarative semantics, intended for reasoning about the behaviour of tracematches. We also presented an
operational semantics as a step towards an implementation. The main insight in defining the operational
semantics was the need for a new symbol in the alphabet, to capture the skipping of other symbols, due to

35

variable binding. The declarative and operational semantics were proved to be equivalent. This is quite a
satisfactory result, because conceptually they are quite different.

Furthermore, the operational semantics directly led us to a reference implementation of tracematches. It
would have been quite difficult to arrive at this implementation without the careful semantic analysis that
preceded it.

There are also a number of pragmatic issues must be addressed in the implementation, in particular
regarding the memory usage of tracematches. We also identified a number of further optimisation opportu-
nities. Some of these required advanced program analyses, and we intend to report on careful performance
experiments, involving those advanced optimisations, in a companion paper.

Finally, this language design exercise exemplifies our philosophy for aspect-oriented programming lan-
guage research: a rigorous analysis of use cases, followed by a sound definition of the semantics, leading to
a neat implementation. The implementation itself has been carried out using the abc compiler, a workbench
for aspect-oriented language and compiler research.

References

[1] abc. The AspectBench Compiler. Home page with downloads, FAQ, documentation, support mailing
lists, and bug database. http://aspectbench.org.

[2] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM and static driver verifier:
Technology transfer of formal methods inside Microsoft. In Eerke Boiten, John Derrick, and Graeme
Smith, editors, Integrated Formal Methods, pages 1–20, 2004.

[3] Christoph Bockish, Mira Mezini, and Klaus Ostermann. Quantifying over dynamic properties of program
execcution. In 2nd Dynamic Aspects Workshop (DAW05), pages 71–75, 2005.

[4] Eric Bodden. Concern specific languages and their implementation with abc. SPLAT workshop at
AOSD. Download: http://www.bodden.de/publications, 2005.

[5] Maŕıa Augustina Cibrán and Bart Verheecke. Dynamic business rules for web service composition. In
2nd Dynamic Aspects Workshop (DAW05), pages 13–18, 2005.

[6] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster. Eclipse AspectJ: Aspect-Oriented
Programming with AspectJ and the Eclipse AspectJ development tools. Addison-Wesley, 2004.

[7] R. Douence, P. Fradet, and M. Südholt. A framework for the detection and resolution of aspect inter-
actions. In Proceedings of the ACM SIGPLAN/SIGSOFT Conference on Generative Programming and
Component Engineering (GPCE’02), pages 173–188, 2002.

[8] R. Douence, O. Motelet, and M. Sudholt. A formal definition of crosscuts. In Akinori Yonezawa and
Satoshi Matsuoka, editors, Reflection 2001, volume 2192 of Lecture Notes in Computer Science, pages
170–186. Springer, 2001.

[9] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interaction analysis of
stateful aspects. In Karl Lieberherr, editor, 3rd International Conference on Aspect-oriented Software
Development, pages 141–150, 2004.

[10] Remi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. In Aspect-oriented Software
Development, pages 141–150. Addison-Wesley, 2004.

[11] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Marc Ségura, and Mario Südholt.
An expressive aspect language for system applications with arachne. In Aspect-Oriented Software De-
velopment, pages 27–38, 2005.

36

[12] Thomas Fritz, Marc Ségura, Mario Südholt, Egon Wuchner, and Jean-Marc Menaud. An application of
dynamic AOP to medical image generation. In 2nd Dynamic Aspects Workshop (DAW05), pages 5–12,
2005.

[13] Joseph D. Gradecki and Nicholas Lesiecki. Mastering AspectJ: Aspect-Oriented Programming in Java.
Wiley, 2003.

[14] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and language for building
system-specific, static analyses. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 69–82, 2002.

[15] Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java and AspectJ. In OOPSLA,
pages 161–173, 2002.

[16] I. Kiselev. Aspect-oriented programming with AspectJ. SAMS, 2002.

[17] Ramnivas Laddad. AspectJ in Action. Manning, 2003.

[18] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. A compilation and optimization model for
aspect-oriented programs. In Compiler Construction, volume 2622 of Springer Lecture Notes in Com-
puter Science, pages 46–60, 2003.

[19] Russell Miles. AspectJ cookbook. O’Reilly, 2004.

[20] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible compiler
framework for Java. In 12th International Conference on Compiler Construction, volume 2622 of Lecture
Notes in Computer Science, pages 138–152, 2003.

[21] Klaus Ostermann, Mira Mezini, and Christoph Bockish. Expressive pointcuts for increased modularity.
In ECOOP, 2005.

[22] Wim Vanderperren, Davy Suvé, Maŕıa Augustina Cibrán, and Bruno De Fraine. Stateful aspects in
JAsCo. In Workshop on Software Composition at ETAPS, 2005.

[23] Robert Walker and Kevin Viggers. Implementing protocols via declarative event patterns. In ACM
Sigsoft International Symposium on Foundations of Software Engineering (FSE-12), pages 159–169,
2004.

37

