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1 Introduction

AspectJ [3] is currently the most popular aspect-oriented programming language. It features an extremely
rich pointcut language that allows programmers to intercept runtime events (which are known as joinpoints
in the literature), and run additional code before, after or instead of intercepted joinpoints.

Pointcuts are thus just patterns that range over joinpoints, and the way pointcut matching is performed
is an integral part of the semantics of any aspect-oriented programming language. Curiously, even though
a large amount of research effort has gone into investigating AOP semantics (e.g. [1, 2, 5–7, 10–14,16–19]),
such studies have focussed on the operational semantics of advice, taking into account only a very simple
pointcut language. For instance, in [16], the base language identifies program points for instrumentation by
explicitly including labels, and pointcuts are simply sets of such labels.

However, in order to understand a language like AspectJ fully, it is vital to have a well-defined semantics
for pointcut matching. The fact that no such document exists has been a continuing source of serious bugs
in AspectJ compilers and misconceptions among proponents of the technology. In spite of this, the user
community continues to make requests for a yet more expressive pattern language, only exacerbating the
problem.

The aim of this document is to present a complete semantics of static pointcut matching in AspectJ. Our
approach is to provide a semantics that reduces the complex pointcuts found in the language to simple sets
of program points (or source locations — shadows in the literature), leaving the dynamic part of the story
to an operational semantics in the style of [16], which is already well-understood.

We achieve this goal by applying a simple syntactic term rewriting system to AspectJ pointcuts, trans-
lating them into Datalog queries over relations defined over the object program. Datalog is a logic query
language that originated in the theoretical database community [8]. We restrict ourselves to safe Datalog, a
fragment of Prolog that has a straightforward least-fixpoint semantics; furthermore, all safe Datalog queries
are guaranteed to terminate. Evaluating the produced queries over a database of facts derived from the
object program in CodeQuest [9] — our own implementation of Datalog based on RDBMS — results in a
set of shadows that match the pointcut. Our semantics is thus executable.

Our rule set is built on top of the Stratego term rewriting system [15]. This technical report concentrates
on exhibiting the entire set of around 90 rules; since the focus is not the exact syntax of Stratego, we present
a slight typographical modification of the actual source code, in order to improve legibility.

We present the semantics of AspectJ 1.2.1 here, but we believe this style of term rewriting-based semantics
is an excellent platform for discussing general pointcut languages. Some more information regarding the
general ideas inherent in this work can be found in a companion paper [4].

2 Datalog

We shall use the Datalog query language to express the semantics of AspectJ pointcuts. Datalog is similar
to Prolog, and syntactically is a subset of Prolog, but excludes the ability to construct new data type values
such as lists. While we give a brief introduction to Datalog, we refer to the reader to [8] for more details. A
Datalog program is a set of clauses (backward implications) of the form:

p(X1, . . . , Xn)← q1(Y1, . . . , Ym1
), . . . , qk(Y1, . . . , Ymk

).

where each Xi is a variable, and each Yj is either a variable or a constant. Each qj is a positive or negated
occurrence of either a predicate or a test such as X < Y . A variable occurs positively in a clause if it occurs
in a positive predicate on the right-hand side of the clause, but not if it only occurs in a test. Intuitively, a
test such as X < Y cannot be used to generate values of X and Y making the test true, unlike a predicate
p(X, Y ).

The semantics of Datalog programs, at least in the absence of negation, are straightforward. Each
predicate p(X1, . . . , Xn) defines an n-ary relation, and clauses are interpreted as inclusions between relations.
The meaning of the program is then the least solution of this set of inclusions. For instance, the Datalog
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program p(X) ← p(X), while non-terminating as a Prolog program, is a bona fide definition of the empty
relation in Datalog.

2.1 Safe Datalog

The use of negation in Datalog programs is more problematic, as negation is not a monotonic operator, and
so the fixpoint need not exist. Concretely, a program such as p(X) ← ¬p(X) does not define a relation
p, and indeed p(X) is neither true nor false for any X . Safe Datalog is a subset of Datalog that provides
a sufficient (but not necessary) condition that guarantees that every program can be evaluated to a set of
relations. Safe Datalog imposes two conditions: range restriction and stratification.

Range Restriction In a range-restricted Datalog program, each variable in the head (i.e. left-hand side) of
a clause must appear positively on the right-hand side. Furthermore, each variable on the right-hand side
must appear positively at least once. This restriction rules out programs such as p(X, Y ) ← q(X), as Y is
left unconstrained. Programs such as:

r(X)← ¬q(X), regexpmatch(X, “a.*”).

where regexpmatch(X, P ) is a test, are likewise disallowed. Both the above queries are undesirable as the
relations defined cannot directly be computed: the p(X, Y ) relation may be infinite (any value of Y can be
used), while evaluating the r(X) relation may require evaluating infinitely many regular expression matches.

Stratification Furthermore, in a stratified Datalog program, negation may not be used in recursive cycles.
A program is stratified if there is some strict partial order < on predicates such that whenever p depends
negatively on q, then p > q. That is, a predicate may never depend negatively on itself. This prohibits such
programs as p(X)← q(X),¬p(X).

Any safe Datalog program defines a set of relations as the least fixpoint of the recursive inclusions in the
program. Furthermore, this solution may be effectively computed, and efficient algorithms are known for
evaluating safe Datalog programs. Finally, all relations evaluated are finite, given the primitive predicates
(undefined predicates providing access to the database) denote finite relations.

These properties of safe Datalog are highly desirable in our setting. First, Datalog has a clear and
straightforward semantics, unlike Prolog in which the operational and declarative semantics do not coincide.
This guarantees that defining the semantics of AspectJ pointcuts by translation to Datalog is valid. Beyond
pure semantics, the efficiency of Datalog allows our translated AspectJ pointcuts to be evaluated — leading
to a directly implementable semantics.

2.2 Extensions

For convenience, we shall make use of a number of extensions to pure Datalog. These are just syntactic
sugar, and may be eliminated in a translation back to pure Datalog (which we omit for space reasons).

• We use a variant of Datalog in which each variable is annotated with a type. In any clause, the type
of the variables defined in the head are given explicitly, as follows:

p(X1 : p1, . . . , Xn : pn)← E.

where the pi are predicates and E is any Datalog expression. This is equivalent to the untyped clause:

p(X1, . . . , Xn)← p1(X1), . . . , pn(Xn), E.

Furthermore, we insist that any free variable appearing on the right-hand side be introduced by an
existential quantifier, again giving its type. We use the syntax X : p ˆ E to represent the existential
quantification ∃X(p(X) ∧ E). A typed Datalog program is necessarily range-restricted.
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• Datalog expressions can use negation arbitrarily, so that not(E) is an expression whenever E is.

• We allow the use of disjunction, represented by a semicolon.

3 Rewriting basics

3.1 Primitive predicates

Predicate Description

packageDecl(P, N) P denotes a package with name N.
typeDecl(T, N, IsInt, P) T denotes a type with name N, declared in package P.

IsInt is true if T is an interface.
primitiveDecl(T, N) T denotes a primitive type with name N.
arrayDecl(T, ET, N) T denotes an array type with element type ET and name

N.
methodDecl(M, N, S, DT, RT) M denotes a method with name N, signature S, return

type RT and declared in type DT.
constructorDecl(C, S, Cls) C denotes a constructor with signature S for class Cls.
fieldDecl(F, DT, T, N) F denotes a field with name N, of type T, declared in type

DT.
compilationUnit(CU, P) CU denotes a compilation unit in package P.
singleImportDecl(I, N) I denotes an import declaration, importing the type with

name N.
onDemandImportDecl(I, N) I is an on-demand import declaration, for all types in the

type or package with name N.
methodModifiers(M, Mod) Method M has the modifier Mod.
fieldModifiers(F, Mod) Field F has the modifier Mod.
modifiers(Mod, N) Modifier Mod has string representation N.
methodThrows(M, T) Method M declares throwing exception T

methodParamTypes(M, T, Pos, Next) Method M has a parameter of type T at position Pos. Next

is the next position after Pos.
hasChild(A, B) Syntactic element B is a directly lexically enclosed by A.

