s
M
&

The abc Group

9
L
¢

Semantics of Static Pointcuts in AspectJ

abc Technical Report No. abc-2006-3

Pavel Avgustinov, Elnar Hajiyev, Neil Ongkingco,
Oege de Moor, Damien Sereni, Julian Tibble, Mathieu Verbaere

Programming Tools Group, Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford OX1 3QD, UK

{pavel.avgustinov,elnar.hajiyev,neil.ongkingco,
oege.de.moor,damien.sereni,julian.tibble,mathieu.verbaere} @comlab.ox.ac.uk

November 17, 2006

aspectbench.org

Contents

1 Introduction 3
2 AspectJ pointcuts 4
3 Existing AOP semantics 5
4 Datalog 7
4.1 Safe Datalog e e
4.2 EXtensions e e e e e 8
5 Pointcuts are queries 8

6 Semantics of static pointcuts

6.1 Overall structure e 9
6.2 Primitive predicates 10
6.3 Pre-defined derived predicateso 11
6.4 Rewriterules e 12
6.4.1 Call and execution pointcuts 12

6.4.2 Type name patterns L L L 15

7 Experimental results 16
8 Directly expressing pointcuts in Datalog 20
9 Related Work 22
10 Conclusions 22

List of Figures

© 00 = O Ut = W N

el e e e T e =
o J O Ut = W NN = O

Pointcuts for Swing thread-safety enforcement 0oL

Example Aspectd program.

Translated program. L e e e e 7
Rewrite rules for Boolean combinations of pointcuts 10
Primitive Predicates: Program Structure 11
Primitive Predicates: Shadows 11
Top-level rewrite rules for call and execution pointcuts 14
Rewriting for method patterns — constructor patterns are similar 14
Rewrite rules for throws2dl L 15
Type Patterns: Subtypes and Array Types 16
Name Patterns: Testing for Wildcards 16
Name Patterns: Simple Name Patterns and Wildcards 17
Name Patterns: Exact Name Patterns 17
Experimental Setup 18
Pointcuts used in experiments Lo L 19
Pointcut matching times with CodeQuest 19
Comparison with ajc e 20
A famous aspect for decoupling model and view 21

List of Tables

Abstract

In aspect-oriented programming, one can intercept events by writing patterns called pointcuts. The
pointcut language of the most popular aspect-oriented programming language, AspectJ, allows the ex-
pression of highly complex properties of the static program structure.

We present the first rigorous semantics of the AspectJ pointcut language, by translating static patterns
into safe (i.e. range-restricted and stratified) Datalog queries. Safe Datalog is a logic language like Prolog,
but it does not have data structures; consequently it has a straightforward least fixpoint semantics and
all queries terminate.

The translation from pointcuts to safe Datalog consists of a set of simple conditional rewrite rules,
implemented using the Stratego system. The resulting queries are themselves executable with the Cod-
eQuest system. We present experiments indicating that direct execution of our semantics is not pro-
hibitively expensive.

1 Introduction

Aspect-oriented programming enables one to intercept events at runtime by writing patterns called pointcuts.
The intercepted events are named joinpoints. Whenever a pointcut matches a joinpoint, extra code (called
advice) is run. The most popular language that embodies these ideas is AspectJ, an extension of Java [28];
there is also a modern aspect-oriented version of C#, named Eos-U [36]. Typical applications include runtime
verification of system-wide invariants, the implementation of authentication and authorisation mechanisms,
as well as various caching and pooling strategies [30].

With the growing popularity of aspect-orientation, numerous researchers have started to investigate the
semantics of aspect-oriented languages (e.g. [2,3,10,13,14,24,26,27,32,40,43,45-47]). All such studies
have focused on the operational semantics of advice, taking a very simple pointcut language. For instance,
in [43], the core language identifies program points for instrumentation through explicit labels, and pointcuts
are sets of such labels.

Yet in Aspectd itself, the pointcut language is very complex, allowing the programmer to capture intricate
properties related to the static structure of the program. This complexity is a continuing source of serious
bugs in AspectJ compilers (cf. the discussion in Section 6). Nevertheless the AspectJ user community
continues to make requests for a yet more expressive pattern language, only exacerbating the problem.

