
The abc Group

Static Aspect Impact Analysis

abc Technical Report No. abc-2007-5

Dehua Zhang and Laurie Hendren
School of Computer Science

McGill University
Montréal, Québec, Canada

November 14, 2007

a s p e c t b e n c h . o r g

Contents

1 Introduction 3

1.1 Contributions . 3

2 Classification 4

2.1 Examples . 4

2.1.1 Bank . 4

2.1.2 Source Code Repository . 6

2.2 State Impacts . 7

2.3 Computation Impacts . 7

2.3.1 Invariant advice . 8

2.3.2 Variant advice . 8

3 Impact Analyses 9

3.1 Analyses Workbench . 9

3.2 Considerations . 9

3.3 State Impact Analyses . 11

3.3.1 Direct State Impacts . 11

3.3.2 Indirect State Impacts . 12

3.4 Computation Impact Analyses . 12

3.4.1 Exact-proceed analysis . 12

3.4.2 Conclude Impact . 15

4 Examples 15

4.1 Bank . 15

4.2 Source Code Repository . 16

4.3 Glass and Table . 16

4.4 Classification of aspects or advices . 17

5 Related Work 17

6 Conclusions and Future Work 18

1

List of Figures

1 Impact analyses in abc, extended from [dM04] . 10

2 Pseudo-code for state impact analysis . 11

3 Pseudo-code for computation impact analysis . 13

List of Tables

I Classification of computation impacts . 8

2

Abstract

One of the major challenges in aspect-oriented programming is that aspects may have unintended
impacts on a base program. Thus, it is important to develop techniques and tools that can both sum-
marize the impacts and provide information about the causes of the impacts. This paper presents static
impact analyses for AspectJ.

Our approach focuses on two kinds of impacts, state impacts which cause changes of state in the base
program, and computation impacts which cause changes in functionality by adding, removing or replacing
computations of the base program.

We provide a classification scheme for these two kinds of impacts and then develop a set of static
analyses to estimate these impacts. A key feature of our approach is the use of points-to analysis to
provide more accurate estimates. Further, our analysis results allow us to trace back to find the causes
of the impacts.

We have implemented our techniques in the AspectBench compiler and provide examples of impact
results.

1 Introduction

Aspect-oriented programming (AOP) introduces aspects as language constructs that address cross-cutting
concerns [SW07]. Aspects can observe, alter or augment the behavior of base programs. Although this
functionality is very powerful, it is also possible that aspects break encapsulation or impact on the based
program in unintended ways. The purpose of this paper is to provide static analyses that can summarize
impacts and help programmers locate the causes of impacts in AspectJ programs.

AspectJ is a popular AOP language which is defined as a convenient extension of Java. An aspect
defined through AspectJ can modify the base program state by writing to fields, or can change the program’s
execution by adding to, substituting, repeating or eliminating the computation in base program. Complex
interactions between the base program and aspects can make AspectJ programs difficult to understand and
maintain. The possibility of obliviously and globally changing the behavior of the base program [Stö03]
may lead to undesired and unexpected impacts. In particular, AspectJ users may find that aspects interact
with classes, components or data structures in a way that was not anticipated. Thus, even though many
programmers have good uses for aspects, the uncertainty about the impacts of the aspects on the base code
can limit adoption of AspectJ. Therefore, techniques and tools that can both analyze impacts of aspects on
base programs and summarize the causes of impacts are desired.

Since the behavior of a program depends on both the program state and which computations are executed,
we classify impacts into two categories, state impacts which indicate changes of state in the base program,
and computation impacts which indicate changes to which computations are performed. We further classify
computation impacts into invariant or variant. We expect most advice to actually do something, so most
advice will have a variant computation impact. Variant computation impacts come in four flavours, addition,
elimination, must-substitution and may-substitution based on whether computations were added, eliminated
or possibly/definitely substituted for different computations. Following this classification, we implemented a
series of static analyses in the back-end of the AspectBench compiler, abc, to analyze impacts of aspects on
both the state and computation of the base program so that the hidden impact of aspects are revealed. We
analyze how fields of base classes are accessed to expose state impacts, and we analyze the effect of advice on
computation by categorizing each advice into the appropriate computation impact category. Key features of
our approach are that we make use of the points-to analysis available in abc to give a more precise analysis,
and we use of analysis results to provide a more descriptive report of what causes the impacts.

1.1 Contributions

This paper studies the complicated interactions between advice and base programs in AspectJ. We make the
following specific contributions:

• A concise classification of impacts based on state and computation changes caused by advice.

3

• Implementation of static analyses in the AspectBench Compiler to analyze and classify impacts based
on our classification.

• An informative analyses report, which provides both impact information and the causes of impacts
which can guide the programmer in understanding these impacts.

• Experience on three example AspectJ programs to illustrate how our classification and analyses can
help programmer to understand program and fix bugs caused by improper designed advice.

The remaining sections are structured as follows. We first introduce our classification system and provide
some motivating examples in Section 2. In Section 3, the algorithm and challenges of our analysis are
presented and discussed. Section 4 provides some examples to demonstrate our technique and analyses.
Finally, we give related work in Section 5, and conclusions and future work in Section 6.

2 Classification

In this section we outline our classification scheme. In Section 2.1 we first provide two small example
applications which we refer to throughout the paper. We then define state impacts which capture when
advice writes to fields of the base program in Section 2.2 and computation impacts which capture when
advice causes computation to be eliminated, replaced or added in Section 2.3.

2.1 Examples

Before starting our classification discussion, we first present two example AspectJ programs: bank and source
code repository. We will refer these two examples when explaining our classification, presenting our analyses
and talking about our experience.