Also applies to packages (e.g. package x.y is a child of
package x).

hasSubtype(T1, T2) T2 is a direct subtype of T1.

Figure 1: Primitive Predicates: Program Structure

In order to express pointcuts in Datalog, a set of primitive predicates (also referred to as extensional
predicates in the deductive databases literature) must be supplied to query the structure of the program.
The set of primitive predicates must at least encode as much of that structure as is required to evaluate
AspectJ pointcuts. An extreme viewpoint would be to just store the abstract syntax tree of the mainline
program, and write queries over that structure. However, we shall need quite complex derived notions, such
as the type hierarchy (represented by a relation hasSubtype). While this information could be defined purely
in terms of the syntax of the program, it would clutter our semantics of pointcuts to do so. We therefore
abstract away from this irrelevant detail, and use the set of primitive predicates in Figure 1. This set captures
just enough information about the structure of the program to evaluate AspectJ pointcuts.

While the use of Datalog usually allows a simple and direct expression of queries, our treatment of method
parameters shows that an encoding may sometimes be necessary. The methodParamTypes predicate is used
to obtain, for each method, the list of types of formal parameters. As Datalog does not allow the use of data
structures such as lists, or indeed arithmetic, this cannot be expressed directly. Instead, we define a relation:
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Predicate Description

callShadow(S, M, Recv) Call to a method or constructor M with receiver type Recv.
executionShadow(S, M) Execution of a method M.
initializationShadow(S, C) Initialisation of an object (body of C after parent con-

structor calls).
preinitializationShadow(S, C) Pre-initialisation of an object (body of C before parent

constructor calls).
staticinitializationShadow(S, T) Initialisation of the static members of a class T.
getShadow(S, F, Recv) Read access to a field F, on an object of static type Recv.
setShadow(S, F, Recv) Write access to a field F, on an object of static type Recv.
handlerShadow(S, Exn) Execution of a handler for exception Exn.
adviceexecutionShadow(S) Execution of advice.

isWithinClass(S, Cls) Shadow S is contained in class Cls.
isWithinShadow(S1, S2) Shadow S1 is contained within shadow S2.

Figure 2: Primitive Predicates: Shadows

methodParamTypes(Method, Type, Pos, NextPos)

which holds if the formal parameter of Method at position Pos has type Type. The NextPos field records the
position of the next parameter of M (i.e. Pos + 1), or 0 if there is no next parameter. This field is needed
because arbitrary arithmetic is not available in Datalog, and is used to iterate over parameter types.

While java packages are not hierarchical, we have found that defining a hierarchy on packages using
the hasChild primitive was needed to properly rewrite type patterns that contain the .. wildcard. Thus
hasChild(A,B) holds if B is a direct subpackage of A (e.g. package x.y is a child of package x).

In addition to the primitive database predicates describing the structure of the program, we include
predicates listing the shadows in the program. Shadows represent the static instrumentation points recog-
nised by the AspectJ language; as such, pointcuts denote sets of shadows. Again, because our focus is on
the matching behaviour of pointcuts, we have chosen to represent shadows directly as primitive predicates.
Figure 2 lists the relevant primitive predicates. Each of these corresponds to a kind of shadow defined by the
AspectJ language — for instance, the callShadow predicate describes method or constructor call shadows.
The type stored for each call shadow should be interpreted as the receiver type for virtual method calls,
while for static method calls and constructor calls this is just the declaring type of the callee.

3.2 Pre-defined derived predicates

literature), as a convenient shorthand in defining the semantics of pointcuts.

The simplest examples are those predicates that are used as types, such as constructor, method, field, type.
Most of these are self-explanatory, but there are some exceptions: callable (M) holds when M is a method or
a constructor; similarly packageOrType(T) is the union of the package and type predicates. Figure 3 lists all
the derived predicates of this type.

Other pre-defined predicates include hasName(X,N), which is true when X is an entity (method, type,
package, . . . ) that has name N. All of these are obtained via simple projections of the primitive relations.

A more complex class of pre-defined predicates are those used for traversing hierarchical data. A typical
example is the reflexive transitive closure of the immediate hasSubtype relation:

hasSubtypeStar(T : type,T : type).
hasSubtypeStar(T : type,S : type) ←

U : type ˆ ( hasSubtype(T,U), hasSubtypeStar(U,S) ).
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Predicate Description

package(P) P is a package
class(C) C is a class.
interface(I) I is an interface.
primitive(T) T is a primitive type.
reftype(C) C is a reference type (i.e. a class or an interface).
reforprimtype(T) T is a reference or primitive type.
array(T) T is an array type.
type(T) T is a type (reference, primitive or array).
packageOrType(T) T is a package or a type.
constructor(M) The method M is a constructor.
method(M) M is a method.
callable(M) M is a method or a constructor.
field(F) F is a field.
shadow(S) S is a shadow.
modifier(M) M is a modifier.
name(N) N is a name.

Figure 3: Pre-defined Derived Predicates: Types

The final category of pre-defined predicates concerns the lookup of type names in Java. The most
important of these is predicate simpleTypeLookup(C,N,T). It relates a type C, a name N and a type T

precisely when inside C, looking up a type by name N would result in T according to the Java Language
Specification. Furthermore N is assumed to be a simple name, not containing dots.

Figure 4 lists all the pre-defined predicates that are not used as types.

3.3 Master rewriting strategies

Our rules consist of a set of modules, each dealing with a specialised subset of the AspectJ pointcut lan-
guage. In the code listings, we adopt the convention that term constructors are shown in bold font, and
metavariables which capture subexpressions of the current left-hand side are typeset in italics. Both left-
and right-hand side are enclosed in brackets ([[..]]) to make reading easier.

A module declaration consists of a series of import statements, followed by a list of rules. Each rule
specifies a pattern, and, following an arrow (→), what any expression matching the pattern should be
rewritten to. Optionally, there can be a where clause that gives side conditions — most of the time, these
consist of the generation of fresh logic variable names using the newname construct, but in a few cases they
are actual conditions and will be discussed in detail.

The top-level module ties everything together: It imports all other modules, as well as some libraries,
and defines the overall rewriting strategy.

1 strategies
2 main = io−wrap(makeQuery ; innermost(tx))

We see that the main strategy consists of the sequential composition of two auxiliary strategies: make-
Query and innermost(tx). It is applied to the AST obtained from parsing an AspectJ pointcut. First, the
makeQuery strategy creates the overall structure of the generated Datalog query: A pointcut is rewritten
to a query with two free variables, a context C and a shadow S. The intended interpretation is that the
pointcut, when evaluated from the given context, selects precisely those shadows S which make the query
true.

