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Abstract

Many aspects for runtime monitoring are history-based : they contain pieces of advice that execute
conditionally, based on the observed execution history. History-based aspects are notorious for causing
high runtime overhead. Compilers can apply powerful optimizations to history-based aspects using
domain knowledge. Unfortunately, current aspect languages like AspectJ impede optimizations, as they
provide no means to express this domain knowledge.

In this paper we present dependent advice, a novel AspectJ language extension. A dependent advice
contains dependency annotations that preserve crucial domain knowledge: a dependent advice needs to
execute only when its dependencies are fulfilled. Optimizations can exploit this knowledge: we present a
whole-program analysis that removes advice-dispatch code from program locations at which an advice’s
dependencies cannot be fulfilled.

Programmers often opt to have history-based aspects generated automatically, from formal specifica-
tions from model-driven development or runtime monitoring. As we show using code-generation tools for
two runtime-monitoring approaches, tracematches and JavaMOP, such tools can use knowledge contained
in the specification to automatically generate dependency annotations as well.

Our extensive evaluation using the DaCapo benchmark suite shows that the use of dependent advice
can significantly lower, sometimes even completely eliminate, the runtime overhead caused by history-
based aspects, independently of the specification formalism.

1 Introduction

In this paper we present dependent advice, a novel language extension to aid efficient implementations of,
and reasoning about, history-based aspects. A history-based aspect executes its pieces of advice conditionally,
based on the observed execution history. There can be many uses of history-based aspects but programmers
primarily use history-based aspects for runtime monitoring and verification.

Figure 1 shows a simplified example, the “ConnectionClosed” aspect. This aspect monitors the events of
disconnecting and reconnecting a connection c, as well as writing data to c. Note that almost all the aspect
code is concerned with bookkeeping internal state. This can induce a large runtime overhead [3,7,11,14,23].
The error message at line 17 implements the only functionality that is visible outside the aspect. Note that
the aspect prints the error only if both the advice “disconn” and “write” execute on the same connection c. In
addition, the advice “reconn” only has to execute on connections that are both disconnected and written to
at some point in time. Compilers could use this important information to apply powerful optimizations: For
example, one does not have to monitor “disconn(c)” if the connection c is never written to. Unfortunately
a programmer cannot express this crucial domain knowledge in plain AspectJ syntax, and it would be very
hard for an AspectJ compiler to re-construct this knowledge solely based on the aspect code. This impedes
crucial optimizations.

Dependent advice solve this problem. A dependent advice contains dependency annotations to encode
crucial domain knowledge: a dependent advice needs to execute only when its dependencies are fulfilled. For
the “connection” example from Figure 1, a programmer could add the annotation

dependency{ strong disconn, write; weak reconn; }.

This annotation conveys the information that the execution of the advice “disconn” and “write” both depend
on one another, and in addition the execution of “reconn” depends on both “disconn” and “write” to execute
at some point in time.

Programmers can use dependent advice to document design intent or to aid static verification. For
instance dependencies could encode forbidden combinations of events and static whole-program analyses
could prove that such combinations cannot occur. In this paper we focus however on using dependent advice
to aid an efficient implementation of history-based aspects: we present a flow-insensitive whole-program
analysis that removes dispatch code for dependent advice from program locations at which the advice’s
dependencies cannot be fulfilled. The analysis is equivalent to a flow-insensitive static whole-program analysis
that Bodden et. al originally designed [7] for tracematches [1], an AspectJ language extension for runtime
monitoring. Through dependent advice, this analysis becomes applicable to a broader context. The results
of our evaluation show that the use of dependent advice can yield significant speedups at runtime.
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However, writing dependency annotations by hand can be error prone and time consuming. Therefore
it would be beneficial if tools could generate these annotations automatically. Fortunately, many people do
not write history-based aspects by hand either: researchers have proposed several tools [1, 11, 19, 22] that
generate history-based AspectJ aspects automatically, from formal specifications from runtime verification or
model-driven development. As we show in this paper, these specifications convey enough domain knowledge
to generate dependent advice automatically. We modified two runtime monitoring tools, tracematches [1]
and JavaMOP [11], to generate dependent advice from specifications that express monitoring properties
using past-time and future-time linear temporal logic and regular expressions.

To validate our approach we applied a large set of both generated and hand-written aspects with and
without dependency annotations to the DaCapo [4] benchmark suite. Our results show that the use of
dependent advice can significantly lower, and sometimes even completely eliminate, the runtime overhead
caused by history-based aspects. Most interestingly however, while the result of this optimization depends
on the monitored property and program, it is independent of the code generation tool and specification
formalism.

To summarize, the main contributions of this paper are:

• an AspectJ language extension called dependent advice, encoding domain knowledge that helps compil-
ers optimize advice execution, and an implementation of this extension in the AspectBench Compiler [2]
(abc),

• an algorithm that generates dependent advice from finite-state models or specifications, along with an
implementation of this algorithm for JavaMOP (regular expressions, past-time and future-time LTL)
and tracematches, and

• a set of experiments proving that compilers can successfully optimize dependent advice (whereas normal
advice could not be optimized any further) and that these optimizations are effective regardless of the
specification tool and formalism that was used to generate the dependent advice.

We organized the remainder of the paper as follows. In the next section we explain dependent advice,
their syntax and semantics. We present our implementation of dependent advice in Section 3, and in Section
4 we explain an algorithm to generate dependent advice from any finite-state based monitor specification. We
also prove this algorithm correct and “stable”: it generates equivalent dependency annotations for equivalent
finite-state specifications, even if these specifications are written in different formalisms. Section 5 explains

1 aspect ConnectionClosed {
2 Set closed = new WeakIdentityHashSet();
3

4 after /∗disconn∗/ (Connection c) returning:
5 call(∗ Connection.disconnect()) && target(c) {
6 closed .add(c);
7 }
8

9 after /∗reconn∗/ (Connection c) returning:
10 call(∗ Connection.reconnect()) && target(c) {
11 closed .remove(c);
12 }
13

14 after /∗write∗/ (Connection c) returning:
15 call(∗ Connection.write (..)) && target(c) {
16 if (closed .contains(c))
17 error(”May not write to ”+c+”, as it is closed !”);
18 }
19 }

Figure 1: ConnectionClosed monitoring aspect
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Modifier ::= “public” | “synchronized” | . . . | “dependent”.

AdviceDecl ::= Modifier* [RetType] BefAftAround AdviceName

“(” [ParamList ] “)” [AftRetThrow ] “:” Pointcut Block .

AdviceName ::= ID

AspectMemberDecl ::= AdviceDecl | . . . | DependencyDecl .

DependencyDecl ::=
“dependency” “{” “strong” AdviceNameList “;”

[ “weak” AdviceNameList “;” ] “}”.

AdviceNameList ::= AdviceRef | AdviceRef “,” AdviceNameList .

AdviceRef ::= AdviceName | AdviceName “(” VarList “)”.

VarList ::= VarName | VarName “,” VarList .

VarName ::= ID | “*”.
Figure 2: Syntax of dependent advice, as extension (shown in boldface) to the syntax of AspectJ [2]

our experiments and limitations of the approach. This is followed by a discussion of related work and
conclusions.

2 Dependent advice

In this section we describe dependent advice. We start by explaining their syntax, first in a short form and
then in a more verbose form. Then we explain how to type-check dependent advice and give a matching
semantics.

2.1 Syntax

Dependent advice are a backwards-compatible AspectJ language extension that comprise the following syn-
tactic changes. (Figure 2 shows the complete Syntax in EBNF.)

• Pieces of advice can have a dependent modifier,

• every dependent advice is given a name, and

• an aspect can hold a set of dependency declarations.

A dependency declaration has the following form:

dependency{
strong s1, . . . , sn;
weak w1, . . . , wm;

}

Here s1 through sn, and w1 through wm, are names of dependent advice declared in the same aspect as
the dependency declaration. Figure 3 shows how to use dependent advice for ConnectionClosed.

