
Adding Open Modules to AspectJ

Neil Ongkingco1, Pavel Avgustinov1, Julian Tibble1,
Laurie Hendren2, Oege de Moor1, Ganesh Sittampalam1

1 Programming Tools Group 2 Sable Research Group
University of Oxford McGill University

United Kingdom Montreal, Canada

ABSTRACT
AspectJ does not provide a mechanism to hide implemen-
tation details from advice. As a result, aspects are tightly
coupled to the implementation of the code they advise, while
the behaviour of the base code is impossible to determine
without analysing all advice that could modify its behaviour.

The concept of open modules is proposed by Aldrich to
solve the problems that arise from unrestricted advice. De-
fined for a small functional language, it provides an encap-
sulation construct that allows an implementation to limit
the set of points to which external advice may apply.

We present an adaptation of open modules for AspectJ.
We expand open modules to encompass the full set of point-
cut primitives for AspectJ, extend its method of module
composition to include the ability to open up a module, and
describe the implementation of the design as an extension of
the AspectBench compiler. We also provide an example of
the use of open modules on a substantial AspectJ program
to show how it would fit into existing AspectJ projects.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages, Design, Theory

Keywords
Encapsulation, modularity, aspect-oriented programming

1. INTRODUCTION
In AspectJ, aspects observe the execution of a base Java

program. When events of interest happen, the aspect ex-
ecutes some extra code of its own. The intercepted events
are specified via patterns called pointcuts; the extra code is
called advice; and the events are named joinpoints [10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 06, March 20–24, 2006, Bonn, Germany
Copyright 2006 ACM 1-59593-300-X/06/03 ...$5.00.

The interception mechanism of AspectJ provides no ex-
plicit means for hiding implementation detail. As a conse-
quence, the use of aspects can be quite brittle: a change in
the advised code can easily lead to unwanted effects, both
because a joinpoint no longer matches, or because the ad-
vice now intercepts too many joinpoints [16]. The problem is
thus one of responsibility: must the maintainer of the base
program preserve joinpoint behaviour, or is it the task of
the aspect author to adapt his aspect whenever the basec-
ode changes?

A very promising solution was put forward by Jonathan
Aldrich: he suggested that any exposed joinpoints be de-
clared in the interface of a module (a module being a collec-
tion of classes) [3]. Their exposition in the interface means
that the module maintainer undertakes to preserve the join-
point behaviour relative to aspects which are not part of the
module itself. Aldrich’s design is for a small, purely func-
tional language and a module system akin to that of ML,
augmented with around advice on function calls.

In this paper, we adapt and extend Aldrich’s design to
the full AspectJ language, to allow ourselves and others to
experiment with its use in practice. The contributions of
this work are these:

Extend the notion of open modules to full AspectJ:

We have pushed Aldrich’s concept of open modules in
three directions. First, while Aldrich handled only call
pointcuts in his example language, we generalise to ar-
bitrary AspectJ pointcuts. Second, when introducing
open modules into AspectJ we needed to make sure
that they can be introduced into an AspectJ project
without changing the existing code. In particular, we
prove that modules never lead to precedence conflicts
between aspects. Indeed, we show that open modules
define a total order on aspect precedence. Third, we
demonstrate how open modules reduce to a very sim-
ple hiding construct associated with a class, thus pro-
viding an ‘intermediate representation’ for information
hiding constructs in AspectJ.

Define appropriate notions of module composition:

Aldrich’s approach to module composition focused on
the notion that one wants a construct to further re-
strict an existing module, and we also support this
notion. However, we feel that it is also useful to have
a construct that opens an existing module by exposing
more joinpoints. This opening construct allows an as-
pect author to seize responsibility for the maintenance
of joinpoint behaviour in other parts of the system; a

1

typical use would be a debugging aspect. We demon-
strate the utility of module opening through a number
of usage scenarios.

Another important aspect of our approach is that we
demonstrate that these two forms of composition, re-
striction and opening, can both be reduced to the same
simple intermediate representation.

Full implementation for AspectJ: We have fully imple-
mented our design using abc, the extensible research
compiler for AspectJ [2]. To our knowledge this is the
first implementation of open modules for a full-fledged
aspect-oriented language. We feel that having such an
implementation will allow us, and other researchers, to
experiment with open modules in order to determine
the strengths and weaknesses of the approach.