1 rules
2 makeQuery: pointcut → [[ ?predname(C : type, S : shadow) ←aj2dl(pc, C, S). ]]
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Predicate Description

isInPackage(X,P) The syntactic element X is contained (perhaps indirectly)
by package P.

returns(M,T) The return type of method M is T.
hasSubtypePlus(T1,T2) The transitive closure of the hasSubtype primitive.
hasSubtypeStar(T1,T2) The reflexive transitive closure of the hasSubtype primi-

tive.
hasModifier(X,M) The syntactic element X has a modifier M. X may be a

method or a field. M is an identifier for the modifier (not
the string form).

hasStrModifier(X,Mod) Mod is the string form of the modifier of the syntactic
element X.

hasType(F,T) The field F has type T.
hasName(X,N) The syntactic element X has the name N.
hasChildPlus(A,B) Transitive closure of the hasChild primitive.
hasChildStar(A,B) Reflexive transitive closure of the hasChild primitive.
declaresConstructor(C,M) The constructor M is declared in class C.
declaresMethod(C,M) The method M is declared in the class C.
declaresField(C,F) The field F is declared in class C.
afterParam(X,P1,P2) In the method X, there exists a parameter with position

P2 that comes after a parameter of position P1.
paramPos(P) P is a position in the method parameters.
hasNoArgs(M) The method M has no paramters.
defaultPackage(P) P is the default package of the compilation.
topLevelPackage(P) The package P is not contained by any package (other

than the default package).
simpleTypeLookup(C, N, T) Given the context C and a name N, use Java name lookup

to find type T.
overrides(Cur, Super) Holds if the method Super is overridden by Cur in a sub-

class, or if Super and Cur are the same method.

Figure 4: Pre-defined Derived Predicates

7



3 where <newname>(”Shadow”) ⇒S;
4 <newname>(”Context”) ⇒C;
5 <to−pc−expr−and−name> pointcut ⇒(pc, predname)

The name of the generated query and the actual pointcut expression are extracted from the AST using
the auxiliary strategy to-pc-expr-and-name. Finally, the pointcut expression pc is wrapped in the aj2dl term
constructor.

All the rules that are actually part of our semantics are labelled with tx:. They eliminate the term
constructor aj2dl introduced by makeQuery by rewriting it to Datalog and further term constructors. Recall
that the main strategy calls innermost(tx) — this ensures our rewrite rules are applied exhaustively.

Sometimes, it is convenient to rewrite a term constructor to a true(X) predicate, when it imposes no
further constraint on the selected shadows. Our rules do this in various places. We shall do this whenever
the semantics justify it.

3.4 Named pointcuts

AspectJ allows the user to define named pointcuts — named pointcut expressions that can be used when
defining other pointcuts. In general, a named pointcut can take a number of formal parameters, which can
be bound with the usual AspectJ binding constructs (like args, this etc.).

Each named pointcut is transformed to a Datalog query with the same name. To avoid name clashes,
and to avoid involving the orthogonal issue of poincut-name resolution in our semantics, we assume that
all named pointcuts have been renamed to have distinct names. Recall that each pointcut must be eval-
uated in the context of the type it is lexically defined in. Named pointcuts may be defined in a different
context to pointcuts that refer to them. Therefore, an additional primitive Datalog relation is required:
pointcutContext(N,C) holds if the pointcut with name N should be evaluated in context C.

Thus, transforming a reference to a named pointcut into Datalog is easy: We simply refer to a query of
the same name.

1 [[ aj2dl(pcname(pcargspat), C, S) ]] → [[ NewC : type ˆ (pointcutContext(pcname, NewC),
2 pcname(NewC, S)) ]]
3 where <newname>(”Context”) ⇒NewC

3.5 Boolean expressions over pointcuts

Pointcuts can be combined with the usual Boolean connectives — logical conjunction, disjunction and
negation. Since all of these are present in Datalog, we can simply rewrite the conjunction of two pointcuts
to the conjunction of the two Datalog expressions that they are rewritten to. A similar approach deals with
the remaining operations.

1 [[ aj2dl(pc1 && pc2, C, S) ]]→ [[ (aj2dl(pc1, C, S), aj2dl(pc2, C, S)) ]]
2 [[ aj2dl(pc1 || pc2, C, S) ]] → [[ (aj2dl(pc1, C, S)); (aj2dl(pc2, C, S)) ]]
3 [[ aj2dl(!pc, C, S) ]] → [[ not(aj2dl(pc, C, S)) ]]

4 Patterns

4.1 Member patterns

A member pattern in AspectJ is a pattern that picks out particular class members (fields, methods or
constructors). In general, such a pattern can either be a simple name pattern (a string of identifier characters,
possibly containing the wildcard ∗), in which case all members from all classes whose name textually matches
the pattern are selected, or it can be of the form namepat.snamepat or namepat..snamepat, where namepat is a
name pattern ranging over types or both packages and types, and snamepat is a simple name pattern. The
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former case selects all members whose name textually matches snamepat which are contained in a type that
matches namepat, and the latter all members matching snamepat that are in a type contained in a type or
package matching namepat.

For details on the matching of name patterns to type, see Section 4.7.

Because of a subtlety in dealing with static members, we must differentiate between member patterns
for methods, for fields and for constructors.

4.1.1 Method Member Patterns

The methmembpat2dl term constructor is applied to four entities: the member pattern to match, the
matching context C, the receiver type of the method call R and the method X matching the member pattern.

In the base case, the pattern is just a simple name pattern snamepat. We rewrite this to Datalog that
asserts X matches snamepat, is a method, and is declared in some supertype of the actual receiver type R.
The subtype relationship is expressed by hasSubtypeStar(Z, R), and the fact that Z declares the method X

by hasChild(Z, X).

1 [[ methmembpat2dl(snamepat, C, R, X) ]] → [[ snamepat2dl(snamepat, X), method(X),
2 Z : type ˆ (hasSubtypeStar(Z,R),
3 hasChild(Z,X)) ]]
4 where <newname> ”Z” ⇒Z

If the method member pattern is compound and can be decomposed as namepat..snamepat, then we want
to assert the following:

• There is a package or type Y that matches namepat.

• There is a class Z transitively contained in Y such that Z is a supertype of the receiver type R.

• There is a method X that matches snamepat, defined in some type P. Moreover,

– If X is static, then P is actually equal to Z.

– If X is not static, then P is some supertype of Z.

All this translates into Datalog in the following fashion:

1 [[ methmembpat2dl(namepat..snamepat, C, R, X) ]]→[[ Y : packageOrType ˆ Z : type ˆ P : type ˆ
2 (wcnamepat2dl(namepat, Y), hasChildPlus(Y, Z), hasSubtypeStar(Z,R),
3 method(X), snamepat2dl(snamepat, X), hasChild(P, X),
4 ((hasStrModifier(X, static ), equals(P, Z));
5 (not(hasStrModifier(X, static)), hasSubtypeStar(P, Z)))) ]]
6 where <newname> ”Y” ⇒Y;
7 <newname> ”Z” ⇒Z;
8 <newname> ”P” ⇒P

Note that because .. is considered a wildcard, we used wcnamepat2dl(namepat, Y) to rewrite namepat. For a
discussion of why this is important, see Section 4.7.

Suppose now that the member pattern decomposes as typepat.snamepat. In this case, we want to assert
the following:

• There is some type Z matching typepat that is a supertype of the receiver type R.

• There is a method X that matches snamepat, defined in some type P. Moreover,

– If X is static, the P is actually equal to Z.

– If X is not static, P is some supertype of Z.
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1 [[ methmembpat2dl(typepat.snamepat, C, R, X) ]]→[[Z : type ˆ P : type ˆ
2 (typepat2dl(typepat, C, Z), hasSubtypeStar(Z, R),
3 snamepat2dl(snamepat, X), method(X), hasChild(P, X),
4 ((hasStrModifier(X, static ), equals(P, Z));
5 (not(hasStrModifier(X, static)), hasSubtypeStar(P,Z)))) ]]
6 where <newname> ”Z” ⇒Z;
7 <newname> ”P” ⇒P

4.1.2 Field Member Patterns

Field member patterns are rewritten using the fieldmembpat2dl term constructor, which is applied to four
entities: the pattern, the matching context C, the receiver type of the field access R, and the actual field X

that matches the pattern.

