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Abstract

AspectJ does not provide a mechanism to hide implementation details from advice. As a result,
aspects are tightly coupled to the implementation of the code they advise, while the behaviour of the
base code is impossible to determine without analysing all advice that could modify its behaviour.

The concept of open modules is proposed by Aldrich to solve the problems that arise from unrestricted
advice. Defined for a small functional language, it provides an encapsulation construct that allows an
implementation to limit the set of points to which external advice may apply.

We present an adaptation of open modules for AspectJ. We expand open modules to encompass the
full set of pointcut primitives for AspectJ, extend its method of module composition to include the ability
to open up a module, and describe the implementation of the design as an extension of the AspectBench
compiler. We also provide an example of the use of open modules on a substantial AspectJ program to
show how it would fit into existing AspectJ projects.

1 INTRODUCTION

In AspectJ, aspects observe the execution of a base Java program. When events of interest happen, the aspect
executes some extra code of its own. The intercepted events are specified via patterns called pointcuts; the
extra code is called advice; and the events are named joinpoints [10].

The interception mechanism of AspectJ provides no explicit means for hiding implementation detail.
As a consequence, the use of aspects can be quite brittle: a change in the advised code can easily lead to
unwanted effects, both because a joinpoint no longer matches, or because the advice now intercept too many
joinpoints [16]. The problem is thus one of responsibility: must the maintainer of the base program preserve
joinpoint behaviour, or is it the task of the aspect author to adapt his aspect whenever the basecode changes?

A very promising solution was put forward by Jonathan Aldrich: he suggested that any exposed joinpoints
be declared in the interface of a module (a module being a collection of classes) [3]. Their exposition in
the interface means that the module maintainer undertakes to preserve the joinpoint behaviour relative to
aspects which are not part of the module itself. Aldrich’s design is for a small, purely functional language
and a module system akin to that of ML, augmented with around advice on function calls.

In this paper, we adapt and extend Aldrich’s design to the full AspectJ language, to allow ourselves and
others to experiment with its use in practice. The contributions of this work are these:

Extend the notion of open modules to full AspectJ: We have pushed Aldrich’s concept of open mod-
ules in three directions. First, while Aldrich handled only call pointcuts in his example language, we
generalise to arbitrary AspectJ pointcuts. Second, when introducing open modules into AspectJ we
needed to make sure that they can be introduced into an AspectJ project without changing the ex-
isting code. In particular, we prove that modules never lead to precedence conflicts between aspects.
Indeed, we show that open modules define a total order on aspect precedence. Third, we demonstrate
how open modules reduce to a very simple hiding construct associated with a class, thus providing an
‘intermediate representation’ for information hiding constructs in AspectJ.

Define appropriate notions of module composition: Aldrich’s approach to module composition con-
centrated on the notion that one wants a construct to further restrict an existing module, and we
also support this notion. However, we feel that it is also useful to have a construct that opens an
existing module by exposing more joinpoints. This opening construct allows an aspect author to seize
responsibility for the maintenance of joinpoint behaviour in other parts of the system; a typical use
would be a debugging aspect. We demonstrate the utility of module opening through a number of
usage scenarios.

Another important aspect of our approach is that we demonstrate that these two forms of composition,
restriction and opening, can both be reduced to the same simple intermediate representation.

Full implementation for AspectJ: We have fully implemented our design using abc, the extensible re-
search compiler for AspectJ [2]. To our knowledge this is the first implementation of open modules
for a full-fledged aspect-oriented language. We feel that having such an implementation will allow
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us, and other researchers, to experiment with open modules in order to determine the strengths and
weaknesses of the approach.

The structure of this paper is as follows. We first discuss the rationale for open modules, and the way
we have added them to AspectJ, through a number of small but representative examples in Section 2. In
Section 3 we give a more precise account of our design for adding open modules to AspectJ. In particular,
we start with a very simple hiding construct, augment it to a feature more similar to the one originally
proposed by Aldrich, and then go on to discuss the different forms of composition. At each step of this
development, we show how more complex forms can be expressed in more primitive terms, thus proving our
‘intermediate representation’ result. In Section 4 we illustrate our design for open modules with reference to
a more substantial example, that involves eight different aspects. We then turn to some formal properties
of our design, in particular regarding the nettly problem of aspect precedence in Section 5. Here we prove
that subject to some very natural conditions, our new constructs do not introduce precedence conflicts — an
important property when composing large systems with many aspects. This paper is primarily a proposal
for features to help tame the power of AspectJ, but it is also a substantial exercise in extending an AspectJ
compiler. In Section 6 we discuss the challenges we encountered with implementing open modules in the
AspectBench Compiler, and how these obstacles were overcome. There is a wealth of alternative proposals
for similar features (although none seems to be implemented for the full AspectJ language), and we discuss
these in Section 7. We conclude in Section 8.

2 RATIONALE

While aspects provide a way to encapsulate cross-cutting features in a single construct, they are so tightly
coupled with the implementation of the classes that they violate another facet of modularity: that of hiding
the implementation behind a well defined interface. In the current state of AspectJ, a piece of advice declared
in any (privileged) aspect may be applied to any joinpoint in the entire program, effectively bypassing class
interfaces.

The lack of interfaces makes aspects vulnerable to any changes in the classes to which they apply. We
use a short example to demonstrate this vulnerability. Figure 1 shows a simple Figure class, which is just a
collection of points and a translate method that moves the points by a specified displacement.