The structure of this paper is as follows. We first discuss
the rationale for open modules, and the way we have added
them to AspectJ, through a number of small but represen-
tative examples in Section 2. In Section 3 we give a more
precise account of our design for adding open modules to
AspectJ. In particular, we start with a very simple hiding
construct, augment it to a feature more similar to the one
originally proposed by Aldrich, and then go on to discuss the
different forms of composition. At each step of this develop-
ment, we show how more complex forms can be expressed
in more primitive terms, thus proving our ‘intermediate rep-
resentation’ result. In Section 4 we illustrate our design for
open modules with reference to a more substantial example,
that involves eight different aspects. We then turn to some
formal properties of our design, in particular regarding the
nettly problem of aspect precedence in Section 5. Here we
prove that subject to some very natural conditions, our new
constructs do not introduce precedence conflicts — an im-
portant property when composing large systems with many
aspects. This paper is primarily a proposal for features to
help tame the power of AspectJ, but it is also a substan-
tial exercise in extending an AspectJ compiler. In Section 6
we discuss the challenges we encountered with implementing
open modules in the AspectBench Compiler, and how these
obstacles were overcome. There is a wealth of alternative
proposals for similar features (although none seems to be
implemented for the full AspectJ language), and we discuss
these in Section 7. We conclude in Section 8.

2. RATIONALE
While aspects provide a way to encapsulate cross-cutting

features in a single construct, they are so tightly coupled
with the implementation of the classes that they violate an-
other facet of modularity: that of hiding the implementa-
tion behind a well defined interface. In the current state of
AspectJ, a piece of advice declared in any aspect may be
applied to any joinpoint in the entire program, effectively
bypassing class interfaces.

The lack of interfaces makes aspects vulnerable to any
changes in the classes to which they apply. We use a short
example to demonstrate this vulnerability. Figure 1 shows
a simple Figure class, which is just a collection of points
and a translate method that moves the points by a specified
displacement.

Suppose a replay feature is implemented using an aspect,
as in Figure 2. The aspect would intercept all calls to

Figure. translate and store the translations in a list for re-
playing. Note that the advice is very tightly coupled to the
call to translate , and any change to the implementation of
Figure that changes the pattern of calls to translate will break
the aspect. For example, if the implementation of Figure was
changed such that the list can contain other figures as well
as points (as in Figure 3), the behaviour of the replay aspect
would change drastically. The advice in ReplayAspect would
match both the external call to translate as well as the call
to translate inside Figure. This leads to duplicate entries in
the replay list.

public class Figure {
List elements;
public Figure translate(int dx, int dy) {

for (Iterator iter = elements.iterator ();
iter .hasNext();) {

Point elem = (Point)(iter .next ());
elem.translate (dx,dy);

}
return this;

}
}

Figure 1: Simple Figure Class

aspect ReplayAspect {
pointcut translate(int dx, int dy):

call(∗ Figure. translate (int, int)) && args(dx,dy);

LinkedList moves = new LinkedList();

before(int x, int y, Figure fig) :
translate (x,y) && target(fig){
//Store fig , x and y in the moves list

}
}

Figure 2: Replay Aspect

That such a seemingly innocuous change to Figure could
change the behaviour of the program in an unexpected man-
ner seems to violate the encapsulation that the class is ex-
pected to provide. As there is no well-defined interface be-
tween Figure and its client aspects, all aspects that apply
to it would need to be checked before any modifications are
made. This makes the evolution of base code difficult. The
problem is made worse if Figure were part of a third-party
library where the source code is unavailable. In such a case,
it would be very difficult to diagnose the problem as the
implementation details of Figure would be hidden.

This particular problem can be solved by specifying an
interface that enforces the condition that aspects only ap-
ply to external calls to translate . Doing so will cause the
advice in ReplayAspect to fail when matching with the call
to Figure. translate inside Figure.

Figure 4 shows an interface between Figure and its client
aspects. The module contains the class Figure, as well as
an advertise declaration that specifies which joinpoints in
Figure are available to advice. The advertise declaration is
used to expose external calls to Figure. translate , that is, calls
that match the pointcut

call(Figure Figure. translate (int, int)) &&
!within(Figure)

This solves the problem of duplicate entries in ReplayAspect.