Again, in the base case (when the pattern is just a simple name pattern), it is easy to see how the
rewriting should proceed: we assert that there is a field X matching snamepat, and which is defined in some
supertype Z of R.

1 [[ fieldmembpat2dl(snamepat, C, R, X) ]] → [[ snamepat2dl(snamepat, X), field(X),
2 Z : type ˆ (hasSubtypeStar(Z,R),
3 hasChild(Z,X)) ]]
4 where <newname> ”Z” ⇒Z

Suppose now that the pattern decomposes into namepat..snamepat. It is important to contrast this with
the corresponding case for methmembpat2dl, which had to consider whether the method was static or not.
No such distinction is necessary with fields, and indeed this is the reason why we can’t treat all member
patterns uniformly.

With fields, we simply require the existence of a type Y that matches namepat (note that, again, we use
wcnamepat2dl to rewrite a pattern that contains the wildcard ..), which transitively contains some type Z,
which is a supertype of R. Given that, a field matching the pattern must be defined in some supertype P of
Z.

1 [[ fieldmembpat2dl(namepat..snamepat, C, R, X) ]]→ [[ Y : packageOrType ˆ Z : type ˆ P : type ˆ
2 (wcnamepat2dl(namepat, Y), hasChildPlus(Y, Z), field(X),
3 snamepat2dl(snamepat, X), hasSubtypeStar(Z,R),
4 hasChild(P, X), hasSubtypeStar(P, Z)) ]]
5 where <newname> ”Y” ⇒Y;
6 <newname> ”Z” ⇒Z;
7 <newname> ”P” ⇒P

Finally, let us consider the case when the member pattern is of the form typepat.snamepat. Again, due
to the fact that it isn’t necessary to distinguish between static and non-static fields, this rule is somewhat
simpler than the corresponding rule for methmembpat2dl. We simply require a type Z matching typepat,
which should be a supertype of R, and such that some supertype, P, defines a field X matching the pattern.

1 [[ fieldmembpat2dl(typepat.snamepat, C, R, X) ]]→[[ Z : type ˆ P : type ˆ
2 (typepat2dl(typepat, C, Z),
3 snamepat2dl(snamepat, X), field(X),
4 hasSubtypeStar(Z, R), hasChild(P, X),
5 hasSubtypeStar(P,Z)) ]]
6 where <newname> ”Z” ⇒Z;
7 <newname> ”P” ⇒P

4.1.3 Constructor Member Patterns

The final possibility is that a member pattern refers to a constructor. If this is the case, then the final simple
name pattern must be the string ‘‘ new’’ — otherwise constructor member patterns look just like method
member patterns.
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Consequently, constrmembpat2dl is applied to four entities: a pattern, a matching context, a receiver
type and a variable that binds to the constructor. Since constructors are not inherited in Java, these rules
are significantly simpler than those for methods and fields.

In the basic case, the pattern is simply the string new, and to match it we simply require that the receiver
type R declares a constructor X.

1 [[ constrmembpat2dl(new, C, R, X) ]] → [[ constructor(X), hasChild(R,X) ]]

Otherwise, the pattern could be of the form namepat..new. We simply assert that there exists a type or
package Z which matches namepat (note again the use of wcnamepat2dl because of the wildcard), which
transitively contains the receiver type R, which defines some constructor X.

1 [[ constrmembpat2dl(namepat..new, C, R, X) ]]→[[Z : packageOrType ˆ
2 (wcnamepat2dl(namepat, Z), constructor(X),
3 hasChildStar(Z,R), hasChild(R,X)) ]]
4 where <newname> ”Z” ⇒Z

Finally, the pattern could be of the form typepat.new. In that case, we require that the receiver type
matches typepat and declares the constructor X.

1 [[ constrmembpat2dl(typepat.new, C, R, X) ]]→[[typepat2dl(typepat, C, R),
2 constructor(X), hasChild(R,X) ]]

4.2 Field patterns

Field patterns in AspectJ pick out specific fields, and occur only in get() and set() pointcuts. Unlike field
member patterns (discussed in Section 4.1.2), which talk exclusively about textually matching the name of
the field to a pattern, field patterns can also specify the modifier and a type for the field that is to be picked
out.

Thus, a field pattern in general consists of a field modifier pattern (the discussion of which we defer to
Section 4.5), a type pattern (discussed in Section 4.7) and a field member pattern. Each of these is further
rewritten with the appropriate term constructor, and the results are conjoined with the assertion that the
field has the appropriate type.

1 [[ fieldpat2dl(fmodpat typepat membpat, C, R, F) ]]→ [[ T : type ˆ (fmodpat2dl([fmodpat], F),
2 typepat2dl(typepat, C, T),
3 fieldmembpat2dl(membpat, C, R, F),
4 field (F), hasType(F, T))
5 ]]
6 where <newname> ”Type” ⇒T

4.3 Method or constructor patterns

Method patterns in AspectJ occur whenever a particular set of methods needs to be picked out — namely,
in call () and execution() pointcuts. They consist of a method modifier pattern (discussed in Section 4.5), a
type pattern for the return type (Section 4.7), a method member pattern that determines the method name
and containing type (Section 4.1.1), a formals pattern that selects methods based on their parameter types
(Section 4.4), and an optional throws pattern that imposes constraints on the throws clause of the method.

At first, we choose to ignore the throws pattern. A method pattern with no throws clause is rewritten
in the usual way, wrapping each constituent part with the appropriate term constructor and conjoining the
results with the requirement that the return type T of the method should match typepat.

1 [[ methconstrpat2dl(mmodpat typepat membpat(formalspat), C, R, X) ]]
2 → [[ T : type ˆ(mmodpat2dl([mmodpat], X), typepat2dl(typepat, C, T),
3 methmembpat2dl(membpat, C, R, X),
4 formals2dl([formalspat], C, X, 1), returns(X, T)) ]]
5 where <newname> ”Type” ⇒T
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Now consider the case when the method pattern does specify a throws pattern. We simply delegate to
the above rewrite rule and rewrite the throws pattern using the throws2dl term constructor, which ensures
the declared exceptions of the method X conform to throwspat.

1 [[ methconstrpat2dl(mmodpat typepat membpat(formalspat) throws throwspat, C, R, X) ]]
2 → [[ methconstrpat2dl(mmodpat typepat membpat(formalspat), C, R, X),
3 throws2dl([throwspat], C, X) ]]

Constructor patterns look just like method patterns, with the exception that they do not specify a return
type, and always end in .new. Apart from these minor points, however, their handling is exactly identical to
that of method patterns, discussed above.

1 [[ methconstrpat2dl(cmodpat constrmembpat(formalspat), C, R, X) ]]→[[cmodpat2dl([cmodpat], X),
2 constrmembpat2dl(constrmembpat, C, R, X),
3 formals2dl([formalspat], C, X, 1) ]]
4

5 [[ methconstrpat2dl(cmodpat constrmembpat(formalspat) throws throwspat, C, R, X) ]]
6 → [[ methconstrpat2dl(cmodpat constrmembpat(formalspat), C, R, X),
7 throws2dl([throwspat], C, X) ]]

4.4 Formal patterns

A formals pattern occurs in method patterns; conceptually, it is a list of type patterns which correspond to
the parameter types of the matching method. In addition to this, the wildcard .. has a special meaning here:
it is taken to denote zero or more parameters of arbitrary type. Thus, [] is a formals pattern that specifies
methods with no parameters, [ .. ] matches all methods, regardless of parameters, and [ A, .. , B] matches
methods with at least two parameters whose first parameter has type A, and last parameter has type B.