2.1.1 Bank

4 public abstract class Account {
5

6 protected Date lastVisit;
7 protected double money;
8 public final double FEE = 2;
9

10 public Account(double money) {this.money = money;}
11

12 public void debit(double m) {money = money − m;}
13

14 public void credit(double m) {money = money + m;}
15

16 public void fee() {money = money − FEE;}
17

18 public void transfer(Account other, double m) {
19 other. credit (m);
20 this.debit(m);
21 }
22 }

Listing 1: Account.java

3 public class CheckingAccount extends Account {
4

5 public CheckingAccount(double money) {

4

6 super(money);
7 }
8 }

Listing 2: CheckingAccount.java

3 public class Bank {
4

5 public static void main(String [] args)
6 {
7 Account acct1 = new CheckingAccount(200);
8 Account acct2 = new CheckingAccount(2000);
9

10 acct1. credit (300);
11 acct1.debit(200);
12 acct2. transfer (acct1, 200);
13 }
14 }

Listing 3: Bank.java

4 public aspect AccountAspect {
5

6 before(Account account) :
7 (execution (public void Account+.debit(double))
8 || execution(public void Account+.credit(double)))
9 && target(account) {

10 account. lastVisit = new Date();
11 }
12

13 after (Account account) :
14 execution (public void Account+.debit(double))
15 && target(account) {
16 account.fee ();
17 }
18

19 void around() :
20 execution (public void Account+.transfer(Account, double)) {
21 System.out.println(”Transfer starts at ”+new Date());
22 proceed();
23 System.out.println(”Transfer completes at ”+new Date());
24 }
25 }

Listing 4: AccountAspect.aj

In the bank example, we are simulating a system developed in an aspect-oriented way. There is an
abstract Account class (Listing 1) defining basic functions on account like debiting, crediting, transferring,
and fee charging. The CheckingAccount class (Listing 2) simply extends the abstract Account class. The
Bank class (Listing 3) only contains a main method, in which two CheckingAccount objects are initialized
and three different transactions are performed. These three classes form our base program. In the aspect
called AccountAspect (Listing 4), three advice declarations are given. The before advice records the current
time as the last visit time. The after advice changes the fee after each debit or transfer transaction. The
around advice measures the time taken to make a transfer.

5

2.1.2 Source Code Repository

3 public class SourceCodeRepository {
4

5 private String sourcecode;
6 private String user;
7 private String pass;
8

9 public SourceCodeRepository(String src) {
10 this.sourcecode = src;
11 }
12

13 private boolean login() {
14 if (user.equals(”mcgill”) && pass.equals(”sable”)) return true;
15 else return false;
16 }
17

18 public String getSrc() {
19 if (login ())
20 return sourcecode;
21 else return null;
22 }
23

24 public void putSrc(String src) {
25 if (login ()) {
26 this.sourcecode = src;
27 }
28 }
29

30 public static void main(String [] args) {
31 SourceCodeRepository repo = new SourceCodeRepository(”foo”);
32 System.out.println(repo.getSrc ());
33 repo.putSrc(”junk foo”);
34 System.out.println(repo.getSrc ());
35 }
36 }

Listing 5: SourceCodeRepository.java

3 public aspect SourceCodeRepositoryAspect {
4

5 boolean around() :
6 execution (boolean SourceCodeRepository.login()) {
7 return true;
8 }
9

10 void around(String src) :
11 execution (void SourceCodeRepository.putSrc(String))
12 && args(src) {
13 if (src .length() < 5) {
14 proceed(src);
15 } else {
16 System.out.println(”Out of limit”);
17 }
18 }
19 }

Listing 6: SourceCodeRepositoryAspect.aj

6

The Source Code Repository example is intended to demonstrate a legacy object-oriented system patched
by aspects. In the original base program, in class SourceCodeRepository (Listing 5), it requires a check
of username and password every time before a retrieve or store operation. However, let us assume that
the repository becomes open-source, and no authentication is needed for accessing code, but a filter is
needed to filter out junk programs. Therefore, in aspect SourceCodeRepositoryAspect (Listing 6), two advice
declarations are defined. The first around advice captures the login method and always returns true to
bypass the login step, and the second around advice captures the putSrc method and rejects the source
code if the filter (in this case just implemented as a length check) returns false.

2.2 State Impacts

The base program of an AspectJ program is a Java program, which is object-oriented program. In the scope
of an OO program, the program state is mainly defined by values of fields in classes. Therefore, our state
impacts focus on how aspects can modify the fields of the base program. Because aspects interact with
program at the granularity of advice, we define our state impacts in the granularity of advice too. Since an
advice can change fields of base classes both directly and indirectly, we classify state impacts further into:

Direct state impacts: are impacts caused by advice modifying fields of base classes directly in the form
such as base.field = NewValue. In the bank example, “account.lastVisit = new Date();”(Listing 4, line
10) in the before advice causes a direct state impact because it writes the field lastVisit in the class
Account or its subclasses.

Indirect state impacts: are impacts caused by advice invoking methods which modify fields of base classes.
In bank example, “account.fee();”(Listing 4, line 16) in the after advice causes indirect state impacts.
If we check the method body of Account.fee(), we can see that the money field is modified, but the
money field may belong to Account or its subclasses. Later in the paper, in Section 4.1, we will see
that points-to analysis can give the precise estimation of the actual class that money belongs to.

Therefore, we define state impacts as program state change caused by advice modifying the value of fields
of base classes directly or indirectly.

2.3 Computation Impacts

Applying advice to a the base program usually changes the computation performed. An advice will match
a collection of shadows in the base program. Before and after advice can add computation before or after
the shadow; however, around advice can have an impact on whether or not the shadow code executes,
depending on how the body of the advice calls proceed. Thus, in order to handle around advice, we first
introduce the concept of exact-proceed. We define an exact-proceed as a proceed call that fulfills the following
three conditions:1

same arguments: the same argument values as found in the join point must be passed by the proceed call;

same return value: the value returned by proceed must be returned by the advice without modification;
and

no abrupt exception: no exception stops the reachability of proceed.