In this paper, we bridge the gap between existing operational semantics of advice and current practice, by
giving a complete semantics of the static matching of AspectJ 1.2.1 pointcuts. In particular, our semantics
can be used to reduce complex pointcuts to sets of labels that refer to source locations, and then the dynamic
part of the story is told by an operational semantics in the style of [43].

Our semantics consists of a translation from AspectJ pointcuts into Datalog queries over relations defined
in the object program. Datalog is a logic query language that originated in the theoretical database com-
munity [17]. We restrict ourselves to the safe fragment that has a straightforward least-fixpoint semantics;
furthermore all safe Datalog queries terminate. The translation from pointcuts to Datalog takes the form
of about 90 conditional rewrite rules. The full definition is thus quite short and elegant. It is available for
download as an accompanying technical report [6].

This semantics is put to work in three ways. First, it serves as a crisp definition to discuss tricky points in
the language design, and has enabled us to lay bare several long-standing bugs in AspectJ implementations.
Second, the semantics is executable, and we present comparative experiments with an industrial-strength
compiler to show the costs of directly executing the semantics are not prohibitive. Finally, our semantics
provides a framework for the design and discussion of further language extensions that the AspectJ user
community is clamouring for [7,8,11,23].

It is not possible to prove a correspondence result with previous semantics, as the only existing definition
of AspectJ is an informal description on the web [4]. However, our testing with respect to the standard imple-
mentation, and subsequent discussion of discrepancies with the AspectJ designers, provide ample confidence
that our formal semantics captures the intended meaning.

Many previous works have suggested the use of logic programming for writing pointcuts in aspect-oriented
programming, but invariably they use Prolog [16, 20, 29]. In the present setting, that would be inappropriate

because the semantics of Prolog itself is quite complex, even with tabled resolution to give better termination
behaviour. Furthermore, we tried to run our experiments with (a tabled variant of) Prolog, but found that
execution times prohibit its application in practice.

In summary, this paper makes the following contributions:

e The identification of safe Datalog as a suitable intermediate form for pointcuts in aspect-oriented
programming.

e The use of term rewriting to reduce complex pattern-based pointcuts to Datalog queries.
e The first rigorous semantics of the AspectJ 1.2.1 pointcut language.

e Experimental evidence that it is feasible to directly execute our semantics, on AspectJ programs of up
to 100KSLOC.

The structure of the paper is as follows. In Section 2, we provide a brief introduction to AspectJ,
focussing on the pointcut language. We then proceed to discuss existing semantics for the aspect-oriented
paradigm in Section 3. In particular, we enunciate the difference between static and dynamic pointcuts.
Dynamic pointcuts refer to runtime properties such as the call stack — they are matched at runtime, and
their semantics is by now well understood (e.g. [43,45]). By contrast, static pointcuts are matched against
the static structure of the program, and they are the focus of the present paper. Next, we provide a brief
introduction to safe Datalog in Section 4. We then explain informally how static pointcuts can be mapped
to Datalog queries in Section 5. The heart of the paper is Section 6, which shows how a simple set of rewrite
rules suffices to translate AspectJ’s static pointcuts into Datalog. Rather than presenting a shallow overview
of the complete semantics, we detail the most complex issues in AspectJ’s design where a rigorous approach
is indispensable. In Section 7 it is demonstrated that this semantics directly leads to a viable implementation
strategy. We then briefly speculate on the use of Datalog to directly express new forms of pointcut in Section
8. A brief roadmap of related work is provided in Section 9 before concluding in Section 10.

2 Aspectl) pointcuts

Aspect] is a variant of Java, extended with aspect-oriented features [28]. These features allow a programmer
to write a single piece of code that consistently affects the behaviour of multiple modules in a program.

The novel contribution of aspect-oriented languages, which was not present in previous work on class
composition (e.g. [39]), is known as “pointcut and advice”. A pointcut is a predicate over events that occur
during the execution of a program. These events (called joinpoints) are composite — they have duration and
may be nested. A piece of advice is a block of code that is executed when a pointcut matches a joinpoint.
Advice can be run before the matched joinpoint, after it, or instead of it.