Because we restrict the rewrite rules to safe Datalog, which doesn’t allow the use of lists or other similar
data structures, we need to provide some suitable encoding of each method’s parameter types in the exten-
sional predicates. Our approach is to represent them with the methodParamTypes(M, T, X, Y) relation. The
intended interpretation is that M is a method, which has a parameter of type T at parameter position X,
and Y is the position of the next parameter (so X+1 — arithmetic is not available in safe Datalog, either),
or 0 if there is no next parameter.

Now we can present our rewrite rules for formals2dl. This term constructor is applied to four entities: the
formals pattern, enclosed in square brackets, the matching context C, the method M that we are matching
against the pattern, and the current parameter position X. Recall from Section 4.1.1 that formals2dl is
originally invoked with a value of 1 in the last position, indicating that we start matching the formals
pattern at the first parameter position.

If the pattern is empty, then we assert that M has no arguments.

1 [[ formals2dl([], C, M, X) ]] → [[ hasNoArgs(M) ]]

If the pattern at any stage consists of simply the formal parameter wildcard .., then we need not assert
anything else — we rewrite this to a special true(X) predicate that does not impose further constraints on
the result.

1 [[ formals2dl([..], C, M, X) ]] → [[ true(X) ]]

If the current formals pattern is a single type pattern, then we assert that the parameter at position X

of the method M has a type T that matches typepat, and that the next parameter position is 0 (i.e. this is
the last parameter). Note the side condition on Line 4, where we prohibit the typepat to be matched against
the formal wildcard .., which is handled in the above case.

1 [[ formals2dl([typepat], C, M, X) ]] → [[ T : type ˆ (typepat2dl(typepat,C,T),
2 methodParamTypes(M, T, X, 0)) ]]
3 where <newname> ”ParamType” ⇒T;
4 <not(?FormalWildcard)> typepat
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If the current element of the formals pattern is the formal parameter wildcard .., then we assert that
there is some parameter position (i.e. integer) that is after the current position X, and that we can match
the remaining formalspat starting at that position. Note that this rule uses a non-trivial side condition: Line
5 ensures that the remainder is not the empty list (if it is, then the second of these rules should be applied).

1 [[ formals2dl([.., formalspat], C, M, X) ]] →
2 [[ N : paramPos ˆ (afterParam(M, X, N),
3 formals2dl([formalspat], C, M, N)) ]]
4 where <newname> ”Next” ⇒N;
5 <not(eq)> (formalspat ,[])

The final possibility is that the current element of the formals pattern is some type pattern, and this
is not the end of the pattern. In that case, we assert that the parameter of M at position X has a type
that matches typepat, that the next parameter position is N, and that we can match the remaining formalspat

starting at N. Note again the use of non-trivial side conditions: In addition to requiring the remainder of the
pattern to be non-empty, Line 7 prohibits typepat from binding to the formal wildcard .., which is handled
in the above case.

1 [[ formals2dl([typepat, formalspat], C, M, X) ]] →
2 [[ T : type ˆ N : paramPos ˆ (typepat2dl(typepat, C, T),
3 methodParamTypes(M, T, X, N),
4 formals2dl([formalspat], C, M, N)) ]]
5 where <newname> ”ParamType” ⇒T;
6 <newname> ”Next” ⇒N;
7 <not(?FormalWildcard)> typepat;
8 <not(eq)> (formalspat, [])

4.5 Modifier patterns

Java allows different sets of modifiers for fields, methods and constructors. Each of these can be matched
against by modifier patterns. For this reason, we distinguish between the three different kind of modifier
patterns — the rewriting implementation is exactly identical in all three cases.

Each of mmodpat2dl, cmodpat2dl and fmodpat2dl is applied to two entities: A list of modifier patterns
and the method, constructor or field that is being matched. If the list of modifiers is empty, we rewrite to
true(M), since there are no more conditions to add.

If the first element of the list is a positive modifier, we assert that M has that modifier, and recursively
rewrite the tail of the list. Note the use of the <toString> strategy, which converts from the AST node
representing each modifier to the string representation of that modifier. The reason for this is that we chose
to represent modifiers as strings in the extensional predicates.

Finally, if the first element of the list is a negated modifier, we assert that M does not have that modifier,
and again recursively rewrite the tail.

1 [[ mmodpat2dl([], M) ]] → [[ true(M) ]]
2 [[ mmodpat2dl([methmod methmods], M) ]]→[[Mod : modifier ˆ (hasModifier(M,Mod),
3 hasName(Mod,str), mmodpat2dl([methmods], M)) ]]
4 where <toString> methmod ⇒str; <newname> ”Mod” ⇒Mod
5 [[ mmodpat2dl([!methmod methmods], M) ]]→[[Mod : modifier ˆ (not(hasModifier(M,Mod)),
6 hasName(Mod,str), mmodpat2dl([methmods], M)) ]]
7 where <toString> methmod ⇒str; <newname> ”Mod” ⇒Mod
8

9 [[ cmodpat2dl([], M) ]] → [[ true(M) ]]
10 [[ cmodpat2dl([constrmod constrmods], M) ]]→[[ Mod : modifier ˆ (hasModifier(M,Mod),
11 hasName(Mod,str), cmodpat2dl([constrmods], M)) ]]
12 where <toString> constrmod ⇒str; <newname> ”Mod” ⇒Mod
13 [[ cmodpat2dl([!constrmod constrmods], M) ]]→[[ Mod : modifier ˆ (not(hasModifier(M,Mod)),
14 hasName(Mod,str), cmodpat2dl([constrmods], M)) ]]
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15 where <toString> constrmod ⇒str; <newname> ”Mod” ⇒Mod
16

17 [[ fmodpat2dl([], M) ]] → [[ true(M) ]]
18 [[ fmodpat2dl([fieldmod fieldmods], M) ]] → [[ Mod : modifier ˆ (hasModifier(M,Mod),
19 hasName(Mod,str), fmodpat2dl([fieldmods], M)) ]]
20 where <toString> fieldmod ⇒str; <newname> ”Mod” ⇒Mod
21 [[ fmodpat2dl([!fieldmod fieldmods], M) ]]→ [[ Mod : modifier ˆ (not(hasModifier(M,Mod)),
22 hasName(Mod,str), fmodpat2dl([fieldmods], M)) ]]
23 where <toString> fieldmod ⇒str; <newname> ”Mod” ⇒Mod

4.6 Throws patterns

Method patterns in AspectJ can specify a list of exception patterns in a throws clause. The interpretation of
each exception pattern, however, depends on the lexically first character: According to the AspectJ language
documentation, if the first character is !, then the exception pattern matches if none of the method’s declared
exceptions match the class name pattern that is obtained by deleting the !. In all other cases, the exception
pattern matches if some declared exception matches the entire class name pattern.

The authors consider this to be unpleasant language design, since it gives semantic meaning to parentheses
(throws !Ex and throws (!Ex) mean different things). It has certainly proven to be a point of confusion for
users of the language. Nevertheless, expressing the desired semantics is not a problem for our rewriting
approach.

An empty throws pattern is rewritten to the dummy true(M) predicate.