The idea behind these conditions is that the same arguments and same return value conditions ensure
that the original computation at the join point is executed and the same value returned, whereas the no
abrupt exception condition ensures that the computation is always executed as it was in the base program.

We also use the concept of live and dead advice. For a specific program, we say that an advice is live if
it matches at least one shadow and it is dead if it does not match any shadows.

Given these definitions we now define invariant advice and four flavours of variant advice.
1Similar conditions have been defined by Recebli [Rec05] and Rinard. et. al. [RSB04].

7

2.3.1 Invariant advice

We define an advice to be invariant if it adds no new computation to any shadow, nor removes any compu-
tation from any shadow. For before and after advice either: (a) the advice is dead, i.e. it doesn’t match
any shadows, or (b) the advice body is empty. For around advice, either: (a) the advice is dead, or (b) the
body of the advice is composed of exactly one exact-proceed. Invariant advice is not very interesting and if
we find invariant advice it is likely to indicate a bug in the program (for example, some AspectJ compilers
give a warning when an advice doesn’t match anywhere in the program).

Variant
Invariant

Addition Elimination Must-Substitution May-Substitution

before

after

live and non-
empty body

dead or empty
body

around live and at
least one exact-
proceed on
every path,
plus additional
computation

live and empty
body

live and and no
exact-proceed on
any path

live and at
least one exact-
proceed on one
or more paths,
but not on all
paths

dead or exactly
one exact-
proceed with
no additional
computation

Table I: Classification of computation impacts

2.3.2 Variant advice

Variant advice is much more interesting and useful than invariant advice. The idea is that we want to know if
the advice adds computation to matching shadows, eliminates code at shadows, or replaces code at shadows.
We classify variant advice according into the following kinds of computation impacts:

Addition: After applying the advice (weaving), the matched shadows in the base program always execute
unchanged, and new computation is added. Logging advice [Lad03] is a typical example. In the bank
example, all three advice definitions have addition computation impacts.

Elimination: After applying the advice, matched computation in the base program is removed, and no
new computation is added. Advice hiding method functionality often cause elimination impacts. In
the source code repository example, the boolean around advice (Listing 6, line 5) has an elimination
impact.

Must-Substitution: After applying advice, the matched computation in the base program does not execute
at all, and new computation is added. In this case the advice replaces a functionality in the base
program with a brand-new one. An example is an advice replacing an old algorithm with optimized
algorithm.

May-Substitution: After applying advice, matched computation in the base program may or may not
executed changed or unchanged depending on some conditions, and new computation is always added.
In this case an advice may replace a functionality in the base program under certain conditions.
An example is an advice that introduces a run-time check to determine if the old algorithm should
be replaced by an different algorithm. In source code repository example, the void around advice
(Listing 6, line 10) has may-substitution impact.

In Table I, we present a summary of our categorization expressed in terms of our definitions of live/dead
advice and the definition of exact-proceed. Note that before and after advice is either invariant or has
addition impact, because the original shadow code is never removed. However, around advice can have
different impacts, depending on how proceed is used in the body of the advice. In the next section we discuss
the analyses used to determine the classifications.

8

3 Impact Analyses

We first briefly review the underlying analyses framework: abc, the AspectBench Compiler2(abc) [abc07],
Soot3 [soo07] and points-to and side-effect analyses in Soot. Then, we present the core impact analyses:
state impact analyses to discover and record all state change caused by crosscutting; and computation
impact analyses to classify computation impacts caused by applying advices into addition, elimination,
must-substitution, may-substitution and invariant impacts.

3.1 Analyses Workbench

Our analyses are implemented in the back-end of the AspectBench Compiler - an alternative AspectJ com-
piler, which is developed by a joint team from Oxford, McGill and BRICS universities. The AspectBench
Compiler itself is built on two established frameworks, and the back-end of abc is the Soot framework for
Java analysis and optimization [ACH+05]. Soot provides five intermediate representations, all of which are
highly suitable for analyzing tasks [VRHS+99]. The abc compiler uses Jimple as its IR, which is a typed,
three-address and stackless and is also the principle IR of Soot. Jimple abstracts almost two hundred Java
bytecode instructions into fourteen kinds of statements. All working class files, Java and AspectJ source
code are transformed into Jimple in abc to be woven, and abc supports multi-phase weaving. Therefore, all
our analyses are implemented using the Jimple IR.

An overview of the structure of abc, and where our analyses fits in, is given in Figure 1. The top
part of the figure shows the high-level structure of abc, with the front-end connected to the back-end via
the Java AST and the AspectInfo data structure. Our work is inside the box labeled ”advice weaving +
postprocessing”, which is shown in more detail in the middle part of the figure. The advice weaver in abc is
structured as a shadow finder, followed by a matcher, followed by a weaver, which results in woven Jimple.
The analysis phase comes after the woven Jimple has been created, and this is where our impact analysis
fits in. This is an ideal location for our analysis because at this point all intertype and advice weaving has
been done, all advice bodies have been translated into normal Java methods (represented in Jimple), and we
also have all of the information about the original aspects. As indicated by the bottom part of the figure,
our impact analysis is one of the analyses applied at this stage of abc. Some other abc analyses are used
to optimize the weaving, and in those cases the code may be rewoven. However, our impact analysis only
needs to run on the first pass of the weaver as it does one analysis and then produces the impact report.

Points-to analysis is a static program analysis intended to estimate the set of locations pointed-to by a
reference variable [EGH94]. Soot provides Spark, which is a customizable framework for inter-procedural,
flow-insensitive and context-insensitive points-to [LH03, Lho02]. We use Spark in its default configuration,
which provides a field-sensitive analysis (disambiguates fields by allocation sites) and on-the-fly call graph
construction (builds the call graph during the points-to analysis).

Sometimes we need side-effect information rather than raw points-to information. Soot also contains a
side-effect tester that can report if a statement, including a method call, possibly writes to a field. We take
advantage of the side effect analysis in some of our impact analyses.