We will introduce the pointcut notation of AspectJ with the aid of an example, taken from the textbook
by Laddad [30]. The task in hand is to automatically enforce the following requirement of the Swing GUI
library:

“Once a component is visible, the event-dispatching thread (sometimes called the AWT
thread) is the only thread that can safely access or update the state of the realized compo-
nent. The rule exempts certain methods, allowing them to be safely called from any thread.”
[30]

Laddad’s solution works by intercepting calls to methods that would update the state of a component from
the wrong thread, and then queueing them for execution in the event-dispatching thread. The pointcut
routedMethods, shown in Figure 1, matches calls to just those methods that would violate the invariant.
It relies on five other programmer-defined named pointcuts — each one is defined in terms of pointcut
primitives, using the Boolean connectives and (&&), or (||), and not (!). Three built-in primitives are also
used:

pointcut viewMethodCalls() :
call(x javax..JComponent+.%(..));

pointcut modelMethodCalls() :
call(* javax..xModel+.x(..))
|| call(x javax.swing.text.Document+.x(..));

[N

pointcut uiMethodCalls() :
viewMethodCalls() || modelMethodCalls();

© o =

[
=3

pointcut threadSafeCalls() :
call(void JComponent.revalidate())
|| call(void JComponent.repaint(..))
|| call(void addxListener(EventListener))
|| call(void removesxListener (EventListener));

-
o

—
)

-
w

-
'S

[
o

[
=

-
Q3

pointcut excludedJoinpoints() :
threadSafeCalls()
|| within(SwingThreadSafety Aspect)
|| if(EventQueue.isDispatchThread());

[
o

—
©

N
(=]

¥
—

)
)

pointcut routedMethods() :
uiMethodCalls() && lexcludedJoinpoints();

N
@

Figure 1: Pointcuts for Swing thread-safety enforcement

if takes a boolean-valued Java expression as an argument; it matches a joinpoint if the expression evaluates
to true before (or after, depending on the kind of advice) the joinpoint occurs.

within takes a pattern ranging over types as an argument; it matches any joinpoint that was caused by
executing code lexically within a type that matches the pattern.

call also takes a pattern as an argument, which ranges over method or constructor signatures; it matches
any call-joinpoint to a method or constructor that has a signature matching the pattern.

There are several wildcards used in AspectJ patterns. The first is *: it matches any series of characters
that can appear in a Java identifier (not ¢.’). So, for example, Line 14 of Figure 1 matches call-joinpoints to
any method with a name that starts with “add”, ends with “Listener”, and takes a single argument of type
EventListener.

A + wildcard can only appear in a pattern that ranges over types. It means ‘match any subtype’.
It appears in Line 2 of Figure 1, which matches any call to a method on a type matching the pattern
javax..JComponent or any subtype of such a type.

The wildcard .. matches any sequence of full-stops and Java identifiers that begins and ends with a full-
stop. For example, javax..xModel matches “javax.swing.AbstractListModel”, but it would not if the pattern
were javax..Model.

Note that the .. wildcard has a special meaning when used in the formal parameter list of a method
pattern, as seen at the end of Line 2 — in that case it matches an arbitrary number of parameters of
arbitrary type.

3 Existing AOP semantics

There is a large amount of work on the semantics of aspect-oriented programming, e.g. [2,3,10,13, 14,24,
26,27, 32,40, 43,45-47]. None of these works involve a pointcut language that approaches the complexity of
the pointcut language of AspectJ. We contend, however, that it is possible to understand the semantics of
AspectJ by following the framework introduced in [43].

public class X {
void fl(int n

1

2){}

3 void 2(int n) { f1(n); }
4 void f3(int n) { f2(n); }
5

6 public static void main(String[] args) {
7 X x = new X();

8 x.£3(0);

9 x.f2(1);

10 }

11 }

12

13 aspect A {

14 pointcut a (int n) :

15 call(x fx(..))

16 && args(n)
17 && cflowbelow(execution(x £3(..)));

19 before(int n) : a(n) {
20 System.out.println(thisJoinPoint + ”:_.n="-+n);

21 }

Figure 2: Example AspectJ program.