Informally, the meaning of “strong disconn, write;” is that the disconn advice only has to execute on
a Connection c if at some point in time the advice write executes on c as well. In addition, write only
has to execute on c if disconn executes on c. In other words, the dependency states that if disconn was
to execute on a Connection c for which it is known that write never occurs on c then the execution of
disconn can safely be omitted—and the other way around. Weak dependencies are slightly different: By
adding “weak reconn;” the programmer states that “reconn” only has to execute on Connections c for which
both “disconn” and “write” execute at some point, but not the other way around.
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1 aspect ConnectionClosed {
2 dependency{ strong disconn, write; weak reconn; }
3

4 Set closed = new WeakIdentityHashSet();
5

6 dependent after disconn(Connection c) returning:
7 call(∗ Connection.disconnect()) && target(c) {
8 closed .add(c);
9 }

10

11 // ... advice ‘‘ write ’’ and ‘‘reconn’’ omitted for brevity
12 }

Figure 3: ConnectionClosed with dependent advice

Note however that the dependency annotation in Figure 3 (line 2) omits the variable name c of the
Connection. This is because, by default, a dependency annotation infers variable names from the formal
parameters of the advice declarations that it references (e.g. line 6). The dependency annotation from Figure
3 is a short hand for the more verbose

dependency{ strong disconn(c), write(c); weak reconn(c); }

The semantics of variables in dependency declarations is similar to unification semantics in logic programming
languages like Prolog [12]: The same variable at multiple locations in the same dependency refers to the same
object. For each advice name, the dependency infers variable names in the order in which the parameters for
this advice are given at the site of the advice declaration. Variables for return values from after returning

and after throwing advice are appended to the end. For instance, the following advice declaration would
yield the advice reference createIter (c, i ).

dependent after createIter(Collection c) returning(Iterator i):
call(∗ Collection . iterator ()) {}

We decided to allow for this kind of automatic inference of variable names because both code-generation tools
and programmers frequently seem to follow the convention that equally-named advice parameters are meant
to refer to the same objects. That way, programmers or code generators can use the simpler short-form as
long as they follow this convention. Nevertheless the verbose form can be useful in rare cases. Assume the
following piece of advice:

dependent before detectLoops(Node n, Node m):
call(Edge.new(..)) && args(n,m) {
if (n==m) { System.out.println(”No loops allowed!”); }}

This advice only has an effect when n and m both refer to the same object. However, due to the semantics
of AspectJ, the advice cannot use the same name for both parameters—the inferred annotation would be
detectLoops(n,m). The verbose syntax for dependent advice allows us to state nevertheless that for the advice
to have an effect, both parameters actually have to refer to the same object, say k:

dependency{ strong detectLoops(k,k); }

We next define the subset of syntactically valid dependent advice that we consider well-typed.

2.2 Well-typed dependent advice

In the following, whenever we speak of a dependent advice then we mean an advice annotated with the
dependent modifier. We say that an AspectJ aspect holding dependent advice and dependency annotations
is well-typed if all of the following holds.

• Only dependent advice have names and every dependent advice has a name that is unique in the
declaring aspect.
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• Each advice name mentioned in a dependency declaration refers to an existing dependent advice in the
declaring aspect.

• Each dependent advice is referenced by at least one dependency declaration.

In addition, for each dependency declaration it must hold that:

• The list of strong advice names is non-empty.

• The strong and weak lists of advice names are disjoint and their union contains each advice name only
once.

• The number of variables for an advice name equals the number of parameters of the unique advice
with that name, including the after-returning/throwing variable. (inference ensures this)

• Advice parameters that are assigned equal names have compatible types: For two advice declarations
a(A x) and b(B y), with a(p) and b(p) in the same dependency declaration, A is cast-convertible [15,
§5.5] to B and vice versa.

Further, in the verbose form, each variable should be mentioned at least twice inside a dependency declara-
tion. If a variable v is only mentioned once we give a warning, because in this case the declaration states
no dependency with respect to v. The warning suggests to use the wildcard “*” instead. Semantically, *
also generates a fresh variable name. However, by stating * instead of a variable name, the programmer
acknowledges explicitly that the parameter at this position should be ignored when resolving dependencies.

2.3 Matching semantics

We define the matching semantics of dependent advice as a semantic extension to ordinary advice matching
in AspectJ. A program can generally have multiple aspects with dependent advice. However, since the
semantics of dependent advice in one aspect is defined independently from other aspects, in the following we
assume one fixed aspect A, without loss of generality. (While it would be interesting to consider dependencies
between entire aspects, this topic is out of the scope of this paper.)

Let A be the set of A’s pieces of advice, D the set of dependency declarations in A, V the set of all
possible variable names, O the set of all heap objects allocated on a given program execution and J the set
of all AspectJ joinpoints (i.e. events) on that execution.

Furthermore we declare functions strong and weak of type D → P(A), which return the set of advice
that the dependency declaration d ∈ D references as strong, respectively weak advice. We define the set
Ad ⊆ A as Ad := strong(d) ∪ weak(d).

In the following let us assume that variables in d have been fully inferred (see Section 2.1) and that any
occurring wildcard * has been replaced by a fresh variable name. The set Vd is the set of variables mentioned
in d. Our type checks ensure that d references each advice a ∈ Ad only once. Therefore d induces for each
advice a a mapping σd

a from a’s parameters to variables in Vd: If d references an advice declaration adv(T1

p1,...,Tn pn) using the advice reference adv(v1,...,vn) then we obtain the mapping

σd
adv

= {p1 7→ v1, . . . , pn 7→ vn}.

Note that σd
a is the identity function in case that variable names were inferred for a in d.

2.3.1 Advice matching for normal advice

We model advice matching in AspectJ [17] as a function

match : A× J → {β | β : V ⇀ O} ∪ {⊥}.

For each pair of advice a ∈ A and joinpoint j ∈ J , match returns ⊥ in case a does not execute at j. If a

does execute then match returns a variable binding β, a mapping from a’s parameters to objects ({ } for
parameter-less advice).
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Compatible joinpoints In the remainder of this section we will refer to “compatible joinpoints”. We say
that two joinpoints ja and jb are compatible with respect to a dependency declaration d and two pieces of
advice a and b if a executes at ja with a variable binding βa, b executes at jb with a variable binding βb

respectively, and both βa and βb assign the same objects to equal variables, with variable names substituted
as defined through d. Formally we define a predicate compt as follows:

compt : J ×A× J ×A×D → B

compt(ja, a, jb, b, d) =

let βa := match(a, ja), βb := match(b, jb) in

βa 6= ⊥ ∧ βb 6= ⊥ ∧

∀pa ∈ dom(σd
a) ∀pb ∈ dom(σd

b ) :

σd
a(pa) = σd

b (pb) → βa(pa) = βb(pb)

2.3.2 Advice matching for dependent advice

Dependent advice differ in their matching semantics from normal AspectJ advice and we therefore define
a function depMatch that matches dependent advice against joinpoints, based on D and match. depMatch

also has access to a function activates. This function is a parameter to depMatch (description follows).

depMatch : A× J → {β | β : V ⇀ O} ∪ {⊥}

depMatch(a, j) =










match(a, j) if match(a, j) 6= ⊥ ∧

∃d ∈ D . activates(d, a, j)

⊥ else

The function depMatch refines the original match function provided by AspectJ: It only produces a match
if the Boolean predicate activates holds for at least one advice dependency. When activates(d, a, j) holds,
we say that the dependency d activates the dependent advice a at j. The predicate activates is a parameter
to our matching semantics. A compiler may choose between different implementations of activates but we
define that any sound implementation of dependent advice must guarantee:

Condition 1 (Soundness condition).

∀d ∈ D ∀a ∈ A ∀ja ∈ J :
(

a ∈ Ad ∧ ∀b ∈ strong(d) ∃jb ∈ J : compt(ja, a, jb, b, d)
)

−→ activates(d, a, ja) = true

Informally, Condition 1 states that a dependency d must activate a at joinpoint ja, if d references a (as
strong or weak advice), and for each strong advice b in d there is some joinpoint jb (at some time earlier or
later in the program execution, or the current joinpoint itself) that is compatible with ja (with respect to d,
a and b).

The most conservative implementation would be the constant function true. This would effectively treat
dependent advice just as ordinary AspectJ advice (depMatch degenerates to match as our type-checks ensure
that D 6= ∅).

An optimizing implementation would instead want to return false from activates whenever possible, but
without jeopardizing soundness. A perfect implementation would determine activates such that it returns
false whenever the premise of Condition 1 does not hold. That way, the implementation would disable
dependent advice whenever possible but still guarantee soundness. Unfortunately determining activates that
way is undecidable: At the time where activates needs to decide whether or not to activate a dependency at
the current joinpoint, it may need to know whether a compatible joinpoint will occur in the future.
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A sensible implementation of dependent advice must therefore approximate activates. It must try to
return false on a best-effort basis, but only when the soundness condition permits, i.e. when the premise of
the soundness condition does not hold. In the next section we explain an effective implementation based on
this principle.

3 Implementing dependent advice

We next explain the static abstraction of Condition 1 that we use in our implementation. The abstraction
considers all possible program executions. In Section 3.2 we prove this abstraction sound. We explain the
details of our concrete implementation in the AspectBench Compiler in Section 3.3.

3.1 A static abstraction of Condition 1

Our soundness condition, Condition 1, defines the situations in which activates(d, a, ja) must return true.
As noted earlier, an effective implementation of dependent advice should attempt to return false from this
function whenever possible, i.e. whenever the premise of Condition 1 does not hold. This is exactly the case
when its negation holds:

Condition 2 (Negation of the premise of Condition 1).
a 6∈ Ad ∨ ∃b ∈ strong(d) ∀jb ∈ J : ¬compt(ja, a, jb, b, d)

According to Condition 2, a dependency d can fail to activate a dependent advice a for two reasons. In the
first case d does not at all reference a, i.e. a 6∈ Ad. This is the trivial case. (Note that our type checks
demand that a be referenced by some dependency, so there must be another dependency d′ which at least
gives a a chance of being activated.) The second reason is that there is a strong advice b in d so that there
exists no joinpoint jb that is compatible with ja. This is the condition that our static analysis exploits.

Note that we can fully determine the following parts of Condition 2 at compile time. For each dependency
d we can determine the sets strong(d) and Ad. For any advice a ∈ Ad the variable substitution σd

a (used
within compt) is also statically determined. Hence, the only parts of Condition 2 that our static analysis
needs to approximate are:

1. the set J of all joinpoints, and

2. the variable binding match(a, j) that occurs when advice a matches at joinpoint j (also used within
compt).