3.2 Considerations

Before discussing our analyses, there are several prior considerations to be clarified.

Firstly, our analyses needs points-to and call-graph information which can only be built if the whole
program compiles, so our analyses cannot analyze partial programs.

Secondly, although inter-type declaration of aspects may also cause impacts on base program, the impacts
described in this paper are due to advice. However, since we are implementing our system in abc, inter-type
declarations will have been properly woven in the code that we are analyzing and so indirect effects on advice

2http://www.aspectbench.org
3http://www.sable.mcgill.ca/soot/

9

parsing, type-checking

separator

code generat ion + stat ic weaving

advice weaving + postprocessing

AspectJ
AST

Java
AST

Jimple IR

bytecode

Aspect
Info

Polyglot-based
front-end

Soot-based
back-end

Jimple IR
for bytecode

IR
for pointcuts

Shadow
finder

Shadows Matcher
Weaving

instructions
Optimiser

Weaver
Analyses

results

Woven
Jimple

Bytecode
generator

Analysers

Analysis
result-1

Analyser-1

Impacts
Repor t

Impacts
Analyses

Analysis
result-x

Analyser-x

After the first pass, our analyses are passed by.

Our analyses reults do not
feedback to re-weaving pass.

.class .java

Figure 1: Impact analyses in abc, extended from [dM04]

10

impacts will be properly considered. In our future work we will also consider direct impacts of inter-type
declarations, however the focus of this paper is impacts due to advice.

Last, but not least, an unchecked exception thrown in an advice may terminate the execution of the
advice. We only take checked exceptions into account in our current analysis because every Java statement
may throw unchecked exceptions, such as OutofMemoryError which leads to too many possible (but unlikely)
exceptions. However, the programmer might be interested in certain unchecked exceptions, and we would
like to extend our analysis so that programmers could provide us with a list of unchecked exception types
of interest, and we will include impacts on all statements that throw those exceptions. This will require
another interprocedural analysis, but is not difficult to do in our framework.

3.3 State Impact Analyses

Based on our classification of state impacts, our state impact analysis is designed to discover all field write
accesses caused by advice, directly or indirectly. At conceptual level, the algorithm is presented in Figure 2.

for each advice ad in the application

{
get corresponding Jimple body body

for each statement stmt in body

{
if (LHS of stmt is FieldRef base.field) then

if (base.field is static) then

get class of base;

end if

if (base.field is instance) then

get points-to set ptset of base;

get types in ptset;

end if

record position;

end if

if (stmt contains method call method) then

get Jimple body body of method;

recursively call this analysis on body

and record direct impacts caused by method

as indirect impact of stmt;

end if

}
}

Figure 2: Pseudo-code for state impact analysis

As discussed earlier, our analyses focus on the granularity of advice, so we first acquire all advice infor-
mation from abc after the first pass of weaving. Then, we iterate over each advice to perform the actual state
impact analyses. As explained before, after the first pass of weaving, all advice bodies have been transformed
to standard Java methods represented in Jimple IR. Thus, we can utilize the Soot analysis framework to
perform our analysis.

3.3.1 Direct State Impacts

To discover direct field modifications, we need to check if the definition of an assignment statement is referring
to a field in base classes. Since Jimple is a three-address IR, we actually only need check if the left hand side
(LHS) of an assignment statement is referring to a field in base class. The field can be either a static field
having the form Class.field or an instance field having the form object.field. In Soot, they are represented
by two interfaces; the former is called StaticFieldRef, and the latter is called InstanceFieldRef. Therefore,
we just need to iterate through all statements and check if the LHS is StaticFieldRef or an InstanceFieldRef.
Moreover, since we are trying to find all possible field modifications, no matter whether the modification

11

happens in a branch path or not, we consider the modification as may-happening and as having direct state
impacts.

Beside knowing where the impact happens, we need to know what happens, i.e. we need to know which
field of which class is modified. The field name can be easily acquired by querying the FieldRef objects. For
class information, in the case of a StaticFieldRef, we can easily get its declaring class. However, in the case
of an InstanceFieldRef, the base object of the field may point-to objects with different types; thus, we need
points-to analysis to determine the set of memory locations that the base object may point to, and then we
can get the set of base classes that the field may belong to. In bank example, the points-to analysis will tell
us that the actual type of the object in “account.lastVisit = new Date();”(Listing 4, line 10) in the bf before
advice is CheckingAccount since we instantiated a CheckingAccount in Bank (Listing 3, line 7, 8).

All the information regarding where the impact happens and what is the impact is recorded and reported.

3.3.2 Indirect State Impacts

As stated in our classification, an advice can also cause indirect state impacts by calling methods which
modify fields of base classes; thus, our analysis also checks indirect state impacts.

To modify fields indirectly, a statement inside an advice must call a method that modifies fields directly
or indirectly. But, the method being called may call methods that modify fields too, so we check direct state
impacts of all methods being called transitively. Moreover, call cycles, due to recursion, in the transitive call
graph are resolved by maintaining a call stack and checking if a method is in the stack before entering and
analyzing it. If the inspected advice is an around advice, it may call a special method - proceed. In our state
impact analysis, we exclude proceed from the transitive call graph because proceed refers to computation
in the base program and not new computation added by the advice. Although some proceed calls can
produce different result with the computation in the base program, we have specific proceed analysis in our
computation impact analyses; therefore, we exclude it here.

For all direct state impacts analyzed during traverse methods called transitively, we recorded them as
evidence to support our indirect state impacts. In the same manner as with direct state impacts, we record
both where and what happens for each piece of evidence. Moreover, to give an overall view of the indirect
state impacts to programmer, we aggregate all points-to sets recorded when traversing the transitive call
graph before outputting the report, grouped by field, by calculating the union of these points-to sets.