A key idea of [43] is to make the semantics a two-step process, involving a surface language and a core
language. The surface language in our case is AspectJ. It has the rich notation for pointcuts that allows
programmers to alter the behaviour of the mainline program without modifying the program text directly.
That property is sometimes called obliviousness in the literature on aspect-oriented programming. The
core language, by contrast, augments the mainline program with explicit labelled instrumentation points.
Pointcuts refer directly to sets of such instrumentation points. The operational semantics of the core language
observes the execution of labelled instrumentation points and executes advice where labels in pointcuts match
labels at runtime.

In most of the papers that have built on [43], the translation from surface to core is quite simple [13, 14].
Wang et al. consider a slightly more complex translation, which involves doing more of the instrumentation
at compile-time [46,47]. The current paper continues that trend by offering a translation from the AspectJ
surface language to a suitable core language, replacing the rich pointcuts by labelled instrumentation points.
We do not offer an operational semantics with it, as that would require augmenting a complete operational
semantics of Java.

In the literature on compiling aspect-oriented programs [22,33], instrumentation points in the static
program are called shadows, whereas their runtime counterparts are named joinpoints. We shall follow that
terminology below.

To illustrate, consider the AspectJ program in Figure 2. It contains a pointcut definition (Lines 14-17),
and a piece of advice (extra code) that is triggered by that pointcut (Lines 19-21). The pointcut a(n) makes
use of the clowbelow(p) primitive: conceptually this matches if a joinpoint is properly nested inside any
joinpoint that matches p. Pointcut primitives such as clowbelow are inherently dynamic, and in general
they cannot be resolved by static matching of shadows (in the example, the call to fl from f2 is advised or
not depending on whether 2 was called from £3). The same holds true for args, which exposes the actual
value of an argument at runtime. Apart from these two primitives, the pointcuts are entirely static and could
thus be replaced by sets of shadows in the program. This is illustrated in the translated program in Figure
3. Here the mainline program has been augmented with explicit labels for shadows (there are actually more
shadows than shown here, for instance for class initialisation). Accordingly, the static pointcuts have been
replaced by sets of labels.

The purpose of the remainder of the paper is to pin down the process by which AspectJ pointcuts are

public class X {
void fl(int n) { L1: {} }
void f2(int n) { L2 : { L3 : {f1(n);} } }
void f3(int n) { L4 : { L5 : {f2(n);} } }

[N

public static void main(String[] args) {
L6 : { Xx= (L7: {new X()});
L8 : {x.£3(0)};
L9 : {xf2(1)}; }

© o =

[
=3

}
}

-
o

-
)

-
w

aspect A {
pointcut a (int n) :
label(L3,L5,18,1.9)
&& args(n)
&& cflowbelow(label(L4));

-
S

-
o

-
=

-
Q3

[
o

—
©

before(int n) : a(n) {
System.out.println(thisJoinPoint + ”:_.n="-+n);

}

N
(=]

¥
—

N
[V
—

Figure 3: Translated program.

reduced to this form. We shall show how each static pointcut is defined in terms of a relational query; by
running those queries on a mainline program, one obtains the sets of labels as in Figure 3.

4 Datalog

We shall use the Datalog query language to express the semantics of AspectJ pointcuts. Datalog is similar
to Prolog, and syntactically is a subset of Prolog, but excludes the ability to construct new data type values
such as lists. While we give a brief introduction to Datalog, we refer to the reader to [17] for more details.
A Datalog program is a set of clauses (backward implications) of the form:

p(Xla' N aXn) — ql(}/l;' N ale)a' N aqk(Ylv" aYmk)

where each X; is a variable, and each Yj is either a variable or a constant. FEach g; is a positive or negated
occurrence of either a predicate or a test such as X <Y. A variable occurs positively in a clause if it occurs
in a positive predicate on the right-hand side of the clause, but not if it only occurs in a test. Intuitively, a
test such as X <Y cannot be used to generate values of X and Y making the test true, unlike a predicate
p(X,Y).

The semantics of Datalog programs, at least in the absence of negation, are straightforward. Each
predicate p(X1, ..., X,,) defines an n-ary relation, and clauses are interpreted as inclusions between relations.
The meaning of the program is then the least solution of this set of inclusions. For instance, the Datalog
program p(X) < p(X), while non-terminating as a Prolog program, is a bona fide definition of the empty
relation in Datalog.