2

public class Figure {
public Figure translate(int x, int y) {

for (Iterator iter = elements.iterator ();
iter .hasNext();) {

Object elem = iter.next();
if (elem instanceof Point) {

((Point)elem). translate (x,y);
}
else if (elem instanceof Figure) {

((Figure)elem).translate (x,y);
}

}
return this;

}
}

Figure 3: Modified Figure class

module FigureModule {
class Figure || Point;
friend DebuggingAspect;
advertise : call(Figure Figure. translate (int, int));
expose : call(∗ Point. translate (int, int)) &&

within(Figure);
}

Figure 4: Figure Module

It may become necessary to expose more than joinpoints
that are outside Figure. If, for example, there were an aspect
that computes the total cost of a figure translation by count-
ing the number of individual Point. translate calls in Figure,
such as Figure 5 , it would need to be able to apply advice
to joinpoints internal to Figure.

Some aspects, such as debugging aspects, are by their na-
ture very intrusive and would require access to all of the
joinpoints of a module. As such, these aspects might be
severely hindered by the visibility constraints that have been
outlined above. To allow for these types of aspects, we de-
fine the friend keyword, which declares that an aspect is
to be allowed full access to all the joinpoints that belong
to the members of a module. In FigureModule, the aspect
DebuggingAspect is declared to be a friend of the module,
and thus has full access to the joinpoints in the module.

aspect TranslateCost {
int total = 0;

pointcut translate():
call(∗ Point. translate (int, int)) && within(Figure);

before() : translate () {
total++;

}
}

Figure 5: Figure Translate Cost Aspect

The interface must be able to expose important internal
events to aspects. The expose declaration in Figure 4 ex-
poses any joinpoints matched by its pointcut, not just those
that are external to Figure. This allows TranslateCost to
apply advice to the Point. translate calls inside Figure. The
distinction between advertise and expose is that expose

affects all joinpoints, whereas advertise only affects join-
points for which the shadow occurs outside the module. In
fact, advertise is implemented by translation into expose,
which we explain in section 3.5.

The alternative solution to this problem would have been
to modify the pointcut in ReplayAspect to

call(∗ Figure. translate (int, int)) &&
!cflowbelow(call(∗ Figure.translate(int, int)))

once the modifications to Figure had been made. This, how-
ever, assumes that the programmer who made the modifi-
cations would have access to all the client aspects of Figure,
which is not always the case (e.g. if Figure were distributed
as part of a library).

It is conceivable for a software project to be partitioned
into two groups of code: one that allows the use of aspects,
and another that does not allow the use of any aspects. As
an example, take a project that has common core compo-
nents stored under the package core, and a set of applications
that use those components under the package apps. Further
suppose that because the core components are used by many
different applications, a policy that aspects may not advise
any of the core components is instituted over the project,
to prevent aspects from one application from inadvertently
affecting the behavior of a core component used by another
application. This policy is expressible in open modules, by
specifying a module that contains core, and not advertising
or exposing any joinpoints as in the module Core in Figure
6.

module Core {
class core ..∗;

}

module AppFTP {
class apps.ftp ..∗;
expose to apps.ftp..∗ : call(∗ ∗(..));

}

Figure 6: Core and Application Example

Similarly, it would be desirable to ensure that the classes
of an application are advised only by the aspects that belong
to that application. For this, we define a different form of
the expose and advertise declarations that includes a to

clause, which specifies the aspects to which the pointcut is
exposed. Module AppFTP in Figure 6 shows a module that
exposes all calls to functions in the classes under apps.ftp,
but only to aspects that are also under apps.ftp.

The interfaces defined above encapsulate the implemen-
tation of the classes by defining a set of pointcuts which are
visible to aspects, and hiding the rest. This would require
a change to the matching behaviour of AspectJ, to ensure
that any advice that would normally be matched against all
joinpoints in the classes now respects the joinpoints exposed
by the pointcuts used in the interface.