3.4 Computation Impact Analyses

Our computation impacts analysis is also designed on the granularity of advice and executed after the first
weaving of abc. It classifies advice into addition, elimination, must-, may-substitution and invariant based
on the kind of advice and exact-proceed analysis result. At the conceptual level, our algorithm is presented
in Figure 3.

3.4.1 Exact-proceed analysis

As discussed in Section 2.3, our computation impact classification relies on the information regarding exact-
proceed statements. Thus, to check if a proceed is an exact-proceed, we implement three intra-procedural
analyses to check if those three conditions, same arguments, same return, and no abrupt exception are satisfied
using the MustReachParamAnalysis, UnchangedReturnAnalysis and MayExceptionBeforeAnalysis, respectively.
Although they are all intra-procedural analyses, the first two utilize inter-procedural analysis results, i.e.
points-to and side-effect analysis results.

MustReachParamAnalysis This analysis collects all variables that have the same value of arguments, and
its result is used to check the same arguments condition. It is implemented using the Soot forward flow
analysis framework. For each program point the analysis computes a set of pairs, (index, var). If pair (i, x)
is in this set then this means that the variable x denotes exactly what the ith parameter denoted at entry.

12

for each advice ad in the application

{
if (ad is not around) then

classify ad based on its kind;

else

if (empty computation) elimination;

else

exact-proceed analyses;

if (exact one exact-proceed in every path

and no other computation)

invariant;

else if (at least one exact-proceed in every path)

addition;

else if (no exact-proceed at all)

must-substitution;

else

may-substitution;

end if

}
}

Figure 3: Pseudo-code for computation impact analysis

In particular, if the ith parameter is a reference type, then (i, x) is in the set at program point p, only if x

refers to the same object as the ith parameter and there has been no write to a field of the object between
the entry and program point p.

The analysis starts with the set {(1, param1), . . . , (n, paramn)} at the entry point. New pairs are gen-
erated by copy statements of the form lhs = rhs where the rhs variable in the input set. Pairs are killed
in three ways. First, a statement of the form lhs = rhs kills any pair associated with lhs. Second, we can
also have killing due to aliases. For all statements of the form a.f = b, we kill any pair associated with a or
any variable that may point-to to the same location as a (using the points-to analysis results). Third, if the
rhs expression is a method call, it may write to objects. Thus, we use Soot’s side-effect analysis as follows.
For each pair in the input set, say (i, o) we check to see if there in an interference with the method call in
rhs and any field of o. If there is an interference, then we kill the pair, because the state of the object may
have been changed, and it may no longer denote the same value as at the entry point. Since this is a must
analysis, we use intersection at control-flow merge points.

To illustrate this analysis, consider the example method in Listing 7. As indicated by the comment on
line 2, at the entry point, set of must reaching parameters is {(1, a), (2, b)}. The copy statement at line 5
generates the pair (1, a2). Thus, the proceed statement at line 7 does have the same arguments and in the
correct order (a2 is the 1st argument and and b is the 2nd argument).

1 void around$0(A a, B b)
2 { // {(1,a), (2,b)}
3 A a2, B b2;
4

5 a2 = a;
6 // {(1,a) (1,a2), (2,b)}
7 proceed(a2,b);
8

9 if (exp)
10 b2 = b; // {(1,a), (1,a2), (2,b), (2,b2)}
11 else

12 b2 = new B(); // {(1,a), (1,a2), (2,b)}
13 // {(1,a), (1,a2), (2,b)}
14 proceed(a,b2);
15

13

16 foo(a); // foo writes to a field of a
17 // { (2,b) }
18 proceed(a,b);
19 }

Listing 7: MustReachParamAnalysis Example

Lines 9-14 illustrate a conditional and merge. On the true branch the pair (2, b2) is generated, but not
on the false branch. After the merge the intersection is computed as indicated in the comment on line 13,
which does not include (2, b2). Thus, the proceed at line 14 does not obey the same arguments property
because b2 is not the same as the 2nd parameter.

Line 16 illustrates the use of side-effects to kill. If we assume that the call to foo writes to a field of a,
then the side-effect analysis will indicate an interference with the pairs (1, a) and (1, a2) and these pairs are
therefore killed. Thus, the proceed at Line 17 does not obey the same arguments property because a is not
the same as the 1st parameter.

UnchangedReturnAnalysis In an around advice that returns a value, we must ensure that the value
computed by a proceed actually reaches the return statement of the advice. We compute this in two steps.
Given a statement of the form x = proceed(. . .), we first compute the set of statements that are reachable
from this statement in control flow graph. For each such statement we check the same conditions as in the
previous analysis, Namely we check if there is a direct write of the form x = rhs, a direct, or aliased write
of the form x.f = rhs, or an interference on a method call. If no such writes occur, then we say that the
value computed by the proceed reaches the end of the advice unchanged.

MayExceptionBeforeAnalysis This analysis checks if there are uncaught exceptions thrown before a given
proceed statement, and its result is used to check the no abrupt exception condition. As discussed in Section
3.2, we only care about checked exceptions. Therefore, only statements in the same try-catch block with the
given proceed statement, and executed before it, have the possibility to throw a exception that could cause
the proceed statement to be bypassed.

Since an around advice cannot throw an exception itself, it follows that any checked exception thrown
in the body of the advice must my caught be an enclosing try-catch block. Thus, we first check to see if the
given proceed statement is surrounded by a try-catch block, if not, we conclude that there are no uncaught
checked exceptions that can occur before the proceed. If there is a surrounding try-catch block, then we
analyze the CFG starting at the first statement in the block. We compute the set of may reaching exceptions,
using a standard forward analysis. We compute a set of exception types. We start at the beginning of the
try-catch block with the empty set. A statement that possibly throws a checked exception generates a new
element for the flow set (represented by the exception type). Exceptions may be thrown either by a direct
throw statement, or by a call to a method that declares that exception in its signature.