Suppose a replay feature is implemented using an aspect, as in Figure 2. The aspect would intercept all
calls to Figure. translate and store the translations in a list for replaying. Note that the advice is very tightly
coupled to the call to translate , and any change to the implementation of Figure that changes the pattern of
calls to translate will break the aspect. For example, if the implementation of Figure was changed such that
the list can contain other figures as well as points (as in Figure 3), the behaviour of the replay aspect would
change drastically. The advice in ReplayAspect would match both the external call to translate as well as the
call to translate inside Figure. This leads to duplicate entries in the replay list.

public class Figure {
List elements;
public Figure translate(int dx, int dy) {

for ( Iterator iter = elements.iterator ();
iter .hasNext(); ) {

Point elem = (Point)(iter .next());
elem.translate (dx,dy);

}
return this;

}
}

Figure 1: Simple Figure Class

That such a seemingly innocuous change to Figure could change the behaviour of the program in an
unexpected manner seems to violate the encapsulation that the class is expected to provide. As there is no
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aspect ReplayAspect {
pointcut translate(int dx, int dy):

call(∗ Figure. translate (int, int)) && args(dx,dy);

LinkedList moves = new LinkedList();

before(int x, int y, Figure fig ) :
translate (x,y) && target(fig){
//Store fig , x and y in the moves list

}
}

Figure 2: Replay Aspect

public class Figure {
public Figure translate(int x, int y) {

for ( Iterator iter = elements.iterator ();
iter .hasNext(); ) {

Object elem = iter.next();
if (elem instanceof Point) {

((Point)elem).translate (x,y);
}
else if (elem instanceof Figure) {

((Figure)elem).translate (x,y);
}

}
return this;

}
}

Figure 3: Modified Figure class

well-defined interface between Figure and its client aspects, all aspects that apply to it would need to be
checked before any modifications are made. This makes the evolution of base code difficult. The problem is
made worse if Figure were part of a third-party library where the source code is unavailable. In such a case,
it would be very difficult to diagnose the problem as the implementation details of Figure would be hidden.

This particular problem can be solved by specifying an interface that enforces the condition that aspects
only apply to external calls to translate . Doing so will cause the advice in ReplayAspect to fail when matching
with the call to Figure. translate inside Figure.

Figure 4 shows an interface between Figure and its client aspects. The module contains the class Figure,
as well as an advertise declaration that specifies which joinpoints in Figure are available to advice. The
advertise declaration exposes external calls to Figure. translate , that is, calls that match the pointcut

call(Figure Figure. translate (int, int)) && !within(Figure)

This solves the problem of duplicate entries in ReplayAspect.

module FigureModule {
class Figure;
advertise : call(Figure Figure. translate (int, int ));
expose : call(∗ Point. translate (int, int)) &&

within(Figure);
}

Figure 4: Figure Module

It may become necessary to expose more than joinpoints that are outside Figure. If, for example, there

5



were an aspect that computes the total cost of a figure translation by counting the number of individual
Point. translate calls in Figure, such as Figure 5 , it would need to be able to apply advice to joinpoints
internal to Figure.

aspect TranslateCost {
int total = 0;
pointcut translate():

call(∗ Point. translate (int, int) && within(Figure);
before() : translate () {

total++;
}

}

Figure 5: Figure Translate Cost Aspect

The interface must be able to expose important internal events to aspects. The expose declaration
in Figure 4 exposes any joinpoints matched by its pointcut, not just those that are external to Figure.
This allows TranslateCost to apply advice to the Point. translate calls inside Figure. The distinction between
advertise and expose is that expose affects all joinpoints, whereas advertise only affects joinpoints that
occur outside the module. In fact, advertise is implemented by translation into expose, which we explain
in section 3.5.

The alternative solution to this problem would have been to modify the pointcut in ReplayAspect to

call(∗ Figure. translate (int, int)) &&
!cflowbelow(call(∗ Figure.translate(int, int)))

once the modifications to Figure had been made. This, however, assumes that the programmer who made
the modifications would have access to all the client aspects of Figure, which is not always the case (e.g. if
Figure were distributed as part of a library).

Code security may also be adversely affected by the untamed power of aspects. Figure 6 shows a credit
card class, which stores a credit card number.

class CreditCard {
private String cardNum;
public String getCardNum() {return cardNum;}

}

Figure 6: Credit card class

Aspects can enforce a policy that calls to getCardNum be performed only when authentication has been
completed, but cannot prevent other aspects from applying advice to those calls. An aspect may be able to
intercept the calls to getCardNum, and if it is privileged, even the accesses to cardNum. Such an intrusion
would not be immediately detected in CreditCard, as there are no indications in its source that indicate that
RogueAspect, as defined in Figure 7, is intercepting calls to getCardNum.

A similar situation may occur when performing transactions on a bank account. Take a class BankAccount

with the method getBalance, which may include sensitive operations other than fetching the balance, such
as authentication and connection establishment. Any code in the control flow of getBalance may potentially
use secure information which should not be accessible outside the class. An aspect can gain access to this
information by defining a piece of advice for cflow(call(∗ BankAccount.getBalance())), and then analyze the
events in the control flow of getBalance to extract information.

A scenario such as the one above may be avoided by specifying an interface between CreditCard and its
client aspects. Figure 8 shows such an interface. The interface prevents aspects from modifying calls to
getCardNum and accesses to cardNum, while still exposing other joinpoints in CreditCard which may be of
interest. A similar solution for BankAccount is to expose pointcuts that are not in the cflow of getBalance. It
should be noted that CreditCard and BankAccount may also be protected from all aspects, by not advertising
or exposing any pointcuts in the interface.
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privileged aspect RogueAspect {
...
around() : call(String CreditCard.getCardNum()) {

String cardNo = proceed();
send(cardNo, remoteLocation);
return cardNo;

}
}

Figure 7: Accessing credit card numbers

module Cards {
class CreditCard;
advertise : !get(CreditCard.cardNum) &&

!call(CreditCard.getCardNum());
}

Figure 8: Protecting credit cards

The interfaces defined above encapsulate the implementation of the classes by defining a set of pointcuts
which are visible to aspects, and hiding the rest. This would require a change to the matching behaviour of
AspectJ, to ensure that any advice that would normally be matched against all joinpoints in the classes now
respects the pointcuts exposed by the interface.

3 NORMAL FORM

Now that we have conveyed an informal understanding of modules through a few examples in the preceding
section, we start again from the beginning, and develop the definition of modules in a rigorous fashion.
The structure of this development is as follows. First we review the official semantics of AspectJ. Next
we introduce a simple hiding operator, and a new pointcut. This machinery then allows us to define the
meaning of open modules, as well as the composition of such modules, via a normal form. The simple hiding
construct is thus intended as an intermediate form, a device for understanding, but not for direct use by an
AspectJ programmer.