4.1 Safe Datalog

The use of negation in Datalog programs is more problematic, as negation is not a monotonic operator, and
so the fixpoint need not exist. Concretely, a program such as p(X) <« —p(X) does not define a relation
p, and indeed p(X) is neither true nor false for any X. Safe Datalog is a subset of Datalog that provides
a sufficient (but not necessary) condition that guarantees that every program can be evaluated to a set of
relations. Safe Datalog imposes two conditions: range restriction and stratification.

Range Restriction In a range-restricted Datalog program, each variable in the head (i.e. left-hand side) of
a clause must appear positively on the right-hand side. Furthermore, each variable on the right-hand side
must appear positively at least once. This restriction rules out programs such as p(X,Y) « ¢(X), as Y is
left unconstrained. Programs such as:

r(X) <« —q(X), regexpmatch(“a.*”, X).

where regexpmatch(P, X) is a regular expression pattern matching test, are likewise disallowed. Both the
above queries are undesirable as the relations defined cannot directly be computed: the p(X,Y") relation may
be infinite (any value of Y can be used), while evaluating the r(X) relation may require evaluating infinitely
many regular expression matches.

Stratification Furthermore, in a stratified Datalog program, negation may not be used in recursive cycles.
A program is stratified if there is some strict partial order < on predicates such that whenever p depends
negatively on ¢, then p > ¢. That is, a predicate may never depend negatively on itself. This prohibits such
programs as p(X) «— ¢(X), p(X).

Any safe Datalog program defines a set of relations as the least fixpoint of the recursive inclusions in the
program. Furthermore, this solution may be effectively computed, and efficient algorithms are known for
evaluating safe Datalog programs. Finally, all relations evaluated are finite, provided the primitive predicates
(undefined predicates providing access to the database) denote finite relations.

These properties of safe Datalog are highly desirable in our setting. First, Datalog has a clear and
straightforward semantics, unlike Prolog, in which the operational and declarative semantics do not coincide.
This guarantees that defining the semantics of AspectJ pointcuts by translation to Datalog is valid. Beyond
pure semantics, the efficiency of Datalog allows our translated AspectJ pointcuts to be evaluated — leading
to a directly implementable semantics.

4.2 Extensions

For convenience, we shall make use of a number of extensions to pure Datalog. These are just syntactic
sugar, and may be eliminated in a translation back to pure Datalog (which we omit for space reasons).

e We use a variant of Datalog in which each variable is annotated with a type. In any clause, the type
of the variables defined in the head are given explicitly, as follows:

p(X1:p1,..., Xy i pn) — E.
where the p; are predicates and F is any Datalog expression. This is equivalent to the untyped clause:
p(X1,. ., Xn) = p1(Xa), . pn(Xn), E.

Furthermore, we insist that any free variable appearing on the right-hand side be introduced by an
existential quantifier, again giving its type. We use the syntax X : p ~ E to represent the existential
quantification 3X (p(X) A E). A typed Datalog program is necessarily range-restricted.

e Datalog expressions can use negation arbitrarily, so that not(E) is an expression whenever E is.

e We allow the use of disjunction, represented by a semicolon.

5 Pointcuts are queries

We now aim to show how pointcuts in AspectJ can be regarded as Datalog queries over a relational repre-
sentation of the program. The correspondence presented here is informal, and it is only intended to help the
reader build an intuition before diving into the formal details in the next section.

Consider the example translation from Figure 2 to Figure 3. The program of Figure 2 is stored as a set
of primitive relations. That set includes, for example, a relation for recording method declarations:

methodDecl(MethodId,Name,Sig,DeclaringType,ReturnType).

The first field is the identifier: this can be thought of as the identity of the corresponding node in the
abstract syntax tree. The primitive relations also record shadows in the program: these are the labels shown
in Figure 3. For instance, we have a relation

callShadow (ShadowId,Method,RecvType)

This relates the identity of a shadow (labelled instrumentation points like L1, L2 in Figure 3) to a method
called at that shadow, and the static type of the receiver. Furthermore, there is an extensional relation that
records method bodies, as these are also joinpoints in AspectJ:

executionShadow(ShadowId,Method)

We are now ready to express the static pointcuts of Figure 2 as Datalog predicates. We first consider

call(x fx(..))