Approximating joinpoints through joinpoint shadows A woven AspectJ program generates a joinpoint j

by executing a piece of code generated by the AspectJ compiler at a specific program location, j’s joinpoint
shadow [25] shadow(j). We define the set S of all shadows as:

S =
⋃

j∈J

{s | s = shadow(j)}

Note that this union is not disjoint: Multiple joinpoints can share the same shadow, if the shadow resides in
a loop or is reached multiple times through re-entrant calls.

We can now define our static approximation of Condition 2 via joinpoint shadows. Given a dependent
advice a, a shadow sa and a dependency d, we define:

Condition 3 (Static approximation of Condition 2).
a 6∈ Ad ∨ ∃b ∈ strong(d) ∀sb ∈ S : ¬sCompt(sa, a, sb, b, d)

The function sCompt is a static approximation of compt that accepts shadows instead of joinpoints. Both
functions are very similar. The only difference is that compt uses match to compute mappings from variables
to runtime objects. At compile time we have no access to runtime objects. sCompt therefore approximates
this mapping through a compile-time function sMatch.
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Approximating objects through points-to sets Because we now deal with joinpoint shadows, we redefine
match as a function sMatch over inputs from S instead of J . A function call match(a, j) returns ⊥ when
advice a does not execute at j. This is a runtime decision: Several AspectJ pointcuts have to be evaluated
at runtime. For instance the pointcut this(A) only matches if the concrete runtime type of the currently
executing object is a subtype of A. AspectJ compilers allow the AspectJ runtime to determine a match by
weaving a dynamic residue [17] in place of the joinpoint shadow. In some cases a compiler can statically
determine that an advice a can never apply at a given joinpoint shadow s = shadow(j). For instance, in
the above example it could be that the currently executing object must be of a final type (i.e. can have no
subtypes) that is not a subtype of A. In this case this(A) cannot hold at s, and the compiler generates a
“Never” residue that instructs the compiler not to weave any advice code for a at s. In the following we will
say that never(a, s) holds in this situation.

The other difference between match and sMatch is that, because sMatch is evaluated at compile time, it
cannot return a mapping from advice parameters to runtime objects. Every joinpoint shadow does however
give us access to a mapping ι which maps each advice parameter p to the local program variable l that
the compiler inserts to bind p to its runtime value when the advice is executed at this shadow. For a local
variable l we can determine its points-to set [20] pointsTo(l). A points-to set pointsTo(l) = {s1, . . . , sn} is a
set of allocation sites. The set models the fact that l is only ever assigned objects that are allocated at the
sites s1, . . . , sn. We denote the set of all points-to sets by P. This allows us to define sMatch as follows.

sMatch : A× S → {β | β : V ⇀ P} ∪ {⊥}

sMatch(a, s) =

{

⊥ if never(a, s)

λp . pointsTo(ι(p)) else

This makes us almost ready for defining our static approximation of the function compt. The last insight
that we exploit is that two run-time objects referenced by advice parameters p and q cannot point to the
same objects if pointsTo(ι(p)) ∩ pointsTo(ι(q)) = ∅: In this case p and q are only assigned values from local
variables that themselves are definitely not assigned objects from the same allocation site. This yields the
following definition of sCompt.

sCompt : S ×A× S ×A×D → B

sCompt(sa, a, sb, b, d) =

let βa := sMatch(a, sa), βb := sMatch(b, sb) in

βa 6= ⊥ ∧ βb 6= ⊥ ∧

∀pa ∈ dom(σd
a) ∀pb ∈ dom(σd

b ) :

σd
a(pa) = σd

b (pb) → βa(pa) ∩ βb(pb) 6= ∅

3.2 Soundness of the approximation

We next define what it means for this abstraction to be sound, and prove soundness based on this definition.

Theorem 1 (sCompt soundly approximates compt).
∀ja, jb ∈ J ∀d ∈ D ∀a, b ∈ Ad :

compt(ja, a, jb, b, d)

−→ sCompt(shadow(ja), a, shadow(jb), b, d)

Proof 1 (Proof of Theorem 1). The proof of Theorem 1 is almost immediate if one assumes that points-to
sets are computed in a sound way, i.e. if o is an object created at allocation site s and assigned to a program
variable l then s ∈ pointsTo(l)—a general assumption that we make for this paper. We conduct the proof
in inverse order, from the right to the left. If sCompt(shadow(ja), a, shadow(jb), b, d) does not hold then
this can have two reasons: (1) we have never(a, sa) or never(b, sb), or (2) the two shadows induce variable
bindings that assign disjoint points-to sets to the same variable from d (used at different locations). In
case (1) ¬compt(ja, a, jb, b, d) holds trivially because never(a, sa) implies match(a, ja) = ⊥, and the same

10



AspectBench Compiler

aspects with depen-
dency annotations

base program

check & split aspects

dependency annotations

match weaving plan weave woven program

analyze

update

Figure 4: Overview of our implementation of dependent advice as an extension “abc.da” to abc

holds for b, sb and jb. Similarly, (2) disjoint points-to sets imply distinct runtime objects (assuming sound
points-to sets).

Theorem 1 directly implies the following corollary, therefore proving our approximation sound.

Corrolary 1 (Condition 3 soundly approximates Condition 2). For every joinpoint j ∈ J with s :=
shadow(j), every dependency d and every dependent advice a ∈ Ad, it holds that Condition 3 implies
Condition 2.

This concludes the discussion of our static abstraction. In the following we give some additional detail
about the actual implementation within the AspectBench Compiler.

3.3 Implementation in abc

Figure 4 gives an overview of our implementation of dependent advice as an extension “abc.da” to the As-
pectBench Compiler (abc). The user provides a Java base program as input, plus a set of aspects augmented
with dependency annotations. In a first step, our compiler extension parses and type-checks the aspects
and annotations. It then splits apart the dependency information from the aspects. abc then matches the
resulting plain-AspectJ aspects against the base program, producing a “weaving plan”. This plan holds
information about which advice applies where in the program. abc next weaves the appropriate pieces of
advice into the program (based on the weaving plan) and produces a woven program—still un-optimized. At
this stage, our extension intercepts the compilation to analyze the woven program based on the previously
extracted dependency annotations. For each potential match recorded in the weaving plan, we statically
analyze if the dependencies for the matched advice can potentially be fulfilled at the matched program lo-
cation. If not, then we remove this potential match from the plan. After the analysis finishes, we re-weave
the entire program, i.e. we instruct abc to un-do the previous weaving process and weave the base program
again, this time with the updated weaving plan. After the program was re-woven, abc automatically emits
Java bytecode for the woven (and now optimized) program. We next explain the internals of the analysis,
highlighted in Figure 4.

As mentioned earlier, our analysis executes right after weaving, analyzing the woven program. It has
access to the base program, all aspects, all dependent advice in these aspects, and abc’s weaving plan. The
weaving plan W contains a list of tuples (s, a, r) where s is a joinpoint shadow, a is an advice applying at s,
and r the dynamic residue that the runtime will evaluate to determine whether a must indeed execute at a
concrete joinpoint induced by s.

Quick-check Our analysis iterates through the weaving plan, considering each entry separately, first using
the “Quick-check” shown in Algorithm 1. The Quick-check changes the residue of an entry (s, a, r) ∈ W to
(s, a,Never) if no advice dependency d activates a at s for the trivial reason that at least one strong advice
b in d matches nowhere in the entire program, as determined by the weaving plan, line 8. Note that the
condition in line 8 depends on whether the algorithm already processed weaving-plan entries for b itself. We
therefore iterate Algorithm 1 until a fixed point is reached. The Quick-check is “quick” because it does not
require points-to information. In our benchmarks it therefore always finished in under 3.3 seconds.

If active advice applications remain after the Quick-check, then we next apply Sridharan and Bod́ık’s
demand-driven refinement-based context-sensitive points-to analysis [28] to the woven program. This anal-
ysis first produces context-insensitive points-to sets using Spark [20]. Then next, when queried for the
points-to sets of a local variable l the analysis refines the points-to sets for l with context information. Es-
sentially, this changes the representation of a points-to set from a set {s1, . . . , sn} of allocation sites to a
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Algorithm 1 Quick-check

1: for (sa, a, ra) ∈ W do
2: if (ra 6= Never) ∧ (a is dependent advice) then
3: activated := false
4: for d ∈ D with a ∈ Ad do
5: allStrongAdviceMatch := true
6: for b ∈ strong(d) do
7: for sb ∈ S do
8: if ¬∃(sb, b, rb) ∈ W : rb 6= Never then
9: allStrongAdviceMatch := false

10: end if
11: end for
12: end for
13: if allStrongAdviceMatch then
14: activated := true
15: end if
16: end for
17: if ¬activated then
18: W := ( W \ {(sa, a, ra)} ) ∪ {(sa, a, Never)}
19: end if
20: end if
21: end for

Algorithm 2 Flow-insensitive Orphan-shadows analysis
(only showing differences to Algorithm 1)

· · ·
8: if ¬∃(sb, b, rb) ∈ W : rb 6= Never ∨

sCompt(sa, a, sb, b, d) = false then
9: allStrongAdviceMatch := false

10: end if
· · ·

set {(c1, s1), . . . , (cm, sn)}, where the different ci are static representations of calling contexts. This makes
the points-to sets more precise. In previous work [7] we found that context information [28] is necessary to
optimize pieces of advice that reference objects created inside factory methods, e.g. different iterators, which
are all produced by a call to the same method iterator(). Because we query the analysis only on variables
that actually bind values at joinpoint-shadows of dependent advice, this demand-driven approach usually
executes a lot faster than an analysis that determines context information for every program variable.