3.1 AspectJ joinpoint matching

In AspectJ, joinpoint matching is defined as an operation at runtime, not (as is commonly but mistakenly
believed) as a program transformation. It is important, therefore, to define the effect of open modules with
respect to that runtime definition. We briefly review the semantics of joinpoint matching before discussing
how it should be changed to accommodate appropriate forms of information hiding.

A joinpoint is an event of interest at runtime, such as a method call: a method call joinpoint starts
upon each method invocation, and it completes when the call returns, be it normally or via an exception.
Joinpoints are always properly nested: two joinpoints are either disjoint or one is included in the other. One
can thus think of a program execution trace as a sequence of joinpoint enter and exit events, where enter
and exits are properly bracketed. Besides method call, AspectJ has 10 other different kinds of joinpoint, for
setting and getting a field, for executing a method body, and so on.

Advice in AspectJ consists of a kind (before/after/around), a pointcut and a piece of code. Both
before and around advice are matched against joinpoint enter events, while after advice is matched against
joinpoint exit events. The matching consists of taking the pointcut, and checking whether it matches
one of the signatures of a joinpoint. Upon a successful match, the virtual AspectJ machine executes the
corresponding advice: in the case of before and after advice, the extra code is inserted, but in the case of
around it replaces the computation of the original joinpoint.
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The set of signatures of a joinpoint is defined separately for each type of joinpoint. As an example (taken
from [14]), consider the code fragment

T t = new T();
t .m(”hello”);

as well as the type hierarchy displayed in Figure 9. A call joinpoint occurs when we execute the statement
t .m(‘‘hello”). This joinpoint has four signatures:

R2 T.m(String)
R2 S.m(String)
R1 P.m(String)
R1 Q.m(String)

interface Q {
R1 m(String s);
}

class P implements Q {
R1 m(String s) {...}
}

class S extends P {
R2 m(String s) {...}
}

class T extends S {}

Figure 9: Example type hierarchy.

More generally, for each super type A of T, if m(param types) is defined for that super type, then
R(A) A.m(param types) is a signature of the call join point, where R(A) is the return type of m(param types) as
defined in A, or as inherited by A if A itself does not provide a definition of m(param types). Note that every
signature has a unique declaring type, but the same identifier and parameter types as the other signatures.

The details of the matching process are spelled out in the AspectJ developer’s notebook [14].

3.2 Visibility and hiding

If we wish to hide implementation detail of classes by hiding joinpoints, we have to modify the matching
process. The simplest solution, from an implementation point of view, is to annotate each class with a
visibility pointcut that exposes the joinpoints which aspects are allowed to observe. We may also annotate
a class with its friends, that is, an ordered list of aspects that are permitted to intercept any joinpoint
originating from the class.

For every joinpoint signature, we define the owning class to be the declaring class (which is defined to
be part of the signature), except for handler joinpoints, where we define it to be the exception type.

Now joinpoint matching is modified as shown in the pseudo code of Figure 10. Consider a signature
whose owning class is C. If we are processing a piece of advice with pointcut pc that is declared in a friend
of C, we match as normal. However, if this is advice that is not from a friend, we add a new conjunct to the
pointcut pc, namely the visibility of the owning class C. This has the effect of hiding any joinpoints that do
not satisfy the visibility pointcut.

The order of the list of friendly aspects is important: we take it as implicitly defining a series of prece-
dences, where the last aspect has highest precedence. To illustrate, consider the example class in Figure 11.
Now consider a call to f (from somewhere outside the Example class). It will be advised by Aspect1 because
Aspect1 is a friend, and by Aspect2 because calls to f are declared to be visible. The internal call to g (from
within f) will however only be advised by Aspect1.
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for each signature sig of jp {
for each piece of advice pc {

Aspect a = pc.declaringAspect;
Class c = sig.owningClass;
if (c. friends .contains(a))

sig .match(pc);
else {

Pointcut npc = c.vis && pc;
sig .match(npc);

}
}

}

Figure 10: Pointcut matching with hiding

aspect Aspect1 {
before() : call(∗ f (..)) {}
before() : call(∗ g (..)) {}

}

aspect Aspect2 {
before() : call(∗ f (..)) {}
before() : call(∗ g (..)) {}

}

class Example expose : call (∗ f(..))
friend Aspect1

{
void f() {

g();
}

void g() {}
}

Figure 11: Example of hiding

A class is completely unaffected by advice if we give it a false visibility pointcut, and an empty list of
friends. The default (current AspectJ) behaviour is that the visibility pointcut is true and the list of friends
is empty.

Any pointcut can be exposed, with the exception of pointcuts that have variables. Pointcuts with variables
may be implemented using local pointcut variables [5], but these are not yet part of standard AspectJ.

3.3 Selective hiding

As it stands, join point exposure does not discriminate between different aspects. This seems undesirable:
allowing a tracing aspect to observe certain behaviour is less controversial than an aspect that overrides
existing implementations via around.

For that reason, we introduce a slightly restricted form of exposure, namely

expose to abc.lib.tracing ..∗ : call(∗ f (..))

Now we only allow aspects in a subpackage of abc. lib . tracing to intercept calls to f. More generally, any class
name pattern expression may be indicated as the target of an expose clause. When no target is specified
with the to syntax, we assume the pattern is ∗, so the exposure is universal as it was above.
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We find it convenient to reduce this new feature to the ones we already have, by introducing a new form
of pointcut.

thisAspect(<classname−pattern−expression>)

acts the same as the existing this pointcut of AspectJ, but it matches on the aspect instance rather than on
the instance of the advised object. That is to say, thisAspect(A) will match if the current advice is declared
in an aspect whose type is a subtype of A.

Given this new pointcut, the form

expose to <pat> : <pc>

is equivalent to

expose : <pc> && thisAspect(<pat>)

As we shall see below, this transformation is crucial in obtaining a clean semantics via a normal form for
composition of open modules.