3. LANGUAGE DESCRIPTION
Now that we have conveyed an informal understanding of

modules through a few examples in the preceding section, we
start again from the beginning, and develop the definition of
modules in a rigorous fashion. The structure of this devel-
opment is as follows. First we review the official semantics
of AspectJ. Next we introduce a simple hiding operator, and
a new pointcut. This machinery then allows us to define the
meaning of open modules, as well as the composition of such
modules, via a normal form. The simple hiding construct is
thus intended as an intermediate form, a device for under-
standing, but not for direct use by an AspectJ programmer.

3

3.1 AspectJ joinpoint matching
In AspectJ, joinpoint matching is defined as an operation

at runtime, not (as is commonly but mistakenly believed)
as a program transformation. It is important, therefore, to
define the effect of open modules with respect to that run-
time definition. We briefly review the semantics of joinpoint
matching before discussing how it should be changed to ac-
commodate appropriate forms of information hiding.

A joinpoint is an event of interest at runtime, such as
a method call: a method call joinpoint starts upon each
method invocation, and it completes when the call returns,
be it normally or via an exception. Joinpoints are always
properly nested: two joinpoints are either disjoint or one
is included in the other. One can thus think of a program
execution trace as a sequence of joinpoint enter and exit
events, where enter and exits are properly bracketed. Be-
sides method call, AspectJ has 10 other different kinds of
joinpoint, for setting and getting a field, for executing a
method body, and so on.

Advice in AspectJ consists of a kind (before, after or
around), a pointcut and a piece of code. Both before and
around advice are matched against joinpoint enter events,
while after advice is matched against joinpoint exit events.
The matching consists of taking the pointcut, and check-
ing whether it matches one of the signatures of a joinpoint.
Upon a successful match, the virtual AspectJ machine ex-
ecutes the corresponding advice: in the case of before and
after advice, the extra code is inserted, but in the case of
around it replaces the computation of the original joinpoint.

The set of signatures of a joinpoint is defined separately
for each type of joinpoint. As an example (taken from [14]),
consider the code fragment

T t = new T();
t .m(‘‘hello”);

as well as the type hierarchy displayed in Figure 7. A call
joinpoint occurs when we execute the statement t .m(‘‘hello”).
This joinpoint has four signatures:

R2 T.m(String)
R2 S.m(String)
R1 P.m(String)
R1 Q.m(String)

interface Q {
R1 m(String s);
}
class P implements Q {
R1 m(String s) {...}
}
class S extends P {
R2 m(String s) {...}
}
class T extends S {}

Figure 7: Example type hierarchy.

More generally, for each super type A of T, if m(param types)

is defined for that super type, then R(A) A.m(param types)

is a signature of the call join point, where R(A) is the return
type of m(param types) as defined in A, or as inherited by
A if A itself does not provide a definition of m(param types).
Note that every signature has a unique declaring type, but
the same identifier and parameter types as the other signa-
tures.

The details of the matching process are spelled out in the
AspectJ developer’s notebook [14].

3.2 Visibility and hiding
If we wish to hide implementation detail of classes by hid-

ing joinpoints, we have to modify the matching process. The
simplest solution, from an implementation point of view, is
to annotate each class with a visibility pointcut that exposes
the joinpoints which aspects are allowed to observe. We may
also annotate a class with its friends, that is, an ordered list
of aspects that are permitted to intercept any joinpoint orig-
inating from the class.

For every joinpoint signature, we define the owning class
to be the declaring class (which is defined to be part of the
signature), except for handler joinpoints, where we define it
to be the exception type.

Now joinpoint matching is modified as shown in the pseudo
code of Figure 8. Consider a signature whose owning class
is C. If we are processing a piece of advice with pointcut
pc that is declared in a friend of C, we match as normal.
However, if this is advice that is not from a friend, we add a
new conjunct to the pointcut pc, namely the visibility of the
owning class C. This has the effect of hiding any joinpoints
that do not satisfy the visibility pointcut.

for each signature sig of jp {
for each piece of advice pc {

Aspect a = pc.declaringAspect;
Class c = sig.owningClass;
if (c. friends .contains(a))

sig .match(pc);
else {

Pointcut npc = c.vis && pc;
sig .match(npc);

}
}

}

Figure 8: Pointcut matching with hiding

The order of the list of friendly aspects is important: we
take it as implicitly defining a series of precedences, where
the last aspect has highest precedence. To illustrate, con-
sider the example class in Figure 9. Now consider a call to f

(from somewhere outside the Example class). It will be ad-
vised by Aspect1 because Aspect1 is a friend, and by Aspect2

because calls to f are declared to be visible. The internal
call to g (from within f) will however only be advised by
Aspect1.