Flow-insensitive Orphan-shadows analysis We then apply a flow-insensitive “Orphan-shadows” analysis,
shown in Algorithm 2. The algorithm essentially proceeds like the Quick-check (Algorithm 2 only shows the
differences to Algorithm 1), however an advice a only activates a dependency d if every strong advice b of d

has a shadow that is compatible with sa, as determined by sCompt. Again we iterate Algorithm 2 until we
reach a fixed point. This iteration is no bottle-neck: in all our experiments we reached the fixed point after
two or three iterations. We named the analysis Orphan-shadows analysis because it identifies shadows that
are lacking other shadows to activate any dependency, and disables advice applications at these shadows.

4 Generating dependent advice

The above optimizations assumed dependency annotations in the code. Programmers may write dependency
annotations by hand but this can be time consuming and error prone. Fortunately, programmers often opt
to have history-based aspects generated automatically, from finite-state monitor specifications. Runtime-
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Algorithm 3 genDeps(q, p, c), with q ∈ Q, p ∈ P(Q × Σ), c : Q ⇀ N

Global variables: D := ∅

1: if c(q) ≤ 1 then
2: c′ := copy of c; c′(q) := c(q) + 1
3: if q ∈ QF then
4: strong := {a ∈ Σ | ∃q ∈ Q : (q, a) ∈ p}
5: Qp := {q ∈ Q | ∃a ∈ Σ : (q, a) ∈ p}
6: weak := {a ∈ Σ | a 6∈ strong∧

∃q ∈ Qp\QF : (q, a, q) 6∈ ∆}
7: D := D ∪ {(strong, weak)}
8: end if
9: for a ∈ Σ do

10: p′ := p ∪ {(q, a)}
11: for q′ ∈ Q such that q′ 6= q ∧ (q, a, q′) ∈ ∆ do
12: genDeps(q′,p′,c′)
13: end for
14: end for
15: end if

monitoring tools generate state-machines from such specifications, along with aspects that trigger state
transitions when monitored events occur. The state machine then executes a user-defined piece of code when
those transitions drive it into a final state. If specifications bind free variables, there exists one state-machine
instance per variable binding.

4.1 Generation from finite-state machines

We next present a general algorithm that exploits domain knowledge in a given finite-state specification to
generate sound dependency annotations automatically.

Definition 1 (Finite-state machine). A finite-state machine M is a tuple (Q, Σ, q0, ∆, QF ), where Q is a
set of states, Σ is a set of input symbols, q0 the initial state, ∆ ⊆ Q × Σ × Q the transition relation and
QF ⊆ Q the set of accepting (or final) states. For this paper we assume that q0 6∈ QF . Further, one can easily
transform M into an equivalent finite-state machine in which accepting states have no outgoing transitions
and we assume that M has this form.

Definition 2 (Words and runs). A word w = (a1, . . . , an) is an element of Σ∗. We define a run ρ of M on
w to be a sequence (q0, qi1 , . . . , qin

) such that ∀k : (0 ≤ k < n) → (qik
, ak+1, qik+1

) ∈ ∆, with i0 := 0. A
run ρ is accepting if qin

∈ QF . We say that M accepts w, w ∈ L(M), if there exists an accepting run of M
on w. We assume that both words and runs are non-empty, i.e. that n ≥ 1.

Algorithm 3 (page 13) defines the function genDeps which generates dependency declarations from M.
The idea is that a dependency should exist for every possible accepting path within M, where symbols that
need to be read in order to reach the final state occur as strong, and symbols that must not be read in order to
reach this final state appear as weak. The programmer initializes the algorithm by calling genDeps(q0, ∅, {}).
Intuitively, genDeps recursively explores M in a depth-first manner to find all paths p through M that satisfy
the following conditions: (1) the path ends in an accepting state (line 3), (2) it does not contain self-loops

(line 11) and (3) it does not visit a state more than twice (line 1). ((3) assures that we visit each edge only
once, assuring termination.) When genDeps finds such a path p, it adds a new dependency declaration to
the global set D. The dependency references the labels of all edges on p as strong. Further, it references all
those symbols a as weak, which are not already strong on p and for which there is some non-final state on p

that has no a-self-loop in M. Although such symbols cannot be part of a complete match, they can avoid a
complete match.

Figure 5 shows an example run of Algorithm 3. 5(a) shows a state machine M. 5(b) shows the two
paths P1 and P2 that Algorithm 3 discovers; 5(c) shows the two resulting dependency declarations: D1 for
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for P1 : dependency{ strong a,d; weak c; } //D1
for P2 : dependency{ strong a,c,d; weak b; } //D2

(c) Dependency declaration generated for state machine

Figure 5: An example run of Algorithm 3

P1 and D2 for P2. D1 does not reference b because b causes in M self-loops on all non-final states along P1.
D2, however, includes b because state 2 has no b-self-loop: if M reads b while in state 2, M will discard the
partial match.

Assume now a program in which the advice that normally triggers symbol c never matches at any joinpoint
shadow. c is necessary to reach the accepting state via P2. Therefore c is strong in D2, and thus D2 is
not activated for this program. Hence, there is no active dependency that references b, and it is safe to not
monitor b, i.e. a and d only.

4.1.1 Correctness and Complexity of Algorithm 3

In this section we prove the correctness Algorithm 3. The prove is conducted in multiple steps. First we
explain the exact relationship between automaton symbols and the dependent advice that recognize these
symbols. Next we define a set of valid dependencies for a formal language L.

In Theorem 2 we show that it is correct to not monitor events that are not referenced by any active
dependency declaration, if all dependency declarations are valid. This theorem holds for formal languages
in general and for regular languages in particular.

Theorem 4 then shows that all dependency declarations generated by Algorithm 3 are indeed valid.

Symbols and advice In the following we assume that every automaton symbol is associated with one or
more pieces of advice that recognize this symbol: Whenever the event represented by the symbol occurs on a
program execution, one of the associated pieces of advice sends a notification to the state machine, triggering
state transitions for this symbol.

Let us now define some additional notation that will be used in the remainder of the proof.

Definition 3 (Symbols of a word). Let Σ be an alphabet. We define the function sym as:

sym(w) := {w1, . . . , wn | w = w1 . . . wn}.

Definition 4 (Shuffle). Let Σ be an alphabet and w = w1 . . . wn ∈ Σ∗. We define a shuffle operator ‖ over
words and symbols as follows.

w ‖ a :=
⋃

1<i≤n

{w1 . . . wi−1awi . . . wn}

Preventers The definition of the shuffle operator now allows us to easily define the notion of a preventer.
Informally a preventer is an event that would prevent an execution trace from leading to a complete automa-
ton match when it happened. For instance assume that an automaton recognizes when a programmer calls
next() twice on an iterator without calling hasNext() in between. Then the automaton would match the
string “next next”. The symbol “hasNext” would be a preventer for this match because the automaton
would not match “next hasNext next”.
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Definition 5 (Preventers). Let Σ be an alphabet and w = w1 . . . wn ∈ Σ∗. Also assume a fixed Σ-language
L and w ∈ L. We say that a symbol a ∈ Σ is a preventer for w, w 6∈a L for short, if (w ‖ a) 6⊆ L.

Definition 6 (Closed under shuffling). For any Σ-language L we say that L is closed under shuffling with

a if a is not a preventer for any word in L: 6 ∃w ∈ L . w 6∈a L.

Example 1 (Preventers and shuffle closure). Let Σ = {a, b} and L defined through the regular expression
b+. Then a is a preventer for the word bb ∈ L because bab 6∈ L. On the other hand, b is not a preventer for
bb because bb ‖ b = {bbb} ⊆ L, i.e. L is closed under shuffling with b.

Preventers are important because we must not forget to monitor them, although they do not lead us
closer towards the final state. If we accidentally disabled a preventer then the resulting automaton could
recognize too many words, in terms of runtime verification leading to false positives.

Valid advice dependencies We now come to advice dependencies. In the following we assume that a
dependency consists of strong and weak symbols (opposed to advice). We can easily do so because, as noted
above, advice are associated with symbols.

Definition 7 (Dependency). A dependency D = (S, W ) is an element of Σ × Σ, a combination of strong
and weak symbols, with S ∩ W = ∅.

A word w activates an advice dependency D if it contains all the symbols that are strong in D.

Definition 8 (Activation). We say that a word w activates a dependency D = (S, W ), if sym(w) ⊇ S.

On the other hand, a dependency D assures recognition of w if (1) w activates D (i.e. D is relevant to w)
and (2) D contains all of w’s preventers. Condition (1) means that D contains enough symbols to make sure
that symbols of w can drive the automaton into a final state (“completeness”). Condition (2) on the other
hand assures that every intervening event that could prevent w from matching in the original automaton
will also be recognized by the optimized automaton (“soundness”).