1 [[ throws2dl([], C, M) ]] → [[ true(M) ]]

If the pattern is not empty, and the first exception pattern lexically starts with !, then we assert that there
exists no type E that is thrown by the method and that matches classnamepat, after which we recursively
rewrite the remainder of throwspat.

1 [[ throws2dl([!classnamepat, throwspat], C, M) ]] → [[ not(E : type ˆ(classnamepat2dl(classnamepat, C, E),
2 throwsException(M, E))), throws2dl([throwspat], C, M) ]]
3 where <newname> ”Exception” ⇒E

If the first exception pattern does not lexically start with !, then we assert that there exists some type E

that is thrown by the method and that matches classnamepat, after which we recursively rewrite throwspat.

1 [[ throws2dl([classnamepat, throwspat], C, M) ]]→ [[ E : type ˆ(classnamepat2dl(classnamepat, C, E),
2 throwsException(M, E)), throws2dl([throwspat], C, M) ]]
3 where <newname> ”Exception” ⇒E

Note that in order to write the rewrite rules in this simple fashion, the underlying grammar for AspectJ
pointcuts needs to be aware of this issue and parse exception patterns correctly. This turned out to be quite
tricky, emphasising the fact that a somewhat questionable design was being implemented.

4.7 Type patterns

4.7.1 Name patterns

AspectJ has two kinds of patterns for ranging over types:class name patterns and type patterns (discussed
in the next sections). They both use name patterns as building blocks.

A general name pattern is a sequence of simple name patterns, separated by either . or .., where the
latter is a wildcard denoting any sequence of Java identifiers and full-stops beginning and ending with a
full-stop.

Name patterns may include the * and .. wildcards and are matched differently, depending on whether
or not they contain wildcards. Patterns that do are matched against fully-qualified type names. In contrast,
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patterns that do not contain wildcards are matched using Java name lookup — so that, for example, it is
possible to refer to java.lang.String as simply String.

Some special encoding in the extensional predicates was required to simplify matching of name patterns
to fully qualified names. In Java, package pkg1.pkg2 can be defined even if there exists no definition of the
package pkg1. In other words, definition of package pkg1.pkg2 does not imply a containment relationship
between pkg2 and pkg1. However, in order to simplify matching of name patterns to fully qualified names, a
containment relationship between all elements divided by a dot in all package declarations has been encoded
in the hasChild relation. Moreover, a default package, whose name is denoted by an empty string ”, is stored
in the packageDecl relation and every type that is not defined in any package is set to be a child of the default
package. Also the leading element of every package declaration is also a child of the default package.

The snamepat2dl constructor is used to rewrite simple name patterns. In this term constructor we
assert that simple name pattern S matches the given pattern. A * name pattern is rewritten to the true(S)

predicate, leaving S unrestricted.

1 [[ snamepat2dl(∗, S) ]] → [[ true(S) ]]

If, however, the pattern isn’t just a single *, we assert that the name of S can be matched against the
pattern. Note the side condition in Line 3 below: it ensures that this case and the one above do not overlap.
This is important, as a singleton * as a name pattern is a special case, matching anonymous and local classes
(which wouldn’t figure in the hasChild relation).

Again, we use the <toString> strategy to convert the name pattern to a Datalog string representation.

1 [[ snamepat2dl(snamepat, S) ]] → [[ N : name ˆ(hasName(S, N), re match(str, N)) ]]
2 where <newname> ”Name” ⇒N;
3 <not(eq)> (snamepat, ”∗”);
4 <toString>(snamepat) ⇒str

As discussed above, the AspectJ semantics of matching a name pattern depend on the presence or absence
of a wildcard in the pattern. The wcnamepat2dl term constructor is used in the presence of wildcards: each
name pattern is then matched to the fully qualified name of a type.

If the name pattern is a simple name pattern then we assert that there exists a child of the default
package P whose name matches the pattern.

1 [[ wcnamepat2dl(snamepat, T) ]] → [[ P : package ˆ
2 (defaultPackage(P),
3 hasChild(P, T), snamepat2dl(snamepat, T)) ]]
4 where <newname> ”P” ⇒P

If the name pattern is of the form namepat.snamepat, we assert that there exists a package or type T1

that matches the pattern namepat and has a child T that matches the pattern snamepat.

1 [[ wcnamepat2dl(namepat.snamepat, T) ]]→[[T1 : packageOrType ˆ(wcnamepat2dl(namepat, T1),
2 hasChild(T1, T), snamepat2dl(snamepat, T)) ]]
3 where <newname> ”Enclosing” ⇒T1

Similarly, if the name pattern is of the form namepat..snamepat, we assert that there exists a package or
type T1 that matches the pattern namepat and transitively has a child T that matches the pattern snamepat.

1 [[ wcnamepat2dl(namepat..snamepat, T) ]]→[[T1 : packageOrType ˆ(wcnamepat2dl(namepat, T1),
2 hasChildPlus(T1, T), snamepat2dl(snamepat, T)) ]]
3 where <newname> ”Enclosing” ⇒T1

Let us now consider name patterns which do not contain wildcards (exact name patterns). Once again,
the intended semantics in this case is to match the type that is obtained by performing Java name lookup
from the position of the pointcut declaration, if any. Here it becomes obvious why we have carried around
the context parameter C.

The rules follow the Java Language Specification very closely. A simple type pattern matches a type T if
we can perform simple type lookup on the pattern and obtain T. A pattern of the form namepat.snamepat is
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matched by performing package or type lookup on namepat, and finding a child of the result that has a name
matching snamepat.

1 [[ exactnamepat2dl(snamepat, C, T) ]] → [[ simpleTypeLookup(C, str, T) ]]
2 where <toString>(snamepat) ⇒str
3 [[ exactnamepat2dl(namepat.snamepat, C, T) ]]→[[Pot : packageOrType ˆ
4 (potnamepat2dl(namepat, C, Pot),type(T),
5 hasChild(Pot, T), hasName(T, str)) ]]
6 where <newname> ”PoT” ⇒Pot;
7 <toString>(snamepat) ⇒str

Note that a pattern of the form namepat..snamepat should never be considered here, as .. is a wildcard,
and as such is handled by wcnamepat2dl.

Let us consider package or type lookup. Again, the structure of the Datalog query follows the JLS: if we
are considering just a simple name pattern, then either we can resolve it to a type using simple type lookup
(in which case the result of the lookup is that type), or we cannot – in which case it must denote a package,
and we rewrite it using the pnamepat2dl term constructor.

1 [[ potnamepat2dl(snamepat, C, T) ]] → [[ (simpleTypeLookup(C, str, T));
2 (not(T1 : type ˆ(simpleTypeLookup(C, str, T1))),
3 pnamepat2dl(snamepat, T)) ]]
4 where <newname> ”T1” ⇒T1;
5 <toString>(snamepat) ⇒str

When dealing with the case namepat.snamepat, we first look up namepat as a package or type; if this
succeeds, we look for a child type of the result whose name is snamepat. If, on the other hand, no such child
type exists, then the pattern must denote a package, and correspondingly we rewrite it with pnamepat2dl.

1 [[ potnamepat2dl(namepat.snamepat, C, T) ]]→[[Pot : packageOrType ˆ
2 ((potnamepat2dl(namepat, C, Pot),type(T),
3 hasChild(Pot, T), hasName(T, str)) ;
4 (not(T1 : typeˆ(potnamepat2dl(namepat, C, Pot),
5 hasChild(Pot, T1), hasName(T1, str))),
6 pnamepat2dl(namepat.snamepat, T))) ]]
7 where <newname> ”PoT” ⇒Pot;
8 <newname> ”T1” ⇒T1;
9 <toString>(snamepat) ⇒str

Finally, to rewrite package name patterns, we again follow the JLS: for a simple name pattern, we look for
a package that has that name. For a pattern of the form namepat.snamepat, we look for a package matching
namepat that has a child matching snamepat.