A class is completely unaffected by advice if we give it a
false visibility pointcut, and an empty list of friends. The
default (current AspectJ) behaviour is that the visibility
pointcut is true and the list of friends is empty.

Any pointcut can be exposed, with the exception of point-
cuts that have variables. Pointcuts with variables may be
implemented using local pointcut variables [5], but these are
not yet part of standard AspectJ.

3.3 Selective hiding
As it stands, join point exposure does not discriminate be-

tween different aspects. This seems undesirable: allowing a
tracing aspect to observe certain behaviour is less controver-
sial than an aspect that overrides existing implementations
via around.

4

aspect Aspect1 {
before() : call(∗ f (..)) {}
before() : call(∗ g (..)) {}

}

aspect Aspect2 {
before() : call(∗ f (..)) {}
before() : call(∗ g (..)) {}

}

class Example expose : call (∗ f(..))
friend Aspect1

{
void f() {

g();
}

void g() {}
}

Figure 9: Example of hiding

For that reason, we introduce a slightly restricted form of
exposure, namely

expose to abc.lib.tracing ..∗ : call(∗ f (..))

Now we only allow aspects in a subpackage of abc. lib . tracing

to intercept calls to f. More generally, any class name pat-
tern expression may be indicated as the target of an expose

clause. When no target is specified with the to syntax, we
assume the pattern is ∗, so the exposure is universal as it
was above.

We find it convenient to reduce this new feature to the
ones we already have, by introducing a new form of pointcut.
The pointcut

thisAspect(<classname−pattern−expression>)

acts the same as the existing this pointcut of AspectJ, but it
matches on the aspect instance rather than on the instance
of the advised object. That is to say, thisAspect(A) will
match if the current advice is declared in an aspect whose
type is a subtype of A.

Given this new pointcut, the form

expose to <pat> : <pc>

is equivalent to

expose : <pc> && thisAspect(<pat>)

As we shall see below, this transformation is crucial in ob-
taining a clean semantics via a normal form for composition
of open modules.

3.4 Open modules
The annotation of individual classes with a visibility point-

cut and a list of friendly aspects is not intended as a language
construct for use by application programmers: it is intended
only as an intermediate form. As set out in Section 2, our
proposal is to use a generalised form of Jonathan Aldrich’s
Open Modules instead. We now show how these can be for-
mally defined via the intermediate form discussed above.

The syntax is illustrated in Figure 10. An open module
is introduced by the keyword module. The classes that are
contained in the module are specified via one or more class

declarations: these may be references to specific classes, or

more generally they can be a class name pattern expres-
sion. A list of friendly aspects is introduced by the keyword
friend. The aspects must be individually named, and the
order in which they appear is important, again because we
wish to pin down the order of precedence. Friendly aspects
are not implicitly included in the classes: to control the ex-
posure of joinpoints owned by an aspect, that aspect must
be explicitly listed as a class.

module Example {
class C1;
friend A1, A2;
class pack..Pat∗
advertise : call(∗ f (..));
friend A3;
expose : call(∗ g (..));
}

Figure 10: A sample module.

A module can also contain a number of advertised point-
cuts. Joinpoint signatures whose owner is external to the
module can be matched by these. Typically these are calls
to public functions which can be logged. For example, con-
sider a class that provides the factorial function. It could
be implemented via a simple recursion, or by a loop. By ad-
vertising the pointcut call(∗ factorial (..)) , external aspects
cannot distinguish between a recursive and a non-recursive
implementation, because internal calls are not advisable,
whereas all calls that happen outside the module can be
intercepted.

Finally, a module may chose to reveal some of its inter-
nal details, by exposing a pointcut. Joinpoint signatures
can always match an exposed pointcut, whether the advice
originates from a friendly aspect or not. A joinpoint whose
owning class is in the module, which matches both an adver-
tised pointcut (which on its own would hide that joinpoint)
and an exposed pointcut, is still exposed.