This pointcut corresponds to the following Datalog predicate:

pcl(S : shadow) :— M : method " N : name "
callShadow(S,M,_),
methodDecl(M,N,_,_,_),
regexpmatch(’f.«’ N) .

Evaluating pcl will yield the following set of solutions for S: { L3,L5,L8,L9 } — precisely the translation in
Figure 3.

The other static pointcut in Figure 2 is

execution(x £3(..))

It is easy to give a nailve translation into Datalog, namely

pc2(S : shadow) :— M : method ~ N : name ~
executionShadow(S,M),
methodDecl(M,N,_,_,_),
regexpmatch(’f3’,N) .

This time evaluation yields only one solution, namely S: { L4 }.

In order to extend this intuitive correspondence to a full formal semantics, we need to decide exactly on
the set of primitive relations. Furthermore, the above translation is naive, because in fact we need to take
into account where a pointcut is declared, as the context determines how names in the pointcut are resolved.
For that reason, in the formal semantics, pcl and pc2 would need to take an additional parameter.

6 Semantics of static pointcuts

6.1 Overall structure

As described above, our goal is to determine, for each static pointcut, which set of labelled instrumentation
points it denotes, as this will pin down its semantics. We achieve this by giving a set of rewrite rules that
translate the static pointcuts in AspectJ to Datalog predicates. The resulting predicate corresponding to
a given pointcut has two free variables — the first denotes the Java type in which the pointcut is being
evaluated (this parameter is used to handle name lookup), and the second ranges over shadow labels; the
values of that variable making the predicate true are precisely those labels which the pointcut denotes.

The rewriting rules are split up into contexts such as pointcuts, method patterns and name patterns.
For each such context we introduce a different term constructor (aj2dl for pointcuts, methconstrpat2dl for
method patterns, etc.), and the purpose of the rewriting process is to eliminate these constructors. When
they have all been eliminated, the translation process is complete.

In our rules we adopt the conventions that both left- and right-hand side of the rewrite rule are enclosed
in brackets ([..]) to make reading easier. Identifiers shown in bold font are term constructors, identifiers in
italics are metavariables that capture subexpressions of the current term.

[aj2dl(pct && pc2, C, S)] — [(aj2dl(pci, C, S), aj2dl(pc2, C, S))]
[aj2di(pel || pe2, C,8)] — [(aj2di(pe, C, 8)); (aj2dl(pe2, C, 9)) |
[aj2dl(!pc, C,S)] — [not(aj2dl(pc, C, S))]

Figure 4: Rewrite rules for Boolean combinations of pointcuts

The aj2dl constructor is used to rewrite an AspectJ pointcut to Datalog. More precisely, aj2dl(pc, C, S)
should be interpreted as a Datalog expression with free variables C and S, such that the expression is true
iff S is a shadow (instrumentation label) in the denotation of pc, and C is the class in which the pointcut pc
is located. The context information provided by the class parameter C is necessary, as the class in which a
pointcut is located affects its semantics (through the use of Java name lookup in pointcuts).

An expression of the form aj2dl(pc, C, S) is rewritten to a pure Datalog expression, in a syntax-directed
fashion. The rules in Figure 4 show how logical operators may be eliminated from pointcuts, and converted
into the equivalent Datalog logical operators.

6.2 Primitive predicates

In order to express pointcuts in Datalog, a set of primitive predicates (also referred to as extensional predicates
in the deductive databases literature) must be supplied to query the structure of the program. The set of
primitive predicates must at least encode as much of that structure as is required to evaluate AspectJ
pointcuts. An extreme viewpoint would be to just store the abstract syntax tree of the mainline program,
and write queries over that structure. However, we shall need quite complex derived notions, such as the type
hierarchy (represented by a relation hasSubtype). While this information could be defined purely in terms of
the syntax of the program, it would clutter our semantics of pointcuts to do so. We therefore abstract away
from this irrelevant detail, and use the set of primitive predicates in Figure 5. This set captures just enough
information about the structure of the program to evaluate AspectJ pointcuts.