Definition 9 (Assuring recognition). We say that a dependency D = (S, W ) assures recognition of a word
Σ-word w in a Σ-language L if w activates D and

∀a ∈ Σ . w 6∈a L → a ∈ S ∪ W

In general one could define any dependency declarations for any formal language. However, we demand
that dependency declarations be valid: we say that a set D of dependency declarations is valid for a language
L if (1) there are “enough” dependencies such that every word in L will indeed be recognized by the optimized
automaton and (2) for every word, D assures recognition, i.e. activates the right preventers (for soundness).

Definition 10 (Valid dependencies). We say that a set D of dependencies is valid for a language L if for
all w ∈ L it holds that:

1. ∃D ∈ D such that w activates D, and

2. for every such D, D assures recognition of w in L.

Correctness of sparse monitoring

Theorem 2 (Validity for smaller languages). Let L be a language and L− ⊂ L. Let D be a set of
dependencies that is valid for L. Then D is also valid for L−. The proof is trivial because for every w ∈ L−

it holds that w ∈ L.

Theorem 3 (Sparse monitoring is correct). Let Σ be an alphabet and L a Σ-language. Assume that D is
a set of valid dependencies for L. Assume now that we monitor a program in which certain events can be
proven not to occur. This yields a reduced input alphabet Σ− ⊂ Σ. Assume that one of the events that
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do not occur in the program is the event a: a ∈ (Σ\Σ−). Then the language that the monitor can actually
recognize over this program is: L6a := {w|w ∈ L, a 6∈ sym(w)}. Because L6a ⊆ L it holds that D is also valid
for L6a (Theorem 2). This tells us that the dependencies are “rich enough” to assure recognition also over
this reduced alphabet. However, some of these dependencies may have become superfluous, because they
cannot be activated any more over this reduced input alphabet. Let D− ⊆ D be the dependencies which are
activated by words in L6a. We can define a reduced monitoring alphabet ΣM that only contains the symbols
that occur in dependency declarations activated through words over the program’s reduced input alphabet.
Let ΣM be defined as:

ΣM := {b ∈ Σ− | ∃D = (S, W ) ∈ D− . b ∈ S ∪ W}

The resulting language is LM , defined as:

LM := {w | w ∈ L, sym(w) ⊆ ΣM}

The beauty of the dependency declarations is now that we know that any symbol b which we fail to
monitor because it is not contained in any active dependency this symbol b could not have been a preventer
in the first place, and therefore it is sound to not monitor b because L6a is closed under shuffling with b. It
holds that:

∀w ∈ LM ∀b ∈ (Σ−\ΣM ) . ¬(w 6∈b L)

Proof 2. Proof We know that D is valid for L. We also know that w activates some D ∈ D−. Assume that
D = (S, W ) and that there exists an b ∈ S ∪W . Then, because D ∈ D and D is valid for L: ¬(w 6∈b L).

Example 2. Example for sparse monitoring Let us again consider the example automaton M from Figure
5. This automaton recognizes the language denoted by the regular expression b∗ab∗(ccb∗)∗d. Let us again
assume a program in which c does not occur, i.e. Σ− = {a, b, d}. Then L6c can be described by the regular
expression b∗ab∗d, which is exactly the language that M accepts via the path P1. (Note that this language is
closed under shuffling with b.) Consequently, words over Σ− activate D1, but fail to activate D2 (because c is
strong in D2). Hence, D− = {({a, d}, {c})}, which yields the monitoring alphabet ΣM = {a, c, d}. Because
the program will in fact never trigger c it does not matter whether or not c ∈ ΣM ; we could even define:
ΣM := {a, d}. Now we see that, due to the definition of our dependencies, the regular expression b∗ab∗d

over the original alphabet {a, b, d} is naturally equivalent to the same expression over the alphabet {a, d}: b

not needs to be monitored to reach a final state (otherwise it would have been strong in D1), and it is not a
preventer for any words in L(b∗ab∗d) either (otherwise it would have been weak in D1).

Correctness of Algorithm 3 We start off with a trivial lemma that we require in the actual proof.

Lemma 1 (Preventers and loops). Let M be a state machine that has an a-loop on every non-initial,
non-final state. Then it holds that L(M) is closed under shuffling with a.

This lemma holds trivially and remains without proof.

Note that the opposite direction does not hold: There can be automata whose language is closed under
shuffling with a but which do not have an a-loop on every non-initial, non-final state. For instance, Figure
6 shows two automata that both recognize the the language L(ba∗b), which is closed under shuffling with a.
The left automaton does have an a-loop on every non-initial, non-final state, however the right automaton
has not. In the latter case our Algorithm 3 will generate less precise dependency declarations (a will be
strong in all declarations, although it would suffice to have a weak) but these declarations will still be valid.
In our implementation we determinize automata. In this case, the opposite direction does hold, yielding full
optimization potential.

Theorem 4 (Correctness of Algorithm 3). Let L be a regular language. Then Algorithm 3 generates a set
of dependency declarations that is valid for L.

Proof 3 (Proof of Theorem 4). Let L be a regular Σ-language with w ∈ L. Let M be a finite-state machine
with L(M) = L. Because w ∈ L(M) we know that M recognizes w with a run ρ ending in a final state.
Trivially, this run has a fragment that visits every edge only once, and this fragment visits the same edges as

16



0start 1 2
b

a

b

0start 1 2

3

b

a

b

a
b

Figure 6: Two automata recognizing the language L(ba∗b), which is closed under shuffling with a.

JavaMOP Extension abc.tm

Extension

abc.tmwpopt

ERE Patterns FTLTL Formula PTLTL Formula Tracematch

ERE Plugin FTLTL Plugin PTLTL Plugin
Tracematch
back-end

Binary transition-
tree FSM

Vector-based
monitor

FTLTL
Translator

PTLTL
Translator

Finite-state
machine

Finite-state
machine

Finite-state
machine

Finite-state
machine

Algorithm 3 Algorithm 3

Dependency Declarations

Figure 7: Generating dependent advice in JavaMOP and abc

ρ itself. Therefore Algorithm 3 must have generated a dependency declaration D = (S, W ) for this fragment
of ρ and w activates D. Assume now that a ∈ Σ is a preventer of w for L. In this case, ρ must have visited
a state q that has no a self-loop (Lemma 1). Therefore, a ∈ S ∪ W .

Complexity The theoretical worst-case complexity of Algorithm 3 is exponential in size of ∆ and linear in
the size of Σ. However, our experiments show that, for usual specifications, ∆ will be very small: Algorithm
3 never generated more than nine dependencies for our example specifications. It always terminated within
milliseconds.

4.1.2 Stability of Algorithm 3

In this section we prove that genDeps is stable, i.e. that it computes equivalent sets of dependency declara-
tions for equivalent finite-state machines.

Theorem 5 (Stability of Algorithm 3). Let M1 and M2 be two equivalent finite-state machines, i.e.
L(M1) = L(M2). Let D1 and D2 be the dependencies that Algorithm 3 generates for M1 and M2 ac-
cordingly. Then D1 ≡ D2, i.e. D1 and D2 are logically equivalent. We therefore say that Algorithm 3 is
“stable”.

Proof 4 (Proof of Theorem 5). By Theorem 4 we know that both D1 and D2 are valid for L. Assume now
that D1 6≡ D2. Then there would be a word w ∈ L such that D1 (without loss of generality) either (1) has
no D ∈ D1 such that w activates D or (2) no such D assures recognition of w. This means that D1 is not
valid for L, which is a contradiction.

4.2 Implementation in JavaMOP

The left-hand side of Figure 7 illustrates our implementation in JavaMOP. JavaMOP provides an extensible
logic framework for specification formalisms [10, 11]. Via logic plug-ins, one can easily add new logics into
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JavaMOP and then use these logics within specifications. JavaMOP has several specification formalisms
built-in, including extended regular expressions (ERE), past-time and future-time linear temporal logic
(PTLTL/FTLTL), and context-free grammars. In this paper we focus on generating dependency information
for ERE, PTLTL and FTLTL. Those three logics are finite-state, which allowed us to implement algorithms
to translate the monitor generated from a ERE, FTLTL or PTLTL specification into a finite-state machine
as defined in Definition 1.

ERE. The monitoring code generated by the ERE plug-in in JavaMOP is already a standard finite-state
machine [10].

FTLTL. JavaMOP’s FTLTL plug-in outputs a binary transition tree finite-state machine (BTT-FSM)
[10]. A BTT-FSM is a state machine in which each state holds a Binary Transition Tree, i.e. a Boolean
function. The BTT-FSM determines the target state of a transition by computing this Boolean function
when an event is received. We translate a BTT-FSM into a standard finite-state machine by symbolically
computing its BTTs exhaustively in each state.

PTLTL. Unlike the ERE plug-in and the FTLTL plug-in, the PTLTL plug-in in JavaMOP generates a
monitor which has a vector of bits as its internal state [10]. We implemented an algorithm to exhaustively
explore all possible states of the PTLTL monitor in order to construct an equivalent finite-state machine.