1 [[ pnamepat2dl(snamepat, P) ]]→[[package(P), hasName(P, str), topLevelPackage(P) ]]
2 where <toString>(snamepat) ⇒str
3 [[ pnamepat2dl(namepat.snamepat, P) ]]→[[P1 : package ˆ
4 (pnamepat2dl(namepat, P1), hasChild(P1,P),
5 package(P), hasName(P, str)) ]]
6 where <newname> ”P1” ⇒P1;
7 <toString>(snamepat) ⇒str

Now, to decide which set of rewrite rules we should use, we need to check the presence or absence of
wildcards in a name pattern at the topmost level. This is done in the namepat2dl term constructor: A
pattern consisting of a single * by definition matches all types. For more complex patterns, we determine
whether they contain a wildcard using the <contains−wildcard> strategy, and pick either wcnamepat2dl or
exactnamepat2dl to further rewrite them.

1 [[ namepat2dl(∗, C, T) ]] → [[ true(T) ]]
2 [[ namepat2dl(namepat, C, T) ]] → [[ wcnamepat2dl(namepat, T) ]]
3 where <contains−wildcard>(namepat) ; <not(eq)> (<fqname>(namepat), ”∗”)
4 [[ namepat2dl(namepat, C, T) ]] → [[ exactnamepat2dl(namepat, C, T) ]]
5 where <not(contains−wildcard)>(namepat) ; <not(eq)> (<fqname>(namepat), ”∗”)
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4.7.2 Class patterns

Class patterns range over reference types and consist of name patterns connected with boolean operators
and the subtype operator ‘+’. The classnamepat2dl constructor is used to rewrite class patterns and is
applied to three entities: the class name pattern to match, the matching context C, and the reference type
Cls matching the class name pattern.

Boolean connectives (conjunction, disjunction and negation) of class name patterns are translated into
equivalent Datalog connectives similarly to the rules for rewriting a combination of pointcuts, shown above.

1 [[ classnamepat2dl(classnamepat1 && classnamepat2, C, Cls)
2 → (classnamepat2dl(classnamepat1, C, Cls), classnamepat2dl(classnamepat2, C, Cls)) ]]
3 [[ classnamepat2dl(classnamepat1 || classnamepat2, C, Cls)
4 → (classnamepat2dl(classnamepat1, C, Cls)); (classnamepat2dl(classnamepat2, C, Cls)) ]]
5 [[ classnamepat2dl(!classnamepat, C, Cls) ]]
6 → [[ not(classnamepat2dl(classnamepat, C, Cls)) ]]

If the class pattern is just a name pattern namepat, we assert there exists a reference type Cls that matches
namepat.

1 [[ classnamepat2dl(namepat, C, Cls) ]]
2 → [[ namepat2dl(namepat, C, Cls), reftype(Cls) ]]

If the name pattern is used together with a subtype operator ‘+’, we assert that there exists a type X

that matches namepat and the reference type Cls is its subtype.

1 [[ classnamepat2dl(namepat+, C, Cls) ]] → [[ X : type ˆ(namepat2dl(namepat, C, X),
2 hasSubtypeStar(X,Cls), reftype(Cls)) ]]
3 where <newname> ”X” ⇒X

4.7.3 Type patterns

Type patterns are different to class patterns in two ways: they range over primitive types as well as reference
types, and there is an additional array operator [] that allows patterns to range over array types. The
typepat2dl constructor is used to rewrite type patterns and is applied to three entities: the type pattern to
match, the matching context C, and the type T matching the type pattern.

Boolean connectives are rewritten as above:

1 [[ typepat2dl(typepat1 && typepat2, C, T) ]]→[[ (typepat2dl(typepat1, C, T), typepat2dl(typepat2, C, T)) ]]
2 [[ typepat2dl(typepat1 || typepat2, C, T) ]] → [[ (typepat2dl(typepat1, C, T)); (typepat2dl(typepat2, C, T)) ]]
3 [[ typepat2dl(!typepat, C, T) ]] → [[ not(typepat2dl(typepat, C, T)) ]]

When matching primitive types we simply need to make sure that the type T has a name of the corre-
sponding primitive type.

1 [[ typepat2dl(void, C, T) ]] → [[ hasName(T, void) ]]
2 [[ typepat2dl(boolean, C, T) ]] → [[ hasName(T, boolean) ]]
3 [[ typepat2dl(float, C, T) ]] → [[ hasName(T, float) ]]
4 [[ typepat2dl(double, C, T) ]] → [[ hasName(T, double) ]]
5 [[ typepat2dl(short, C, T) ]] → [[ hasName(T, short) ]]
6 [[ typepat2dl(int, C, T) ]] → [[ hasName(T, int) ]]
7 [[ typepat2dl(long, C, T) ]] → [[ hasName(T, long) ]]
8 [[ typepat2dl(char, C, T) ]] → [[ hasName(T, char) ]]
9 [[ typepat2dl(byte, C, T) ]] → [[ hasName(T, byte) ]]

If the type pattern is just a name pattern namepat, we assert that there exists a type T that matches
namepat.

1 [[ typepat2dl(namepat, C, T) ]] → [[ namepat2dl(namepat, C, T), type(T) ]]
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If the name pattern is used together with a subtype operator ‘+’, as in classnamepat2dl, we assert that
there exists a type T1 that matches namepat and the type T is its subtype.

1 [[ typepat2dl(namepat+, C, T) ]] → [[ T1 : type ˆ(namepat2dl(namepat, C, T1),
2 hasSubtypeStar(T1, T)) ]]
3 where <newname> ”Enclosing” ⇒T1

Finally, typepat2dl also matches array patterns.

Whenever a type pattern is matched with the [] operator, we assert that there exists a type T1 that
matches typepat (which is rewritten recursively), and T is an array type over T1. Here we use a special exten-
sional predicate, arrayDecl(T, ET, N), that helps to encode array types of any dimension. The interpretation
of this relation is that an array type T has an element type ET and name N.

1 [[ typepat2dl(typepat[], C, T) ]] → [[ T1 : type ˆ(typepat2dl(typepat, C, T1), arrayDecl(T, T1, )) ]]
2 where <newname> ”ElemType” ⇒T1

5 Primitive pointcuts

5.1 adviceexecution

An adviceexecution shadow is the whole body of an advice method. Since the corresponding pointcut
takes no arguments, it matches any such shadow. The definition is therefore straightforward.

1 [[ aj2dl(adviceexecution(), C, S) ]] → [[ adviceexecutionShadow(S) ]]

5.2 call

A call shadow can be either

• a call to a Java method (not including any code to evaluate method arguments); or

• a call to an object constructor (not including code to evaluate arguments, but including the object
allocation).

Each such shadow has an associated method or constructor, and a type. The Datalog literal callShadow(S,X,R)
holds if S is a call-shadow where X is a method or constructor declaration, and R is the static type of the
receiver of this call. If R does not have a declaration for the callee (in the case that it is an inherited method),
then X refers to the declaration of the closest inherited method.

A call pointcut takes one argument, which is a pattern ranging over method or constructor signatures.
In order to rewrite a call pointcut to Datalog, in terms of a context C and a shadow S, we must express two
constraints: firstly, S must be a call shadow; and secondly, in the context C, a signature of the call-shadow
must match the pattern from the pointcut. The possible signatures of Y are encoded as pairs (X, R), where
X is a more general definition of Y (with matching signature), and R is the declaring type of Y .