While the use of Datalog usually allows a simple and direct expression of queries, our treatment of method
parameters shows that an encoding may sometimes be necessary. The methodParamTypes predicate is used
to obtain, for each method, the list of types of formal parameters. As Datalog does not allow the use of data
structures such as lists, or indeed arithmetic, this cannot be expressed directly. Instead, we define a relation:

methodParamTypes(Method, Type, Pos, NextPos)

that holds if the formal parameter of Method at position Pos has type Type. The NextPos field records the
position of the next parameter of M (i.e. Pos + 1), or 0 if there is no next parameter. This field is needed
because arbitrary arithmetic is not available in Datalog, and is used to iterate over parameter types.

In addition to the primitive database predicates describing the structure of the program, we include pred-
icates listing the shadows in the program. Shadows represent the static instrumentation points recognised by
the AspectJ language; as such, pointcuts denote sets of shadows. Again, because our focus is on the matching
behaviour of pointcuts, we have chosen to represent shadows directly as primitive predicates. In the terms
of Section 3, this amounts to abstracting from the details of inserting labels at every instrumentation point
of the mainline program. Figure 6 lists the relevant primitive predicates. Each of these corresponds to a
kind of shadow defined by the AspectJ language — for instance, the callShadow predicate describes method
or constructor call shadows. The type stored for each call shadow should be interpreted as the receiver type
for virtual method calls, while for static method calls and constructor calls this is just the declaring type of
the callee.

It is worth noting that no part of the matching semantics is preempted by these predicates. Picking
out all call shadows, for example, is a simple mechanical task that can be achieved by case analysis on the
program AST: we just have to collect all method calls. We are concerned with the matching of pointcuts,
i.e. the process by which the set of all method calls is constrained to just those which are matched by a

10

Predicate

Description

packageDecl(P, N)

P denotes a package with name N.

typeDecl(T, N, IsInt, P)

T denotes a type with name N, declared in package P. IsInt is
true if T is an interface.

primitiveDecl(T, N)

T denotes a primitive type with name N.

arrayDecl(T, ET, N)

T denotes an array type with element type ET and name N.

methodDecl(M, N, S, DT, RT)

M denotes a method with name N, signature S, return type RT
and declared in type DT.

constructorDecl(C, S, Cls)

C denotes a constructor with signature S for class Cls.

fieldDecl(F, DT, T, N)

F denotes a field with name N, of type T, declared in type DT.

compilationUnit(CU, P)

CU denotes a compilation unit in package P.

singleImportDecl(I, N)

I denotes an import declaration, importing the type with name
N.

onDemandImportDecl(I, N)

I is an on-demand import declaration, for all types in the type or
package with name N.

methodModifiers(M, Mod)

Method M has the modifier Mod.

fieldModifiers(F, Mod)

Field F has the modifier Mod.

modifiers(Mod, N)

Modifier Mod has string representation N.

methodThrows(M, T)

Method M declares throwing exception T

methodParamTypes(M, T, Pos, Next) | Method M has a parameter of type T at position Pos. Next is the

next position after Pos.

hasChild(A, B)

Syntactic element B is a directly lexically enclosed by A.

hasSubtype(T1, T2)

T2 is a direct subtype of T1.

Figure 5: Primitive Predicates: Program Structure

given pointcut. We can think of the predicates in Figure 6 simply as a way of bounding the domain of the

Datalog variable S.

Predicate

Description

callShadow(S, M, Recv)

Call to a method or constructor M with receiver type Recv.

executionShadow (S, M)

Execution of a method M.

initializationShadow(S, C)

Initialisation of an object (body of C after parent constructor calls).

preinitializationShadow (S, C)

Pre-initialisation of an object (body of C before parent constructor calls).

staticinitializationShadow(S, T)

Initialisation of the static members of a class T.

getShadow(S, F, Recv)

Read access to a field F, on an object of static type Recv.

setShadow(S, F, Recv)

Write access to a field F, on an object of static type Recv.

handlerShadow (S, Exn)

Execution of a handler for exception Exn.

adviceexecutionShadow(S)

Execution of advice.

isWithinClass(S, Cls)

Shadow S is contained in class Cls.

isWithinShadow(S1, S2)

Shadow S1 is contained within shadow S2.