Once the reaching exceptions are computed, we then check the flow set at the input of the proceed

statement. If it is empty, then there are no abrupt exceptions, otherwise there may be an abrupt exception.

NumberExactProceedAnalysis With the above three analyses, we implement the NumberExactProceed-
Analysis to count the number of exact-proceed in around advice.

First, we traverse all statements in the advice body looking for proceed calls. If the advice has void
return type, which means the proceed call returns nothing, we apply MustReachParamAnalysis and the MayEx-
ceptionBeforeAnalysis on proceed call statements to check if the same arguments and no abrupt exception
conditions are satisfied. If the advice has return type, we also apply the UnchangedReturnValue analysis. We
collect all exact-proceed calls into a set. After that, we follow the CFG of the advice body to count if there is
exactly one or more exact-proceed in all paths. At a merge point, we set our counter to the number coming
from the path having less number of exact-proceed calls to guarantee our counter recording the number of
exact-proceed on all paths.

14

3.4.2 Conclude Impact

Based on the results of the above analyses and the kind of advice, we conclude computation impact following
rules below. For the issue of dead advice due to no matching, we rely on the abc warnings for all unmatched
advices and we concentrate on the other tests.

Addition Impact We categorize all non-empty before and after advice as causing addition impacts. In
addition, if an around advice has at least, but not exactly one, exact-proceed on every path and has
additional computation other than the proceed calls, it has addition impact.

Elimination Impact If an around advice defines no computation in its body, it has elimination impact
since the matched computation in the base program is totally removed.

Must-Substitution Impact If an around advice does not have exact-proceed on all paths and also defines
new computation in its body, the matched computation is definitely replaced by computation defined
in advice, so the around advice has must-substitution impact.

May-Substitution Impact If an around advice has at least one exact-proceed on some (but not all) paths
and also defines new computation in its body, the matched computation is conditionally replaced by
computation defined in advice, so the around advice has may-substitution impact.

Invariant Impact If there is exactly one exact-proceed on every path and no other computation is defined
other than proceed-calls in an around advice, this around advice has invariant impact since it simply
reproduces the matched computation in the base program.

Following the algorithm of our computation analyses, we revisit examples present in Section 2.1. In the
bank example, our analyses should report that both the before and after advice (Listing 4, line 6 and 13)
have addition impact because they are before/after advice and non-empty. The around advice (Listing 4, line
19) has exact one exact-proceed and extra computation, so our analyses should report addition impact also.
In the source code repository example, the boolean around advice (Listing 6, line 5) has empty computation,
so our analyses should report an elimination impact. The void around advice (Listing 6, line 10) has an
exact-proceed in one path, but not in another path, so our analyses should report may-substitution.

4 Examples

To illustrate the kinds of reports we produce, we applied our system to three examples, the two examples
introduced in Section 2.1, and another one given by [Rec05].

4.1 Bank

AccountAspect.aj:6,1−11:2 Advice: (in aspect bank.AccountAsp. . .
state impacts:

bank\AccountAspect.aj:10,2−32
direct state impacts:
field [lastVisit] in [bank.CheckingAccount]

addition computation impact

AccountAspect.aj:13,1−17:2 Advice: (in aspect bank.AccountAsp. . .
state impacts:

bank\AccountAspect.aj:16,2−15
indirect state impacts:
field [money] in [bank.CheckingAccount]
evidence:
bank\Account.java:16,20−39 field [money] in
[bank.CheckingAccount]

15

addition computation impact

AccountAspect.aj:19,1−24:2 Advice: (in aspect bank.AccountAsp. . .
no state impacts.
addition computation impact

Listing 8: Report of analyzing bank

The report of our analyses on the bank example is shown in Listing 8. As expected and discussed in
Section 3.4, our report shows that the before advice defined in Listing 4 between lines 6 and 11 has direct
state impact of writing field lastVisit in CheckingAccount class, and the points-to analysis gives a precise
estimation of the type of account(line 10). Moreover, the after advice in line 13-17 has indirect state impact
on money field of CheckingAccount, and this indirect state impact is caused by the statement in Account.java
at line 16 column 20-39, which is the money = money - FEE statement in Account.fee(). Therefore, our
analyses reports not only exactly what happens, but also how it happens, so that programmers can use our
analyses report to understand and analyze state impacts in very straightforward way. With the evidence
report, programmers can trace back to the exact point where fields are written. In the glass and table
example in Section 4.3, we will show how our state impact can help reveal bugs.

4.2 Source Code Repository

SourceCodeRepositoryAspect.aj:5,1−8:2 Advice: (in aspect repos. . .
no state impacts.
elimination computation impact

SourceCodeRepositoryAspect.aj:10,1−18:2 Advice: (in aspect rep. . .
no state impacts.
may−substitution computation impact

Listing 9: Report of analyzing source code repository

Listing 9 shows the report of analyzing source code repository example. As expected, our analyses clas-
sifies the around advice defined in SourceCodeRepositoryAspect.aj in line 5-8 has elimination computation
impact, and the around advice in line 10-18 has may-substitution computation impact. Through our re-
port, programmers can get a general view of what an advice is going to do if applying the advice, or use
our conclusion to verify if the advice is implemented as expected. For example, if advice is designed to to-
tally replace the computation in the base program; but, our analyses shows the advice has may-substitution
computation impact, the programmer just needs to focus on checking if there is an exact-proceed on some
paths. Therefore, our analyses can also reduce the difficulty of finding bugs in advice. Moreover, as discussed
before, invariant computation impact itself sometimes also an indication of bugs.

4.3 Glass and Table

In this example, in the base program, a Table contains a Glass, and Table.move() calls Glass.move(), thus if
the table moves, the glass also moves. Then, an aspect applies to the program. In this aspect, there is an
after advice crosscuts execution of Glass.move(), and this advice call Table.move() to accomplish the purpose
of moving tables if the glass moves. If we examine both the aspect and the base program, we can discover
this advice causes a call cycle, which causes infinite loop. If running the woven program, it ends up with a
StackOverflowError error.