3.4 Open modules

The annotation of individual classes with a visibility pointcut and a list of friendly aspects is not intended
as a language construct for use by application programmers: it is intended only as an intermediate form. As
set out in Section 2, our proposal is to use a generalised form of Jonathan Aldrich’s Open Modules instead.
We now show how these can be formally defined via the intermediate form discussed above.

The syntax is illustrated in Figure 12. An open module is introduced by the keyword module. The classes
that are contained in the module are specified via one or more class declarations: these may be references
to specific classes, or more generally they can be a class name pattern expression. A list of friendly aspects
is introduced by the keyword friend. The aspects must be individually named, and the order in which they
appear is important, again because we wish to pin down the order of precedence. Friendly aspects are not
implicitly included in the classes: to control the exposure of joinpoints owned by an aspect, that aspect must
be explicitly listed as a class.

module Example {
class C1;
friend A1, A2;
class pack..Pat∗
advertise : call(∗ f (..));
friend A3;
expose : call(∗ g (..));
}

Figure 12: A sample module.

A module can also contain a number of advertised pointcuts. Joinpoint signatures whose owner is external
to the module can match these. Typically these are calls to public functions which can be logged. For
example, consider a class that provides the factorial function. It could be implemented via a simple recursion,
or by a loop. By advertising the pointcut call(∗ factorial (..)) , external aspects cannot distinguish between
a recursive and a non-recursive implementation, because internal calls are not advisable, whereas all calls
that happen outside the module can be intercepted.

Finally, a module may chose to reveal some of its internal details, by exposing a pointcut. Joinpoint
signatures can always match an exposed pointcut, whether the advice originates from a friendly aspect or
not. A joinpoint whose owning class is in the module, which matches both an advertised pointcut (which on
its own would hide that joinpoint) and an exposed pointcut, is still exposed.

If a module definition does not contain any advertise or expose statements then it does not expose any
joinpoints to external aspects. This is equivalent to having the visibility pointcut
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expose: false

Each class and each aspect may occur in only one module, in the same way that in pure Java they must
belong to only one package.

3.5 Normal form

There is a normal form for modules that will prove to be very convenient, both to pin down the semantics
of modules and in the implementation.

First, note that it is not necessary to have more than one class declaration: we can always combine
multiple class declarations by writing a class name pattern expression that consists of multiple disjuncts.
Similarly, we can collect all aspects into a single declaration, where all the aspects are listed in the order
they occur in the module. We can turn each advertised pointcut into an exposed pointcut by adding the
requirement that they do not match within any of the classes that are contained in the module. Finally, all
exposed pointcuts can be combined with ||. The result is a module that consists of one class declaration,
one list of aspects, and one exposed pointcut. Figure 13 illustrates this process on the example of Figure 12.

module Example {
class C1 || pack..Pat∗;
friend A1, A2, A3;
expose : (call(∗ f (..))

&& !within(C1 || pack..Pat∗))
||

(call(∗ g (..));
}

Figure 13: Normalised sample module.

The reader may now wonder why we allowed the more liberal syntax, since a single class, friend and
expose declaration suffice. The answer is one of notational convenience: writing long formulae will make
substantial module specifications hard to read. It is also worthwhile to separate the advertised and exposed
pointcuts, since conceptually their purpose is different. Finally, separating the friend lists is actually useful
when they are interspersed with module compositions, discussed further below.

It should now be clear that such a normalised module may be transformed into our earlier hiding construct.
Each class that matches the class name pattern expression is annotated with the list of friendly aspects and
the exposed pointcut as its visibility pointcut.

3.6 Module composition

It would not be very satisfactory if modules were flat entities, and could not be combined to form larger
systems. We therefore define two notions of module composition.

The first and most obvious type of composition is one that constrains the visibility of module members
further. This is indicated by the keyword constrain, and an example is displayed in Figure 14. We simply
further restrict visibility, as shown in Figure 15: the descendant (included) module’s visibility is constrained
to that of the parent (including) module. Note that there is no change in the list of friendly aspects of either
the parent or the child module. It is however the case that the friends of the parent enjoy the original visibility
in the child: the deciding factor for introducing expose to <pat> : <pc> and the thisAspect pointcut was to
give a clean meaning to constrain. Constrained composition gives strong guarantees for modular reasoning:
any assumptions we made about the absence of interference in the child module remain true after applying
the composition.

The second type of module composition is dual to the first: here the parent gains unrestricted access
to the children. That is, the parent’s friends can advise joinpoints that arise in the children regardless of
the visibility pointcuts. We therefore introduce such keywords by the keyword open. Again we define the
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module M1 {
class C1, C2;
friend A1, A2;
expose : C1.pointcut1();

}
module M2 {

class C3;
friend A3;
constrain M1;
friend A4;
expose : A4.pointcut2();

}

Figure 14: Constrained module composition

module M1 {
class C1, C2;
friend A1, A2;
expose : (C1.pointcut1() && A4.pointcut2());

|| (C1.pointcut1() && thisAspect(A3 || A4));
}
module M2 {

class C3;
friend A3,A4;
expose : A4.pointcut2();

}

Figure 15: Normalised constrained composition

semantics by a normalisation process, as illustrated in Figures 16 and 17. Note that we add the parent’s
visibility pointcut as a disjunct to the child’s; this contrasts with constrained composition, where it becomes
a conjunct. Furthermore, the child has gained the parent’s friends as friends also, and the order follows that
in the parent: A3, the included friends A1 and A2, and A4.

module M1 {
class C1, C2;
friend A1, A2;
expose : C1.pointcut1();

}
module M2 {

class C3;
friend A3;
open M1;
friend A4;
expose : A4.pointcut2();

}

Figure 16: Open module composition

It should be noted that while a parent’s friend aspects are not added to the child when using constrained
composition, the precedence order of the aspects would be the same as if the child was included using open
composition. Thus in Figure 15, A3 comes before A1 while A4 comes after A2, even though A3 and A4 do
not appear as friend aspects of M1.