JavaMOP next applies the general Algorithm 3 to obtain the dependency information from the state
machine. Every JavaMOP monitor supports both validation and violation handlers. JavaMOP executes
a monitor’s validation handler when the monitor accepts a trace, and its violation handler when it rejects
a (partial) trace. We generate dependency declarations for validation handlers using Algorithm 3 directly.
For a violation handler we instead fix QF := {qr}, where qr is the state from which no accepting state
can be reached. JavaMOP uses minimized deterministic state machines and therefore qr is unique, and the
property monitored by JavaMOP is violated exactly when qr is reached. We then emit the appropriate set
of dependencies, depending on whether the monitor uses only a validation handler, only a violation handler,
or both.

JavaMOP writes AspectJ source code to disk. Our extension to JavaMOP adds dependency declarations
to this output and also modifies the output so that each generated piece of advice is given a unique name.
The dependency declarations reference those names. In a second step, the programmer can then use the
dependent-advice extension of abc to read this generated code again from disk and weave monitoring code
into a base program of her choice, making full use of the optimizations that we explained in Section 3.

4.3 Implementation for tracematches

Tracematches use yet another data structure to implement their runtime monitors: they use constraints [1].
A constraint x = o∧y 6= p on a state q encodes that every binding that maps tracematch variable x to object
o, and does not map tracematch variable y to object p, is in q. This allows tracematches to get around a
current restriction of JavaMOP: In JavaMOP, programmers may only specify properties that bind all free
variables to objects on the first observed event. As we show in Section 5, this makes it impossible to express
some monitor specifications in JavaMOP.

The nature of these automata gives them a different structure from JavaMOP’s automata. JavaMOP’s
automata are deterministic and minimized, and therefore have a unique reject state (the only state from
which no final state can be reached). Tracematches however use non-deterministic automata. They reject
traces using “skip-loops” [1]. Every state q holds a skip-loop with label a for every a for which q has no
“normal” a-self-loop. In addition, the initial state q0 of a tracematch state machine has no loops because
the tracematch back-end assumes a Σ-loop on q0 implicitly.

Despite these differences we can still use Algorithm 3 when transforming the state machine first: For
each a ∈ Σ we add an a-loop to q0; and we remove all skip-loops. Algorithm 3 is directly applicable to the
resulting state machine.

Another notable difference of our tracematch-based implementation compared to JavaMOP is that for
tracematches we never write AspectJ source code to disk. Tracematches, like dependent advice, are imple-
mented as an extension to abc, and they generate history-based aspects directly in the form of Java bytecode.
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We therefore enhanced the abc extension “abc.tm” for tracematches with another extension “abc.tmwpopt”
for whole-program optimization (see the right-hand side of Figure 7). This extension injects dependency
annotations directly into the back-end of our abc extension “abc.da” for dependent advice (after the “split”
in Figure 4). Every advice generated from a tracematch already carries a unique name, so we can re-use
those names when we generate the dependency declarations.

5 Experiments

To validate our approach we applied a set of twelve specifications for runtime monitoring to the current
version 2006-10-MR2 of the DaCapo benchmark suite [4]. This suite consists of ten Java applications with
some hundred thousand lines of code each. We sought to determine whether or not dependent advice can
indeed yield a significantly lower runtime overhead than normal advice in history-based aspects, and if so,
whether this optimization effect depends on the code generation tool or specification formalism1.

We first implemented all twelve specifications as tracematches, re-using some specifications from previous
work [7]. Then we implemented plain AspectJ aspects for the same specifications by hand. Hand-writing such
aspects proved time-consuming. In a second step, we augmented the hand-coded aspects with dependency
annotations, which appeared comparatively simple. Next we wrote monitor specifications in the “extended
regular expressions” (ERE) syntax for JavaMOP. JavaMOP currently assumes that the first monitored
event in each specification binds all of the specification’s variables. Four of the twelve specifications do not
fulfil this requirement and JavaMOP therefore we could only express the remaining eight specifications.

In the case of JavaMOP we were also interested to see whether the choice of specification formalism
impacts the optimization results (as opposed to the choice of code generation tool). We therefore implemented
the three specifications FailSafeIter, HasNext and LeakingSync not only in ERE but also in PTLTL and
FTLTL. For each monitor specification we had JavaMOP generate history-based aspects with dependency
annotations.

This gave us 12+(12-4)+3+3=26 history-based aspects and twelve tracematches. We compiled each of
the ten DaCapo benchmarks with all 38 inputs, one at a time, first with optimizations for dependent advice
disabled. When optimizations are disabled, our compiler extension treats dependent advice just as normal
advice. To establish a baseline, we further compiled each of the ten benchmarks without any aspects present.
Altogether this gave us ten unwoven programs and 380 woven program versions.

Because we felt that it would be overwhelming to report results for so many programs, we first performed
a simple triage: We ran each of the 380 woven programs and determined their runtime overhead over the
runtime of the respective unwoven program. This way we could determine 72 woven programs that showed
a runtime overhead of more than 10%. The remainder of our discussion focuses on these 72 cases, spanning
ten of our original twelve specifications. Table I describes these ten remaining specifications.

5.1 Number of advice applications

We compiled all these 72 cases again, this time with optimizations for dependent advice enabled. We show
the complete results of our experiments in Table II on page 21. The first three columns state the names of
the benchmark and specification, and the specification formalism. Columns four to seven show the number
of advice applications that are enabled, i.e. the number of entries in the weaving plan for dependent advice
that have a residue different from Never. We report (1) the initial number of advice applications, (2) the
percentage after applying the Quick-check, (3) the percentage of advice applications at shadows reachable
from the benchmark’s main class, and (4) the percentage of advice applications enabled after applying the
flow-insensitive Orphan-shadows analysis. The value (3) is important as a baseline for (4). This is because,
if a shadow is unreachable, then it will always bind variables to empty points-to sets, and hence this shadow

1Note that in this paper we do not compare our results to the ones from [7], because [7] essentially implements the very
same analyses, however specific to tracematches only. Consequently, if our dependent-advise-based optimizations, applied to
tracematches, were compared to the tracematch-specific ones in [7] on equal machines and JVMs, both would yield the very
same result.
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ASyncIter * only iterate a synchronized collection c when holding a lock on c

ASyncIterM * only iterate a synchronized map m when holding a lock on m

FailSafeEnum do not update a vector while iterating over it at the same time
FailSafeEnumHT do not update a hash table while iterating over its keys or elements
FailSafeIter do not update a collection while iterating over it at the same time
FailSafeIterM * do not update a map while iterating over its keys or values
HasNext always call hasNext before calling next on an Iterator
LeakingSync only access a synchronized collection or map using its synchronized wrapper
Reader do not use a Reader after its InputStream was closed
Writer do not use a Writer after its OutputStream was closed

Table I: Monitor specifications that applied to our benchmarks (benchmarks with “*” cannot be expressed
in JavaMOP)

will be removed by the flow-insensitive analysis for trivial reasons. However, this removed shadow will not
yield any speedup, because it was unreachable. The staged analysis ends early when the Quick-check already
disables all advice applications, and therefore does not determine (3) and (4) in such cases.

Our results show that the Quick-check is very successful for LeakingSync and ASyncIter(M), which involve
synchronized collections. This is because all benchmarks except hsqldb, lucene and xalan are single-threaded
and therefore create no synchronized collections at all. The other specifications have some matches for all
strong advice. This is not surprising either, because we here only consider benchmarks with 10% runtime
overhead or more. When all strong advice match, the Quick-check is without effect. Interestingly, for
some benchmarks like tracematches-antlr-Writer the Quick-check is partially successful, i.e. it rules out one
of the advice dependencies but another one remains active. This is an advancement over the analysis that
Bodden et al. proposed in previous work [7]: The Quick-check proposed there could only rule out complete
tracematches and was therefore unsuccessful in these cases. Nevertheless, the end result of applying both
optimization stages (Quick-check and Orphan-shadows analysis) remains unchanged in comparison to [7].
This is because in [7] the Orphan-shadows analysis ruled out all shadows that the Quick-check was able to
rule out in these cases here—however at a slightly higher compile-time cost.

The flow-insensitive analysis stage is very successful in specifications that use multiple free variables,
such as FailSafe*, Reader and Writer. It is less successful for specifications that only use a single variable,
such as HasNext. The reason is simple: HasNext binds a single iterator and our optimization can only affect
iterators on which a programmer invokes hasNext() but never next(). This rarely holds.

Flow-sensitivity is required [7, 8, 26] to handle such specifications more precisely. Other cases like bloat-
FailSafeIter, are notoriously [7,26] hard to handle, as they use very long-lived objects, dynamic class loading
or reflection. This leads to many overlapping points-to sets, impeding our analysis.

In Section 4.1.2 we mentioned that the way in which we generate dependency annotations is stable. As a
result, the effectiveness of the analysis does not depend on the source of the dependency annotations. There
are generally more advice applications for tracematches than for JavaMOP, simply because tracematches
generate two to three additional advice applications per shadow: tracematches use two additional advice
for monitor synchronization and one to execute the tracematch body [1, S. 4.7]. These pieces of advice
have no parameters, and hence cannot benefit from the Orphan-shadows analysis, as there are no variable
bindings for which the analysis could determine disjoint points-to sets. Fortunately, although these advice
applications are not removed, they effectively degenerate to a very efficient no-op at runtime, yielding only
a minimal runtime overhead.

Another reason for slightly differing numbers of remaining advice applications is the fact that the different
monitoring implementations reference different parts of the JDK. Some of these parts can confuse the points-
to analysis.