GlassAspect.aj:6,1−10:2 Advice: (in aspect glass.GlassAspect) . . .
no state impacts.
addition computation impact

16

GlassAspect.aj:12,1−17:2 Advice: (in aspect glass.GlassAspect). . .
state impacts:

glass\GlassAspect.aj:16,3−21
indirect state impacts:
field [x] in [glass .Table]
field [x] in [glass .Glass]
field [y] in [glass .Table]
field [y] in [glass .Glass]
evidence:
glass\Table.java:19,2−9 field [y] in [glass .Table]
glass\Table.java:18,2−9 field [x] in [glass .Table]
glass\Glass.java:9,2−9 field [y] in [glass .Glass]
glass\Glass.java:8,2−9 field [x] in [glass .Glass]

addition computation impact

Listing 10: Report of analyzing glass and table

Listing 10 shows the report of our analysis on glass and table program. We can see our report points out
the second advice has state impacts both on Glass and Table. Programmers could utilize this information
to conclude this advice does something more than expected. The original purpose of this advice is to move
the table if the glass moves, but according to our report it also writes fields in Table class, this should not
happen; thus, there are mistakes. Moreover, if the programmer follows our evidence and checks Table.java
and Glass.java, he/she will find these statements are defined in Glass.move() and Table.move(), so this advice
actually transitively call both Glass.move() and Table.move(). Then, the programmer should very easily
conclude there is a call-cycle. For this simple example, switching back and forth between different source
files perhaps can be handled, but in larger applications the programmer needs more direction such as provided
by our impact report.

Clearly our textual reports could also be integrated into a GUI, and one of our next goals it to integrate
our report information into a GUI.

4.4 Classification of aspects or advices

We can also use our impact analysis to define higher-level classifications. For example, we could support a
classification of data-pure that would indicate when an advice had no state impacts, or data-pure on class
C which would indicate no state impacts on a given class C. With this classification, the around advice
(Listing 4, line 19) in bank example and the two around in source code repository example are all data-pure
advice since they have no state impacts.

We could also support the idea of computation-pure, which would indicate that the aspects did not
remove any base program computation. Thus, advice that does not have an elimination, may-substitution
or must-substitution impact is computation-pure. All advice declarations except the second around (Listing
6, line 10) in source code repository example are computation-pure.

We could also define and advice as being pure it it is both data-pure and computation-pure.

In addition, our analyses result can also be used to classify aspects or advice under another classification
system. Based on our analyses, a harmless advice [DW06] is an advice without state impacts, may- and
must-substitution, elimination computation impacts; in fact, it corresponds to our pure advice. Advice
definitions having state impacts would cover advice having actuation and interference interaction in Rinard’s
classification.

5 Related Work

The problem of helping the programmer understand the impacts of aspects is not a new one and there has
been some interesting previous work in this area.

17

Starting at the syntactic/IDE level, the eclipse plug-in AJDT4 [ajd07] provides visualizations to indicate
shadows where advice applies in the base program, thus providing some cues for the programmer as to places
in the base program which might be affected. However, to discover the actual impact of aspect on the base
program, the programmer has to manually review the source code and possibly has to frequently switch
between base program source and aspect source. A key difference in our approach is that we are using static
analysis to find more detailed information for programmers. However, the idea of visualizing the information
in AJDT is very interesting and we hope to leverage some of the visualization tools in AJDT in our next
step to expose our more detailed information to programmers.

Strözer introduced an aspect analysis, and although he stated that aspect analysis required data flow
analysis, but he had no infrastructure tools available [Str03], thus he proposed using trace analysis to fulfill
the impact analysis. His approach relies on comparison of two traces of the program without and with
applied aspect for a single test. Then, by identifying patterns of differences, the impact of an aspect can be
observed [SKB03]. However, firstly, his approach heavily depended on the quality of test case; secondly, the
report can only vaguely describe the impact at the level of an aspect. Since our infrastructure does support
data flow analysis, we were able to actually implement static impact checking.

Recebli analyzed different ways aspects can break encapsulation and proposed the purity aspect language
feature to AspectJ [Rec05]. Through this feature, a programmer can declare an aspect is pure on a specified
set of classes by promising that the aspect will not change the behavior of the set of classes. Moreover,
he presented an implementation of the proposed purity annotation as an abc extension and used static
analysis to verify purity. Our approach is more focused on the non-pure impacts and on ways of categorizing
and approximating those impacts. Our static analysis is also somewhat more detailed as we also take into
consideration side effects of method calls when analyzing proceed.

Dantas introduced the concept of harmless advice, which works like ordinary aspect-oriented advice but
is designed to obey a weak non-interference property, i.e. it may change the base program’s termination
behavior and use I/O, but it does not influence the final result of the mainline program. In order to detect and
enforce harmlessness, they defined a novel type and effect system related to information-flow type systems.
They also presented an implementation of the language [DW06]. However, their work was done at a very
abstract level and is hard to integrate it directly into AspectJ. Our approach is more focused on developing
classifications and associated analyses that have been integrated into an AspectJ compiler.

Perhaps the most directly related work was from MIT by Rinard et. al. [RSB04], which also was designed
to work on AspectJ and used static analysis. There are clearly similarities between the two approaches as
both seek to summarize state impacts and computation impacts (although these were not the terms used
in the MIT paper). From a conceptual point of view the approaches differ in the manner in which the
impacts are abstracted. For example, in the MIT approach, state impacts are expressed as interferences
between fields accessed by a base program method and fields accessed by an advice, whereas our approach
takes a more advice-centric approach, and we report all fields of the base program written by an advice. We
believe that our approach will lead to more direct reports and is more easily integrated into an IDE. From
an implementation point of view there are also similarities and differences. Both systems are built on Java
bytecode frameworks which support points-to analysis. The MIT prototype used the byteocde produced by
ajc as input, and used the MIT Flex compiler infrastructure for the static analyses. Their implementation
was limited to method call and method execution join points, perhaps because of the loose coupling between
ajc and Flex. Our approach is implemented directly in the abc compiler and so we have access to all the
necessary information to handle all kinds of join points. Further, our implementation will be merged into
the main stream abc release and will be available for others to build upon.