The module hierarchy is required to be free of cycles. Modules may only be included in at most one
other module: this prevents other modules from indiscriminately exposing additional pointcuts using open
composition. As the module hierarchy is envisioned to closely follow the package hierarchy, this limitation
should not produce too many problems in practice.
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module M1 {
class C1, C2;
friend A3,A1,A2,A4;
expose : C1.pointcut1() || A4.pointcut2();

}
module M2 {

class C3;
friend A3,A4;
expose : A4.pointcut2();

}

Figure 17: Normalised open composition

The purpose of normalisation is to reduce all modules to the simple hiding construct of Section 2.1. It is
possible that intermediate modules along the way to a normal form violate the constraint that each aspect
occurs in only one module, because we distribute the parent’s friends among multiple children. Fortunately,
one can prove that a unique total order is defined by the original modules, and all the resulting lists of
friendly aspects are compatible with that unique total order. This will be discussed in detail in Section 5.

Normalisation does preserve the property that each class is part of only one module: this is very important,
for otherwise the resulting visibility pointcut of that class would not be well defined. It is for this reason
that we have chosen not to make friendly aspects implicit classes declared in a module.

3.7 Private visibility modifier

It may sometimes be desirable to expose a visibility pointcut that applies only to the immediate members of
a module, without affecting the visibility of its child modules. To do this, an advertise or expose declaration
is modified by the keyword private. Private visibility pointcuts only apply to the immediate class members
and friend aspects of the module. Figure 18 shows an example that uses private visibility declarations, and
Figure 19 shows its normal form.

module M1 {
class C1, C2;
friend A1;
open M2;
expose: A1.pointcut1();
private expose : A1.pointcut2();

}

module M2 {
class C3, C4;
friend A2;
expose : A2.pointcut3();

}

Figure 18: Private visibility modifier

3.8 Root module modifier

In certain circumstances, it may also be necessary that a module be unavailable for composition, to ensure
that it defines the final visibility pointcuts for all the classes it contains. Our design for open modules
introduces the root visibility modifier to specify that a module cannot be included by any other module in
the compilation. Figure 20 shows an example of a root module that does not allow any advice to apply to
constructors in the modules M1 to M3.
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module M1 {
class C1, C2;
friend A1;
expose: A1.pointcut1() || A1.pointcut2();

}

module M2 {
class C3, C4;
friend A1, A2;
expose : A1.pointcut1() || A2.pointcut3();

}

Figure 19: Normalised private visibility

root module MasterModule {
constrain M1, M2, M3;
expose: !call(∗ new .(..));

}

Figure 20: Root module modifier

4 EXTENDED EXAMPLE

We now provide an example of the usage of open modules on a substantial program written in AspectJ. Ants
is an implementation of a simulator for the problem given in the 2004 ICFP Programming Contest [1]. The
problem involves two teams of ants on a hexagonal grid containing food and obstacles. Each can perform a
specific set of actions; among these actions is the ability to test their immediate vicinity for certain conditions.
The problem specifies rules for movement and combat between ants, which occurs when ants from opposite
teams happen to be on adjacent hexes. The simulation proceeds in discrete rounds, and an ant can perform
at most one action per round. The sequence of actions of an ant in a team is defined by a finite state
machine, and the goal of each team is to collect more food that its opponent.

4.1 System Description

The simulator loads a world specification, and the respective state machines of each of the ant teams. It
then simulates the movement of the ants following the rules specified in the problem, displaying the results
on a graphical user interface.

Figure 21 shows an abbreviated UML model of the Ants application. Aspects are distinguished from
ordinary classes by having a * before their name in the class specification. The dependency lines in the
diagram also include advice application caused by aspects.

The Ants application is composed of seven major packages: automaton, command, model, parser, viewer,
debug, and profile . The first four packages form the core of the simulation. The viewer package contains the
GUI implementation. The debug package contain aspects that verify certain conditions on the whole of the
program, while the aspects in profile check for any memory allocations that occur in the simulation’s inner
loop.

The automaton package contains the representation of the state machine used by the ant teams. The
command package contains classes that represent the various actions that an ant can perform. It also
contains an aspect Comment that adds the ability to parse comments in the ant state machine specification
file. The model package contains classes that represent the different entities that form part of the simulation.
It also contains two aspects, Combat and Resting that implement combat between ants and resting behaviour
respectively. The parser package contains the parser for the ant specification files.

The viewer package contains the GUI implementation. This includes the Update aspect, which intercepts
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Figure 21: Ants

any events which should trigger a screen update.

The debug package contains aspects that verify certain conditions over the entire application, namely
CheckScores, CommandTracer, WorldDumper and LiveAnts. CheckScores verifies the score kept by the World

class by checking it against the score computed by directly counting number of food hexes in the map.
CommandTracer intercepts every ant action and displays it on standard output. WorldDumper is triggered at
the end of each round, when it scans the state of the hex grid and dumps it to a file. LiveAnts performs a
sanity check on the set of ants in the simulator’s list. It verifies that the list contains all of the ants that are
still alive, and that it contains no dead ants.

The profile package contains the aspects NoNewInRound and NoNewInCmd. These aspects check alloca-
tions in inner loop of the simulation, as these may cause performance problems. NoNewInCmd checks for any
allocations in the execution of an ant action, while NoNewInRound checks for any allocations that may occur
while a round is being performed.

4.2 Module Specification

We now show how open modules can be used to specify the class-aspect interfaces in the application. Figure
22 shows a set of module declarations that may be used for the Ants application.

The modules closely follow the package structure of the application, with some modules containing more
than one package. Aspects that belong to a package are declared to be a friend of the module that contains
the package.

It should be mentioned that expose should be used with caution, as exposing pointcuts internal to a
module allows external aspects to weave around advice, making it difficult to reason about the code internal
to the module. We use the rule of thumb that if a pointcut is to be made visible, the most preferred option
is to use advertise, followed by expose to, and if there is no other choice, by expose.