Despite these problems in special cases, the fraction of removed advice applications is generally very
similar for equal benchmarks and specifications, independent of the code generation tool and specification
formalism. In case of JavaMOP, the number of disabled advice applications is not only similar but equal for
equal benchmarks and specifications in all of ERE, PTLTL and FTLTL.
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filter: ≥10A→Z A→Z A→Z

benchm. specification formalism initial quick (%) reach. (%) flow-ins. (%) baseline (s) un-opt. (%) opt. (%)

antlr LeakingSync MOP-PTLTL 170 0 4.1 12 4

antlr Reader MOP-ERE 64 100 83 31 4.1 98 4

antlr Reader tracematches 167 100 82 44 4.1 398 21
antlr Writer MOP-ERE 273 79 12 7 4.1 79 4

antlr Writer tracematches 475 57 12 10 4.1 209 1

bloat ASyncIter hand-coded 1387 0 9.002 153 4

bloat ASyncIter tracematches 5977 0 9.002 1569 2

bloat ASyncIterM hand-coded 1450 0 9.002 159 8

bloat ASyncIterM tracematches 6166 0 9.002 2367 0

bloat FailSafeIter hand-coded 1535 100 68 67 9.002 390 388
bloat FailSafeIter MOP-ERE 1526 100 68 66 9.002 1563 1572
bloat FailSafeIter MOP-FTLTL 1526 100 68 66 9.002 1599 1561
bloat FailSafeIter MOP-PTLTL 1526 100 68 66 9.002 1322 1318
bloat FailSafeIter tracematches 5065 100 79 79 9.002 9150 9201
bloat FailSafeIterM hand-coded 1120 100 67 20 9.002 100621 2534
bloat FailSafeIterM tracematches 3832 100 91 76 9.002 >10h 16533
bloat HasNext hand-coded 947 100 68 68 9.002 1328 1322
bloat HasNext MOP-ERE 947 100 68 68 9.002 1460 1452
bloat HasNext MOP-FTLTL 947 100 68 68 9.002 1633 1641
bloat HasNext MOP-PTLTL 947 100 68 68 9.002 1058 1033
bloat HasNext tracematches 3328 100 68 68 9.002 1680 1692
bloat LeakingSync hand-coded 2145 0 9.002 39 5

bloat LeakingSync MOP-ERE 2145 0 9.002 58 0

bloat LeakingSync MOP-FTLTL 2145 0 9.002 58 0

bloat LeakingSync MOP-PTLTL 2145 0 9.002 275 4

bloat LeakingSync tracematches 8595 0 9.002 215 8

bloat Writer hand-coded 1153 100 57 56 9.002 36 34
bloat Writer MOP-ERE 663 100 46 3 9.002 119 112
bloat Writer tracematches 1774 100 43 30 9.002 449 452
chart LeakingSync hand-coded 920 0 14.651 29 0

chart LeakingSync MOP-ERE 920 0 14.651 58 -1

chart LeakingSync MOP-FTLTL 920 0 14.651 58 0

chart LeakingSync MOP-PTLTL 920 0 14.651 84 0

chart LeakingSync tracematches 3695 0 14.651 88 -1

fop FailSafeEnumHT hand-coded 205 100 9 0 2.398 13 3

fop FailSafeEnumHT tracematches 635 100 18 0 2.398 12 6

fop FailSafeIter MOP-FTLTL 288 100 17 0 2.398 13 12
fop FailSafeIter MOP-PTLTL 288 100 17 0 2.398 16 -1

fop FailSafeIterM tracematches 2265 100 9 9 2.398 15 13
fop LeakingSync hand-coded 2347 0 2.398 69 14
fop LeakingSync MOP-ERE 2347 0 2.398 124 4

fop LeakingSync MOP-FTLTL 2347 0 2.398 123 1

fop LeakingSync MOP-PTLTL 2347 0 2.398 217 3

fop LeakingSync tracematches 9403 0 2.398 241 5

fop Writer tracematches 1429 63 20 0 2.398 16 2

jython FailSafeEnumHT tracematches 539 100 100 89 11.054 170 47
jython FailSafeIterM tracematches 538 100 91 66 11.054 17 5

lucene FailSafeEnum hand-coded 61 100 70 8 30.878 15 2

lucene FailSafeEnum tracematches 218 100 71 54 30.878 20 4

lucene FailSafeIter tracematches 732 100 59 53 30.878 18 7

lucene LeakingSync hand-coded 652 100 56 0 30.878 48 0

lucene LeakingSync MOP-ERE 652 86 51 0 30.878 51 1

lucene LeakingSync MOP-FTLTL 652 86 51 0 30.878 53 -1

lucene LeakingSync MOP-PTLTL 652 86 51 0 30.878 102 -2

lucene LeakingSync tracematches 2631 100 65 0 30.878 206 0

lucene Reader hand-coded 136 100 24 0 30.878 28 1

lucene Reader tracematches 557 100 28 0 30.878 56 1

pmd ASyncIter tracematches 2213 0 13.059 36 3

pmd ASyncIterM hand-coded 556 0 13.059 11 0

pmd ASyncIterM tracematches 2354 0 13.059 53 -1

pmd FailSafeIter MOP-ERE 546 100 67 50 13.059 41 -4

pmd FailSafeIter MOP-FTLTL 546 100 67 50 13.059 37 -2

pmd FailSafeIter MOP-PTLTL 546 100 67 50 13.059 26 -4

pmd FailSafeIter tracematches 1823 100 93 88 13.059 139 25
pmd FailSafeIterM hand-coded 483 100 75 39 13.059 551 274
pmd FailSafeIterM tracematches 2078 100 97 88 13.059 >10h >10h
pmd HasNext hand-coded 346 100 71 70 13.059 33 36
pmd HasNext MOP-ERE 346 100 71 70 13.059 52 40
pmd HasNext MOP-FTLTL 346 100 71 70 13.059 43 47
pmd HasNext MOP-PTLTL 346 100 71 70 13.059 18 19
pmd HasNext tracematches 1223 100 83 82 13.059 70 71
pmd LeakingSync tracematches 3959 0 13.059 15 2

Table II: Experimental results for cases with overhead of 10% or more: number of advice applications initially
in the program, after Quick-check, reachable from the program’s main class, and after the flow-insensitive
Orphan-shadows analysis; runtime of the un-woven program in seconds, runtime overhead of the woven un-
optimized and optimized program; overheads which are optimized to a value below 10% appear in boldface
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5.2 Reduction of runtime overhead

A reduction in the number of an aspect’s advice applications does not necessarily reflect a 1:1 reduction
of the runtime overhead caused by the aspect: If many optimized advice applications resided in dead code
or code that is barely executed, then the overhead may remain unaffected. We therefore measured the
actual runtime overhead of the optimized woven program over the un-woven program. The eighth column
in Table II shows the runtime of the un-woven program (our baseline) in seconds, columns nine and ten
show the runtime overhead for the un-optimized, respectively optimized version over this baseline in percent.
A value of >10h means that the benchmark ran longer than ten hours and was aborted after this period
of time. Overheads below 10% appear in boldface. We ran the benchmarks on Sun’s HotSpot VM (build
1.4.2 12, mixed mode), with 2GB of maximal heap space on a machine with an AMD Athlon 64 X2 Dual
Core Processor 3800+ running Ubuntu 7.10 (kernel version 2.6.22-14). We used the -converge option of
the DaCapo harness, which measures the runtime of a single run after the benchmark has reached a steady
state.

Our optimizations were able to bring the overhead below 10% in 44 out of all 72 cases. Of the remaining
cases there were a few with significant reductions, e.g. FailSafeIterM. However, the benchmarks where our
analysis failed to disable advice applications naturally show the same runtime overhead before and after
optimizations. None of the optimized benchmarks runs significantly slower than the un-optimized versions,
indicating that our implementation is sound. Again, the choice of code generation tool and formalism seems
to have only a qualitative impact. Hand-coded aspects are usually the fastest. After all, a programmer
can exploit domain knowledge which cannot be encoded in current monitoring specifications. For instance a
programmer knows that every Java iterator is only ever associated with a single collection, and can therefore
use an optimized data structure, e.g. a mapping from iterators to collections. Yet, the relative reduction in
runtime caused by our optimizations is consistent over all specification languages and tools—it only depends
on the property specification and the program. In cases where the optimized program runs faster than the
un-instrumented one, this is caused by noise in the measurements.

5.3 Memory overhead

We tried to also measure the impact of our optimization on the memory consumption of the woven programs.
Interestingly, we found out that none of the DaCapo benchmarks ever consumes more than 13 megabytes of
memory, even with the “-s large” option enabled. Furthermore, we found that, on average, the monitoring
aspects increased the memory consumption of the benchmark by only around 15%. In Java it is hard to
measure memory consumption with a precision of some few kilobytes and therefore we were unable to obtain
numbers that would prove a significant improvement in memory consumption. However, as we suspected,
we found no increased memory consumption either.