6 Conclusions and Future Work

As AOP, especially AspectJ, is becoming increasing popular, we believe that tools can help programmers
understand the complicated interaction between aspects and base programs. The design of tools that can

4http://www.eclipse.org/ajdt/

18

compute both useful and accurate information presents many interesting and challenging problems and the
availability of such tools should help increase adoption of AOP.

In this paper, we presented different ways that advice can interfere with the state and computation of
a base program and proposed a concise classification of impacts caused by advice crosscutting the base
program. We classified impacts as state and computation impacts, and further classified state impacts into
direct state impact and indirect state impact; and classified computation impacts as addition, elimination,
must-substitution, may-substitution and invariant.

Based on this classification, we implemented static impact analyses in the abc compiler to analyze all
kinds of advice. By using the points-to analysis and side-effect analysis supported by Soot, our impact
analyses system can give precise estimations of impacts. Our approach also produces an informative analysis
report. In the report, we not only report the impact information, but also report the causes of impacts, so
we can guide the programmer to understand the key impacts of aspects on their program.

We feel that this initial work shows that our approach has promise, and we plan to continue on with this
work, extending it in the following ways.

Although our textual reports are quite concise, modern developers appreciate analysis results that are
integrated into an IDE. Thus, we plan to integrate our toolkit into Eclipse and produce reports that will
allow the programmer to both view the impacts in a more graphical manner and allow programmers to
navigate directly to the parts of the source code involved in the impacts.

There are also several extensions to the analyses that we would like to undertake. First, it would be
interesting to add the analysis for programmer-specified unchecked exceptions, because in practice, unchecked
exceptions are used more frequently than checked exceptions. We would also like to experiment with different
points-to analyses, since the precision of our impact analyses heavily depends on the points-to result. There
are two interesting context-sensitive analyses available for Soot now, the Paddle framework [LH06,Lho06],
and the demand-driven analysis of Sridharan and Bodik [SB06]. It should be simple to integrate these into
our approach, and a study of the effect of points-to precision on the quality of impact reports would be very
interesting.

Finally, to handle all kinds of aspects available in AspectJ, we wish to add intertype impacts to our
system. We have an initial design of kinds of impacts we would like to expose and it should be possible to
integrate these smoothly into our framework.

Acknowledgements

This research has been supported by Le Fonds Québécois de la Recherche sur la Nature et les Technologies
(FQRNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

[abc07] abc - AspectBench Compiler. http://www.aspectbench.org, 2007.

[ACH+05] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhoták,
Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. abc:
an extensible AspectJ compiler. In AOSD ’05: Proceedings of the 4th International Conference
on Aspect-Oriented Software Development, pages 87–98. ACM Press, 2005.

[ajd07] AspectJ Development Tools (AJDT). www.eclipse.org/ajdt, 2007.

[dM04] Oege de Moor. abc: an implementation of AspectJ. Seminar at the Computer Laboratory,
Cambridge, United Kingdom, http://abc.comlab.ox.ac.uk/documents/dec8.pdf, December
2004.

19

[DW06] Daniel S. Dantas and David Walker. Harmless advice. In POPL ’06: Conference record of
the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
383–396, New York, NY, USA, 2006. ACM Press.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. In PLDI ’94: Proceedings of the ACM
SIGPLAN 1994 conference on Programming language design and implementation, pages 242–
256, New York, NY, USA, 1994. ACM Press.

[Lad03] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Pub-
lications Co., Greenwich, CT, USA, 2003.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using Spark. In G. Hedin,
editor, Compiler Construction, 12th International Conference, volume 2622 of LNCS, pages
153–169, Warsaw, Poland, April 2003. Springer.

[LH06] Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to analysis: is it worth it? In
A. Mycroft and A. Zeller, editors, Compiler Construction, 15th International Conference, vol-
ume 3923 of LNCS, pages 47–64, Vienna, March 2006. Springer.

[Lho02] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s thesis, McGill
University, December 2002.

[Lho06] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams. PhD thesis, McGill Uni-
versity, January 2006.

[Rec05] Elcin Recebli. Pure aspects. Master’s thesis, Oxford University, September 2005.

[RSB04] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classification system and analysis
for aspect-oriented programs. In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIG-
SOFT twelfth international symposium on Foundations of software engineering, pages 147–158,
New York, NY, USA, 2004. ACM Press.

[SB06] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-sensitive points-to analysis
for Java. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation, pages 387–400, New York, NY, USA, 2006. ACM Press.

[SKB03] Maximilian Strözer, Jens Krinke, and Silvia Breu. Trace analysis for aspect application. In
Analysis of Aspect-Oriented Software (AAOS), 2003.

[soo07] Soot: a Java Optimization Framework. http://www.sable.mcgill.ca/soot/, 2007.

[Stö03] Maximilian Störzer. Analytical problems and AspectJ. AOSD workshop, 2003. Talk.

[Str03] Maximilian Strözer. Analysis of AspectJ programs. In Proceedings of 3rd German Workshop
on Aspect-Oriented Software Development, 2003.

[SW07] Martin Sulzmann and Meng Wang. Aspect-oriented programming with type classes. In FOAL
’07: Proceedings of the 6th workshop on Foundations of aspect-oriented languages, pages 65–74,
New York, NY, USA, 2007. ACM Press.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, and Phong
Co. Soot - a Java optimization framework. In Proceedings of CASCON 1999, pages 125–135,
1999.

20