The Model module contains the packages that represent the entities in the simulation, namely model and
automaton. It advertises external calls to World.round, which performs a single round in the simulation. It
also exposes the internal event Ant. kill . It was necessary to use expose on the calls to Ant. kill as most of
these calls occur inside classes in Module. Using advertise would have hidden too many of these events.
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module Model {
class model.∗;
class automaton.∗;
friend model.Combat, model.Resting;
advertise : call(∗ model.World.round());
expose : call(∗ model.Ant.kill ());

}

module Command {
class command.∗;
class parser .∗;
friend command.Comment;
advertise : call(∗ command.Command.step(..));

}

module DebugAndProfile {
class profile .∗;
class debug.∗;
friend profile .NoNewInCmd, profile.NoNewInRound;
friend debug.WorldDumper, debug.LiveAnts,

debug.CommandTracer, debug.CheckScores;
open Model, Command;

}

module AntSystem {
class viewer.∗;
friend viewer.Update;
constrain DebugAndProfile;
private expose to profile.∗: call (∗.new(..));

}

module JavaLang {
class java.lang .∗;
advertise : !call(java.lang.StringBuffer.new(..));

}

Figure 22: Ants Module Specification

An alternative solution would have been to place Ant and its related aspects into a separate module,
perhaps even a separate package, and then advertise the calls to Ant. kill from that module. This illustrates
how the use of open modules may uncover opportunities for refactoring which would have otherwise gone
unnoticed.

The Command module contains the packages command and parser. It advertises the external calls to
Command.step, which executes the action specified by the command. The package parser was also included
in this module as the purpose of its only member, CommandParser, is to parse ant specification files and
generate the corresponding Command objects.

The DebugAndProfile module shows how open composition can be used to integrate intrusive debugging
and profiling aspects into an AspectJ program. DebugAndProfile opens up the modules Model and Command,
and has the aspects in debug and profile as friends.

The aspects in debug and profile apply advice to joinpoints that span multiple packages, thus it would
have been messy if they were declared friends of each of those modules, or if those modules had declared
a visibility pointcut to allow access from the aspects. The solution is to declare the aspects as friends of a
module, and then open up the modules to which the aspects apply. This gives the debugging and profiling
aspects unrestricted access to all the members of the included modules.

It should be emphasised that opening up a module using open composition places the responsibility of
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modularity on the owner of the including module. As open composition allows aspects unrestricted access
to a module and may also expand its visibility, the guarantees about modularity made by the included
module is effectively overridden by the including module. Thus the owner of the including module must be
prepared to deal with any problems caused by a change in implementation of any of the members of the
included module. These effects may be minimised by not exposing additional signatures when using open
composition. This way, only the friend aspects of the including module are vulnerable to changes in the
included module.

The module AntSystem shows how to restrict the visibility of the entire application. It contains the package
viewer, and has the aspect Update as a friend. It uses constrained composition to include DebugAndProfile, and
does not have a non-private signature, effectively conjoining false to the exposed pointcuts of DebugAndProfile

and causing all external aspects to fail in matching joinpoints that belong to the application.

The module AntSystem also exposes a private visibility pointcut to the profiling aspects. As it is private,
it has no effect on DebugAndProfile and its children, and only applies to viewer.∗ and viewer.Update. This
allows the aspects NoNewInCmd and NoNewInRound to inspect constructor calls in viewer.

Finally, the module JavaLang hides calls to the constructor of java.lang.StringBuffer. This prevents the
profiling aspects from generating false positives caused by StringBuffer allocations due to string literals.

Although this example uses pointcut primitives to define visibility pointcuts in the interests of clarity,
it is recommended that named pointcuts be used when defining advertise or expose declarations. This
encourages external aspects to use the named pointcut, thus insulating them from any changes to the
visibility pointcut. [9]

4.3 Class visibility

To illustrate the effect of normalisation on the visibility pointcuts and the friend aspects of a class, we pick
the class model.Ant and derive its visibility. Model.Ant is a member of the Model module, which has the
visibility specification

advertise : call(∗ model.World.round());
expose : call(∗ model.Ant.kill ());

and the friend aspects model.Combat and model.Resting. Hence the initial visibility specification for model.Ant

is

class Ant advertise : call(∗ model.World.round())
expose: call(∗ model.Ant.kill())
friend model.Combat, model.Resting

Note that

advertise : call(∗ model.World.round());

in the module Model is equivalent to

expose : call(∗ model.World.round()) &&
!within(model.∗ || automaton.∗);

Thus the annotated Ant class is equivalent to

class Ant expose :
(call(∗ model.World.round()) &&

!within(model.∗ || automaton.∗)
|| call(∗ model.Ant.kill ())
friend model.Combat, model.Resting

The module Model is included in DebugAndProfile using open composition. Since DebugAndProfile does
not expose any pointcuts, its only effect on model.Ants is to add the debugging and profiling aspects to its
list of friend aspects. Thus the annotated Ant class now becomes
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class Ant expose :
(call(∗ model.World.round()) &&

!within(model.∗ || automaton.∗))
|| call(∗ model.Ant.kill ())
friend profile .NoNewInCmd, profile.NoNewInRound,

debug.WorldDumper, debug.LiveAnts,
debug.CommandTracer, debug.CheckScores,
model.Combat, model.Resting

Finally, DebugAndProfile is included in AntSystem using constrained composition. We note that con-
strained composition conjoins non-private pointcuts with the pointcuts of the included module, and exposes
the existing visibility pointcuts to the friend aspects of the including module. As AntSystem contains no non-
private visibility pointcuts, it conjoins false to the existing visibility pointcut, thus making the annotated
Ant class

class Ant expose :
(false &&

((call(∗ model.World.round()) &&
!within(model.∗ || automaton.∗))

|| call(∗ model.Ant.kill ()))
)
||
(thisAspect(viewer.Update) &&

(call(∗ model.World.round()) &&
!within(model.∗ || automaton.∗))

|| call(∗ model.Ant.kill ())
)
friend profile .NoNewInCmd, profile.NoNewInRound,

debug.WorldDumper, debug.LiveAnts,
debug.CommandTracer, debug.CheckScores,
model.Combat, model.Resting

which simplifies to

class Ant expose :
(thisAspect(viewer.Update) &&

(call(∗ model.World.round()) &&
!within(model.∗ || automaton.∗))

|| call(∗ model.Ant.kill ())
)
friend profile .NoNewInCmd, profile.NoNewInRound,

debug.WorldDumper, debug.LiveAnts,
debug.CommandTracer, debug.CheckScores,
model.Combat, model.Resting

Note that the private visibility pointcut of AntSystem has no effect on model.Ant.