Figure 6: Primitive Predicates: Shadows

6.3 Pre-defined derived predicates

Below we shall make use of some pre-defined derived predicates (also called intensional predicates in the
deductive databases literature), as a convenient shorthand in defining the semantics of pointcuts.

The simplest examples are those predicates that are used as types, such as constructor, method, field, type.
Most of these are self-explanatory, but there are some exceptions: callable (M) holds when M is a method or
a constructor; similarly packageOrType(T) is the union of the package and type predicates.

11

Other pre-defined predicates include hasName(X,N), which is true when X is an entity (method, type,
package, ...) that has name N. All of these are obtained via simple projections of the primitive relations.

A more complex class of pre-defined predicates are those used for traversing hierarchical data. A typical
example is the reflexive transitive closure of the immediate hasSubtype relation:

hasSubtypeStar(T : type,T : type).
hasSubtypeStar(T : type,S : type) «—
U : type ~ (hasSubtype(T,U), hasSubtypeStar(U,S)).

The final category of pre-defined predicates concerns the lookup of type names in Java. The most
important of these is predicate simpleTypeLookup(C,N,T). It relates a type C, a name N and a type T
precisely when inside C, looking up a type by name N would result in T according to the Java Language
Specification. Furthermore N is assumed to be a simple name, not containing dots.

For space reasons, we do not include a list of the pre-defined derived predicates in this paper. The
companion technical report contains the details of these predicates.

6.4 Rewrite rules

As explained above, we aim to give a semantics to the AspectJ pointcut language by rewriting it to Datalog
in a term-based, purely syntactic fashion. The complete set of rewrite rules for doing that consists of about
90 rules. While it is pleasing that so few rules suffice to pin down the whole pointcut language, space forbids
a thorough description of all rules in this paper (full details can be found in the companion report [6]).
Rather than give a cursory overview of all rules, we present an in-depth discussion of two particular features
of the AspectJ pointcut language. The specific choice of constructs we describe is significant, as we focus
on language features that have been a source both of confusion among AspectJ users and implementation
bugs. This illustrates the necessity for a precise semantics to clarify the pointcut language.

In developing our semantics, we felt it was important that the rewrite rules are directly executable, so
they can be easily tested on tricky examples. At first we developed the rules by directly rewriting abstract
syntax trees that represent pointcuts, but in this form the rules quickly became unreadable. We therefore
implemented them using the Stratego system of Visser et al.; its main attraction is that rewrite rules can
be specified in a concrete syntax [41] — in our case, concrete Aspect] pattern syntax on the left-hand
side of rules, and concrete Datalog syntax on the right-hand side. Furthermore, Bravenboer et al. have
developed a grammar for AspectJ that we adopted for this project [9]. The rules shown in this paper are
slight typographical modifications of their implementation in Stratego.

6.4.1 Call and execution pointcuts

Aspectd offers two ways to intercept method invocations: one for intercepting at the call site, and another
for intercepting the execution of a method body in the defining class. For the first alternative, one uses
the call pointcut, and for the second execution. The seemingly different matching behaviours of call and
execution have led to considerable confusion, and a comprehensive discussion can be found in [7] (although
it is now somewhat dated, since it deals with AspectJ 1.1.1 and the language semantics has evolved). To
illustrate the difference between call and execution, consider the following type hierarchy:

class A { void m() {} }
class B extends A {}
class C extends B { void m() {} }

along with the pointcuts

pointcut c() : call(x B.m(..));
pointcut e() : execution(x B.m(..));

and the sequence of calls

12

(new A())m(); (new B())m(); (new C()).m();

The call pointcut ¢() will match the latter two calls, whereas the execution pointcut e() only matches
the definition of m() in C. The situation is further complicated in the presence of static methods: if both
definitions of m() are declared static in the above example, c¢() only matches the second call, and e() does
not match at all.

This potentially surprising matching behaviour is caused by the difference between call and execution
shadows. Any call statement gives rise to a call shadow, irrespective of where the called method is actually
declared. An execution shadow, on the other hand, spans an entire method body, and as such by definition
can only be present in those classes that contain a (re-)definiti