5.4 Compilation and analysis time

We ran our static optimizations on IBM’s J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 Linux amd64-64),
with 3GB of maximal heap space. Space limitations prevent us from including detailed compilation times,
nevertheless we wish to give a brief overview. The Quick-check took never longer than 3.3 seconds, on average
it took 148 milliseconds. The Flow-insensitive analysis took never longer than 17 seconds, with an average
of 1.4 seconds. A large factor is however the points-to analysis that the flow-insensitive stage requires.
Computing points-to sets and context information can be costly, and largely depends on the benchmark. In
the worst case, bloat-FailSafeIter, it took 58 minutes to compute. This benchmark has many more shadows
than any other benchmark and we therefore need to query the demand-driven points-to analysis more often.
On average, the points-to analysis took 11 minutes. This may appear long, yet many of our un-optimized
benchmarks showed several minutes overhead too. Optimizations clearly pay off in these cases.
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5.5 Limitations of our approach

Our experiments brought to light the following limitations of our approach. To evaluate our abstraction,
Condition 3, we need to enumerate all shadows in the woven program. This means that we need compile-time
access to the whole program, which might not always be feasible. Furthermore, our approach is limited to
history-based aspects: Dependencies only exist if the execution of one advice depends on the execution of
another advice. As we showed, in certain domains such aspects are prevalent, but they may not be in others.
While our optimizations work well for patterns that are assumed not to match in a program, e.g. safety
conditions (for which one assumes that they will usually not be violated), they may work less well for aspects
that implement core functionality (and therefore are supposed to match).

One limitation of our design is that one cannot express dependencies of the form “execute advice a only
if advice b does not execute”. This limitation is intended: To disable a we would have to prove that b does
indeed execute, on every program run. This property is undecidable in general and at best very hard to
determine for most programs. Nevertheless, such dependencies exist: When designing dependent advice we
studied existing aspects published on the web and we found one instance of this pattern in DAJ [21].

Another important consideration is that one can break a correct AspectJ program by annotating it with
incorrect dependency annotations. As we showed, one can assure correctness when generating dependent
advice. However, when a programmer writes dependent advice by hand, it is her responsibility to assure
correctness.

Furthermore, we wish to note that we do not treat aspect-inheritance, advice-precedence or inter-aspect
dependencies in this paper. We leave these topics to future work.

5.6 Discussion

To conclude, dependent advice come at some compile-time cost, however their use can yield significant run-
time improvements. The success of the optimization depends on the property that the history-based aspect
monitors and on the monitored program, but not on the particular monitor implementation.

6 Related Work

We next compare our work to earlier work on optimizations for runtime monitoring, discuss how our work
can be applied to other aspect-generating tools and how it relates to expressive pointcut languages like
dataflow and maybeShared pointcuts, and LogicAJ.

Flow-insensitive tracematch optimizations. Our work was largely inspired by earlier work of
Bodden et. al [7]. They were the first to propose a Quick-check and a flow-insensitive pointer-based analysis
to remove unnecessary monitor instrumentation, however their approach was bound to tracematches only.
The goal of this work was to distill the essence of their approach and make the same powerful optimizations
available to history-based aspects generated from other sources (including hand-written aspects), while at
the same time not compromising on the good results that the authors obtained for tracematches earlier.
Our approach achieves exactly that: dependent advice allow optimizations to be successful independently
of the chosen code-generation tool or specification formalism. Note that the analyses that we present in
Section 3 of this paper are just as powerful as the ones presented in [7], however dependent advice make
them applicable to a broader context.

Flow-sensitive tracematch optimizations. Bodden et al. also proposed a second optimization [8]
for tracematches that is intra-procedural and flow-sensitive. Naeem and Lhoták independently developed
a fully inter-procedural flow-sensitive version [26]. Flow-sensitive approaches are potentially more precise
than flow-insensitive ones, however they require significantly more domain knowledge. A minimal extension
of dependent advice that encodes flow information would be an interesting area for future work.

Monitor optimizations. Avgustinov et al. [3] proposed optimizations to the runtime monitor itself:
Leak elimination discards monitoring state for objects that have been garbage collected. Indexing provides for
fast access to partial matches. These optimizations are crucial to make runtime monitoring feasible at all and
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therefore we enabled them in all our experiments. The authors’ optimizations are however complementary
to ours. With leak elimination and indexing disabled, our speedups would likely have been even more
significant, as there would have been more overhead to remove. JavaMOP and PTQL [14] implement weaker
variants of these optimizations.

Association aspects and relational aspects. Sakurai et al. [27] proposed association aspects, an
AspectJ language extension that allows programmers to restrict advice execution to joinpoints involving
objects that the programmer explicitly associated with an aspect. A programmer associates an object
o with an aspect A by calling A.associate(o), and releases the association via A.release(o). In earlier
work [9] we showed that one can implement relational aspects, a variant of association aspects, via a syntactic
transformation into tracematches. abc implements relational aspects that way, and the implementation
automatically benefits from our extension: The optimizations proposed in this paper remove advice dispatch
code from locations where the objects involved are known not to be associated with A. Further, for objects
for which no advice in the relational aspect can ever execute, the optimization will remove the call to the
code that associates the object with the aspect in the first place.

S2A, M2Aspects and J-LO. Maoz and Harel proposed S2A, a tool [22] to generate executable AspectJ
code from Live Sequence Charts [13] (LSCs). An LSC and its generated aspects can either implement
functional aspects of a system, or they can be used for runtime monitoring, reporting error messages when
they match. Some of the aspects that S2A generates are history-based, and in fact even implement a finite-
state machine. We confirmed with Maoz that S2A could, in principle, generate dependency annotations
for these aspects and that they could lead to optimization potential similar to what we observed in our
experiments, at least when LSCs are used to specify forbidden scenarios, implemented as runtime monitors
(c.f. Section 5.5). M2Aspects [19] generates AspectJ aspects from scenario-based software specifications,
denoted as Message Sequence Charts (MSCs). MSCs are less expressive than LSCs. Hence we believe that
one could also modify M2Aspects to generate dependent advice. J-LO, the Java Logical Observer [5, 29]
generates AspectJ aspects from formulae written in a special future-time linear temporal logic with free
variables. It could likewise benefit from dependent advice.

Dataflow pointcuts. Masuhara and Kawauchi proposed a pointcut dflow [24], which can be used as
p && dflow[s,t](q) and matches if data flows from s to t, where p is a pointcut binding s, and q is an
inner pointcut binding t. dflow is evaluated at runtime, i.e. it only matches if dataflow does indeed exist.
The authors suggest however, to devise a static analysis that would optimize data-flow pointcuts at compile
time. Unfortunately, dependent advice are not expressive enough for this purpose: Dependent advice are
defined using tests of pointer equality, and the may-alias analysis in our optimization therefore regards only
pointer assignments. In general, data-flow can however also comprise the flow of primitive values and flow
arising from String concatenation.

maybeShared pointcut. Bodden and Havelund proposed [6] a pointcut maybeShared() that matches
accesses to fields that can potentially be shared. This approach is similar to dependent advice in that the
semantics of maybeShared() are also defined via a parametrized semantics. Like in dependent advice, a
trivial default implementation may return true in every case, but Bodden and Havelund use a static thread-
local objects analysis [16] to approximate maybeShared() in a more effective way. Thread-locality is different
from may-aliasing and therefore dependent advice cannot benefit the implementation of maybeShared().

LogicAJ. LogicAJ [18] is an aspect-oriented programming language that extends AspectJ’s pointcut
mechanism with logic variables. Logic variables have unification semantics like the variables in dependent
advice: variables with the same name denote the same (meta) objects. The scope is different however: In
dependent advice the scope spans a dependency declaration (which can reference multiple pieces of advice).
In LogicAJ, however, each pointcut has its own scope. Programmers can use logic variables inside pointcuts,
in place of the names of packages, types, fields, methods and AspectJ’s pointcut variables. In the last case,
one uses a logic variable v in the form this(v), target(v) or args(v) binding v to the receiver, target,
respectively argument object of a call. Such a pointcut p only matches when there is a consistent variable
binding for all uses of v in p. One could use dependent advice to optimize cases where v is used more than
once within the same pointcut. However, because in LogicAJ each pointcut has its own scope, one cannot
infer (and therefore not exploit) inter-dependencies between multiple pieces of advice or their pointcuts in
LogicAJ.
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7 Conclusions and Future Work

In this work we presented dependent advice, a novel AspectJ language extension to aid the optimization of
history-based aspects. Dependent advice augment normal AspectJ advice with dependency annotations. A
dependent advice only needs to execute when its dependencies are fulfilled.

We implemented a static flow-insensitive whole-program analysis to approximate dependencies in the
AspectBench Compiler. Based on the analysis results, the compiler can remove dispatch code for a dependent
advice from locations at which the advice’s dependencies cannot be fulfilled. As our results show, this
optimization can significantly lower the runtime overhead of history-based aspects.

We modified code generators for specifications written in four finite-state formalisms. We made them
exploit domain knowledge contained in the specification to automatically augment their generated AspectJ
code with dependency annotations. The code generation is “stable”, i.e. it generates equivalent dependency
annotations from equivalent specifications, independent of the particular specification formalism. In result,
the observed optimization effects are stable as well. We believe that similar code generation should be
possible for any modelling or specification language over which reachability can efficiently be decided. It
would be interesting future work to determine if one can generate annotations in a stable way for classes of
these other languages too.

All tools, benchmarks, scripts and instructions required to reproduce our experimental results are avail-
able at:

http://www.aspectbench.org/benchmarks/
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