The derivation of the annotated class highlights several decisions made in the design of open modules for
AspectJ. The derivation is a straightforward process of following the chain of compositions starting from the
module in which the class is an immediate member. As a class may only occur in one module and a module
may be included in at most one module, a class’ visibility annotation is completely determined by a simple
path starting from the module in which it is an immediate member and ending with the topmost ancestor
of that module in the composition tree. This is similar to following the inheritance hierarchy of classes in
Java when determining the behaviour of a derived class.

Had the design allowed a class to occur in multiple modules, or a module to be included in multiple
modules, one would have had to follow all the paths starting from the class to determine its visibility. This
would have potentially coupled unrelated modules merely because they contribute to the visibility pointcut
of a common class, thus making the modules themselves less modular.
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It should also be noted that the introduction of open modules into the Ants application did not require
any change in the application’s code. The module definitions are in a file that is separate from Java and
AspectJ code. The module namespace is also separate from that of Java and AspectJ, thus classes and
aspects may not refer to the modules themselves. While this prevents the implementation of potentially
useful pointcuts such as within(Module), it does mean that open modules may be added to or removed from
a compilation without requiring any changes to the code.

The current implementation of open modules in abc generates warnings when advice that normally applies
to a joinpoint is prevented from doing so because it does not comply with the visibility pointcuts defined for
that joinpoint. This provides a compile-time hint that a certain aspect may be too imprecisely defined.

5 PRECEDENCE PROPERTIES

Apart from specifying the interface between classes and their client aspects, open modules may also be used
to specify the ordering of the aspects included in modules. Indeed, it can be shown that if the set of module
definitions follow certain constraints, a total order can be imposed on all the aspects in a tree rooted at a
particular module.

We abstract a module m to be a sequence composed of aspects a and other modules m′ to represent the
sequence of friend aspects and module compositions defined in a module.

Definition (Valid Open Module Set)

We say a set Sm of modules is a valid open module set if it satisfies the following properties:

1. An aspect is included in at most one module.

2. If a module m includes a module m′, then m′ must also be in the set.

3. A module can be included in at most one module, and there are no cyclical module inclusions.

A top-level module is a module that is not included in any other modules in a valid open module set.

We can now state our formal result and prove it.

Theorem

Given a valid open module set Sm, let S′

m
be any valid subset of Sm that has a single top-level module

(i.e. S′

m
is a tree in the module hierarchy). Then we can define a unique total order on the precedence of

the friend aspects of modules in S′

m
.

Proof

The proof is by construction: We exhibit a procedure to obtain the total order of precedence from the
root module m of S′

m
. Recall that we think of a module as an ordered list of friend aspects and included

modules.

Definition (Induced Aspect Order)

Let m be the only top-level module of a valid open module set Sm. The aspect order aspectorder(m)
induced by m is

aspectorder(〈〉) = 〈〉

aspectorder(〈a〉 a s) = 〈a〉 a aspectorder(s)

aspectorder(〈m′〉 a s) = aspectorder(m′) a aspectorder(s)

In the above, we use a to denote list concatenation. As an example, given three modules m1, m2, m3

m1 = 〈a1, m2, a2, m3〉

m2 = 〈a3, a4〉

m3 = 〈a5, a6〉
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with m1 being the top-level module, then

aspectorder(m1) = 〈a1, a3, a4, a2, a5, a6〉

Claim: aspectorder(m) defines the required total order on the module hierarchy tree S′

m
rooted at m.

Since m is the only top level module of S′

m
, every other module in S′

m
must be a descendant of m, as

cyclical inclusions are not allowed in S′

m
.

As aspectorder(m) is already a sequence, it only needs to be shown that it contains no duplicate elements,
and that it contains all the aspects that are friends of modules in Sm. The first condition is proved by
induction, using the constraints on modules of a valid open module set. The second is satisfied by observing
that aspectorder is a traversal, hence aspectorder(m) must contain the aspects of m and its descendants. �

Note that the theorem only allows us to totally order open module sets that have only one top level
module. In general, an open module set may contain several disjoint trees. To define a total order on these
trees, one must include all the top-level modules in a single module.

6 IMPLEMENTATION

Open modules for AspectJ were implemented as an extension in the AspectBench compiler (abc) [2, 4–6].
abc is built on the Polyglot extensible compiler framework [12] and the Soot optimisation framework [15].

Adding an extension to abc involves the extension of the parser to process any new syntax introduced
by the extension, the addition of abstract syntax tree (AST) nodes to represent the new constructs and
the modification of the matching and weaving behaviour of the compiler. abc is designed to be extensible,
and allows these modifications through Polyglot’s extensible parser generator, and by using factories and
interfaces to allow for changes to the behaviour of the existing AST, matching and weaving classes.

The open module extension required an extension of the AspectJ syntax to include module definitions, an
internal representation of the modules and a modification to the matcher to implement the effect of visibility
pointcuts. The syntax extensions and AST nodes were implemented by the prescribed method of extending
the parser specification and subclassing the existing Polyglot AST nodes.

The implementation of visibility pointcuts required an extension of abc’s matcher. abc provides a way to
add new pointcuts as well as to modify the matching behaviour of an existing pointcut, but did not allow for
an extension of the matcher itself. Visibility pointcuts add a new condition to the matching process: a piece
of advice must satisfy the visibility criteria of a class before it is woven. As such it is best implemented as an
extension to abc’s matcher. This required a refactoring of the existing abc matcher to allow for an extension
to override the matcher’s behaviour, as well as a generalisation of the way data is passed to the matcher.