If Y is a constructor, it is not inherited, and so only method equality is considered — it has no more
general definition. In contrast, if Y is a method, then a more general definition X is any method declaration
(abstract or not) such that Y overrides or is equal to X .

1 [[ aj2dl(call (methconstrpat), C, S) ]] → [[ X : callable ˆ Y : callable ˆ R : type ˆ
2 (methconstrpat2dl(methconstrpat, C, R, X),
3 overrides (Y, X), callShadow(S, Y, R)) ]]
4 where <newname> ”SuperMethod” ⇒X;
5 <newname> ”ConcreteMethod” ⇒Y;
6 <newname> ”Recv” ⇒R
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5.3 execution

An execution shadow is either

• the whole body of a Java method; or

• the body of a constructor after its call to another constructor or super constructor.

Similar to call, each such shadow has an associated method or constructor, and a type. The Datalog literal
executionShadow(S,Y) holds if S is the execution shadow of a method or constructor Y .

An execution pointcut takes one argument, which is a pattern ranging over methods and constructors.
There are two constraints to express when rewriting this pointcut in Datalog: the potential matching shadow
S must be an execution shadow, and the signature of the corresponding method or constructor Y must
match the pattern from the pointcut. The possible signatures of Y are encoded as pairs (X, R), where X is
a more general definition of Y and R is the declaring type of Y .

If Y is a constructor, its only more general definition is itself. In contrast, if Y is a method, then a more
general definition X is any method declaration (abstract or not) such that Y overrides or is equal to X .

1 [[ aj2dl(execution(methconstrpat), C, S) ]] → [[ X : callable ˆ Y : callable ˆ R : type ˆ
2 (methconstrpat2dl(methconstrpat, C, R, X), overrides(Y, X),
3 hasChild(R, Y), executionShadow(S, Y)) ]]
4 where <newname> ”SuperMethod” ⇒X;
5 <newname> ”ConcreteMethod” ⇒Y;
6 <newname> ”Recv” ⇒R

5.4 get and set

A get shadow is the code that retrieves the contents of a field on some object. The Datalog literal get-
Shadow(S,F,R) holds if S is a get shadow for a field F , where the static type of the object (that the field is
on) is R.

The corresponding get pointcut takes one argument, which is a pattern ranging over field signatures.
Again, the Datalog translation involves two parts: checking the kind of shadow, and ensuring that the
pattern from the pointcut matches the field and static type associated with the shadow.

1 [[ aj2dl(get(fieldpat ), C, S) ]] → [[ F : field ˆ R : type ˆ
2 (fieldpat2dl(fieldpat , C, R, F), getShadow(S, F, R)) ]]
3 where <newname> ”Field” ⇒F;
4 <newname> ”Receiver” ⇒R

The only differences between set and get pointcuts and shadows is that set shadows consist of the code
that writes to a field on some object.

1 [[ aj2dl(set(fieldpat ), C, S) ]] → [[ F : field ˆ R : type ˆ
2 (fieldpat2dl(fieldpat , C, R, F), setShadow(S, F, R)) ]]
3 where <newname> ”Field” ⇒F;
4 <newname> ”Receiver” ⇒R

5.5 handler

A handler shadow is the block of code inside an exception handler — that is, the catch part of a try. . . catch
construct. The Datalog literal handlerShadow(S,X) holds if S is a handler shadow and the static type of
the exception caught by the block is X .

The handler pointcut takes one argument, which is a pattern ranging over classes. A Datalog translation
of this pointcut, in terms of a shadow S, must constrain S to be a handler shadow, where the static exception
type of that shadow matches the pattern in the pointcut.
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1 [[ aj2dl(handler(classnamepat), C, S) ]] → [[ X : type ˆ
2 (classnamepat2dl(classnamepat, C, X), handlerShadow(S,X)) ]]
3 where <newname> ”Ex” ⇒X

5.6 initialization

An initialization shadow is the block of code, in a constructor, that initialises an object after the super()
call. The Datalog literal initializationShadow(S,X) holds if S is an initialization shadow and X is the
signature of the constructor lexically containing S.

The initialization pointcut takes one argument, which is a pattern ranging over constructors. A
Datalog translation of this pointcut, in terms of a shadow S, must constraint S to be an initialization

shadow, lexically contained in a constructor that matches the pattern from the pointcut.

1 [[ aj2dl(initialization (constrpat ), C, S) ]] → [[ X : constructor ˆ
2 R : type ˆ (methconstrpat2dl(constrpat, C, R, X),
3 initializationShadow (S,X)) ]]
4 where <newname> ”Constr” ⇒X;
5 <newname> ”Recv” ⇒R

5.7 pre-initialization

A pre-initialization shadow is the block of code at the very beginning of a class constructor which evalu-
ates the arguments (if any) to the this() or super() call. The Datalog literal preinitializationShadow(S,X)
holds if S is a pre-initialization shadow and X is the signature of the constructor lexically containing
S.

The pre-initialization pointcut takes one argument, which is a pattern ranging over constructors. A
Datalog translation of this pointcut, in terms of a shadow S, must constraint S to be a pre-initialization

shadow, lexically contained in a constructor that matches the pattern from the pointcut.

1 [[ aj2dl(preinitialization (constrpat ), C, S) ]] → [[ X : constructor ˆ R : type ˆ
2 (methconstrpat2dl(constrpat, C, R, X), preinitializationShadow(S,X)) ]]
3 where <newname> ”Constr” ⇒X;
4 <newname> ”Recv” ⇒R

5.8 staticinitialization

A staticinitialization shadow is the block of code that performs the static initialization for a class.
This includes assigning default values to any static fields, and also the contents of the static {. . . } block (if
present). The Datalog literal staticinitializationShadow(S,X) holds if S is a staticinitialization shadow
for a class X .

The staticinitialization pointcut takes one argument, which is a pattern ranging over classes. A
Datalog translation of this pointcut, in terms of a shadow S, must constrain S to be a staticinitialization
shadow, where the class containing the shadow matches the pattern in the pointcut.

1 [[ aj2dl(staticinitialization (classnamepat), C, S) ]] → [[ X : type ˆ
2 (classnamepat2dl(classnamepat, C, X), staticinitializationShadow(S,X)) ]]
3 where <newname> ”Class” ⇒X

5.9 within

The within pointcut does not correspond to a single kind of pointcut. It takes a single argument, which
is a pattern ranging over classes, and only matches shadows that are lexically within classes matching the
pattern.
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1 [[ aj2dl(within(classnamepat), C, S) ]] → [[ X : type ˆ Y : type ˆ
2 (classnamepat2dl(classnamepat, C, X),
3 hasChildStar(X,Y), isWithinClass(S,Y)) ]]
4 where <newname> ”Class” ⇒X;
5 <newname> ”Class” ⇒Y

5.10 withincode

The withincode pointcut is similar to within. It takes a single argument, which is a pattern ranging over
methods and constructors, and only matches shadows that are lexically within methods or constructors
matching the pattern.

1 [[ aj2dl(withincode(methconstrpat), C, S) ]]
2 → [[ X : callable ˆ R : type ˆ S1 : shadow ˆ
3 (methconstrpat2dl(methconstrpat, C, R, X),
4 executionShadow(S1,X), isWithinShadow(S,S1)) ]]
5 where <newname> ”Method” ⇒X;
6 <newname> ”Recv” ⇒R;
7 <newname> ”Shadow” ⇒S1
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