Except for the matcher, abc’s extension mechanisms worked remarkably well during the implementation
of the open module extension. The changes to the matcher have remedied an oversight in abc’s extensibility,
making it easier to implement extensions similar to open modules.

7 RELATED WORK

Aldrich Open modules were proposed by Aldrich [3] as a way to allow for modular reasoning while using
advice. His design uses a small functional language called TinyAspect. Each module contains a set of
functions and advice, as well as a signature, which determines which points in the code are available to
advice outside the module. This signature forms a contract between a module and external advice: external
advice must comply with the signature, and in return any change in the implementation of the module must
maintain the semantics of the signature, thus insulating external advice from changes in the module. It also
allows for module composition (our constrain construct), and defines the effect that composition has on the
signatures. The proposal defines a set of equivalence rules which may be used to determine if a change in
the implementation of a module violates the contract implied by the module’s signature.
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Aldrich’s paper was the starting point of the investigations reported here. Relative to his work, our
main contribution is to extend the design to full AspectJ: this involved dealing with non-call joinpoints, the
result about consistent aspect precedence, and the reduction to the simple expose annotation on classes.
Furthermore we introduced the notion of opening a module, which again can be reduced to the normal form.

One might argue that the opening construct defined in this paper destroys Aldrich’s formal result about
modular reasoning. Our response is that modular reasoning is possible, provided one knows the whole
module specification, as then it is possible to calculate exactly what joinpoints are exposed by each class.
We furthermore feel that such a minor complication is amply justified by the pragmatic advantages of module
opening: in aspect-oriented programming, it is essential that the programmer can assert responsibility for
joinpoints that occur in parts of the system not originally written by her.

Gudmundson and Kiczales Gudmundson and Kiczales outline the idea of pointcut interfaces [9]. This
involves annotating a class with named pointcuts, which expose joinpoints of interest in that class. This
named pointcut is then used by aspects when defining advice that apply to the class. They also provided
a way to define such pointcuts for packages by defining them in a special Pointcuts class, and to the whole
program using a similar method. They do not, however, provide a way to extend or constrain the interface
without directly modifying the interface specifications in the class annotations.

Our intermediate representation (normal form) for open modules is clearly akin to the annotations of
Gudmundson and Kiczales: what we have added is the notion of specifying the annotations via module
specifications. Indeed, we believe it is undesirable that programmers write such annotations directly: it
violates the principle of obliviousness (that classes are unaware of the aspects that may advise their code), and
it is inflexible: often different module specifications may apply to the same class in different circumstances.
It is thus important that module specifications are separated from the classes to which they apply.

Mezini and Kiczales Mezini and Kiczales propose aspect aware interfaces [11] to define how aspects may
modify classes. These interfaces annotate method declarations with the aspect and the type of advice that
may apply to them. They, however, only consider execution joinpoints. Referring to the work of Aldrich on
modular reasoning, they argue modular reasoning can be applied as soon as the aspect interfaces are known;
and the aspect interfaces can be automatically calculated through a global analysis of the whole system.

This use of an ‘initial global analysis’ is similar to our claim that modular reasoning about AspectJ is
facilitated by considering the whole module specification, together with the code in question. The difference,
however, is that the module specification is typically very small compared to the system as a whole, and in
top-down design, the module specification is available before the system is complete.

Clifton and Leavens Clifton and Leavens also address the problem of modular reasoning via annotations
that state what aspect may affect a given part of the code [7]. A distinctive feature of their proposal is
that they distinguish between spectators (aspects that merely observe) and assistants (aspects that add new
functionality). Assistants can only apply where explicitly allowed via an annotation. To reduce the burden
of writing annotations, aspect maps are introduced, which allow the specification of multiple annotations in
one place.

Aspect maps are similar to open modules, but far more restricted, and they lack the combining forms
of constrain and open. At present it is not possible to distinguish between spectators and assistants in our
design. Ideally, one might write for instance

expose to pure foo.bar..* : pointcut;

That is, the given set of joinpoints is exposed only to pure aspects in a subpackage of foo.bar.

We believe that this would be a very valuable feature, but it is independent of the proposal for open
modules. Instead, we plan to introduce the new optional modifier pure on aspects, and provide compiler
support for checking that the advice in the aspect is indeed pure. In fact, in an initial investigation, we have
found it necessary to implement a more general feature, where an aspect is annotated with the construct
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pure on 〈classname-pattern〉 except 〈pointcut〉 :
〈aspect-declaration〉

That is, we assert that an aspect does not introduce side-effects at any joinpoints which have a signature
owned by classes that match the pattern, except at those that match the given pointcut. This makes it
possible, for example, to state that printing on System.err is not considered a purity violation. Details of
this design, and an initial implementation using the Soot analysis framework, can be found in [13].

Dantas and Walker Dantas and Walker have also proposed a notion of harmless advice [8], which is advice
that does not modify the execution of the joinpoint it intercepts. Exposing a pointcut in a module renders
it vulnerable to around advice, which may choose to bypass the execution of the joinpoint it intercepts. It
may be desirable allow only harmless advice to apply to certain points in a module.

Again, we believe such classification of advice effects to be an important issue in aspect-oriented pro-
gramming, but from the language design point of view, it should be treated separately from modules.

8 CONCLUSIONS

We have presented a detailed design for the addition of open modules to AspectJ. Open modules provide a
convenient notation for summarising the interaction between aspects and other parts of the code. Starting
with the original proposal of Aldrich, we enhanced it to encompass the whole of AspectJ.

Despite the fact that we deal with an industrial-strength language, the definition of our new feature
is particularly simple thanks to an intermediate representation, which provides a normal form for hiding
constructs in AspectJ. We validated our design via many concrete examples, and demonstrated its use on a
more substantial one that involves eight separate aspects. The claim that our proposal constitutes a seamless
extension of the existing AspectJ language was underpinned by a formal result which guarantees that the
use of open modules cannot lead to precedence conflicts.

We have implemented open modules in abc, the extensible research compiler for AspectJ. Open modules
are part of abc’s 2.0 release, so others can experiment with their use. Our own plan for future development
is to combine open modules with an effect analysis for advice [13].
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