If a module definition does not contain any advertise or
expose statements then it does not expose any joinpoints to
external aspects. This is equivalent to having the visibility
pointcut

expose: false

Each class and each aspect may occur in only one module,
in the same way that in pure Java they must belong to only
one package.

3.5 Normal form
There is a normal form for modules that will prove to be

very convenient, both to pin down the semantics of modules
and in the implementation.

First, note that it is not necessary to have more than
one class declaration: we can always combine multiple class
declarations by writing a class name pattern expression that
consists of multiple disjuncts. Similarly, we can collect all
aspects into a single declaration, where all the aspects are
listed in the order they occur in the module. We can turn
each advertised pointcut into an exposed pointcut by adding
the requirement that they do not match within any of the
classes that are contained in the module. Finally, all exposed
pointcuts can be combined with ||. The result is a module
that consists of one class declaration, one list of aspects, and
one exposed pointcut. Figure 11 illustrates this process on
the example of Figure 10.

5

module Example {
class C1 || pack..Pat∗;
friend A1, A2, A3;
expose : ((call(∗ f (..))

&& !within(C1 || pack..Pat∗)))
|| (call(∗ g (..));

}

Figure 11: Normalised sample module.

The reader may now wonder why we allowed the more
liberal syntax, since a single class, friend and expose decla-
ration suffice. The answer is one of notational convenience:
writing long formulae will make substantial module specifi-
cations hard to read. It is also worthwhile to separate the
advertised and exposed pointcuts, since conceptually their
purpose is different. Finally, separating the friend lists is
actually useful when they are interspersed with module com-
positions, discussed further below.

It should now be clear that such a normalised module may
be transformed into our earlier hiding construct. Each class
that matches the class name pattern expression is annotated
with the list of friendly aspects and the exposed pointcut as
its visibility pointcut.

3.6 Module composition
It would not be very satisfactory if modules were flat en-

tities, and could not be combined to form larger systems.
We therefore define two notions of module composition.

The first and most obvious type of composition is one
that constrains the visibility of module members further.
This is indicated by the keyword constrain, and an exam-
ple is displayed in Figure 12. We simply further restrict
visibility, as shown in Figure 13: the descendant (included)
module’s visibility is constrained to that of the parent (in-
cluding) module. Note that there is no change in the list of
friendly aspects of either the parent or the child module. It
is however the case that the friends of the parent enjoy the
original visibility in the child: the deciding factor for intro-
ducing expose to <pat> : <pc> and the thisAspect point-
cut was to give a clean meaning to constrain. Constrained
composition gives strong guarantees for modular reasoning:
any assumptions we made about the absence of interference
in the child module remain true after applying the compo-
sition.

module M1 {
class C1, C2;
friend A1, A2;
expose : C1.pointcut1();

}
module M2 {

class C3;
friend A3;
constrain M1;
friend A4;
expose : A4.pointcut2();

}

Figure 12: Constrained module composition

The second type of module composition is dual to the first:
here the parent gains unrestricted access to the children.
That is, the parent’s friends can advise joinpoints that arise
in the children regardless of the visibility pointcuts. We
therefore introduce such keywords by the keyword open.

module M1 {
class C1, C2;
friend A1, A2;
expose : (C1.pointcut1() && A4.pointcut2());

|| (C1.pointcut1() && thisAspect(A3 || A4));
}
module M2 {

class C3;
friend A3,A4;
expose : A4.pointcut2();

}

Figure 13: Normalised constrained composition

Again we define the semantics by a normalisation process,
as illustrated in Figures 14 and 15. Note that we add the
parent’s visibility pointcut as a disjunct to the child’s; this
contrasts with constrained composition, where it becomes
a conjunct. Furthermore, the child has gained the parent’s
friends as friends also, and the order follows that in the
parent: A3, the included friends A1 and A2, and A4.

module M1 {
class C1, C2;
friend A1, A2;
expose : C1.pointcut1();

}
module M2 {

class C3;
friend A3;
open M1;
friend A4;
expose : A4.pointcut2();

}

Figure 14: Open module composition

module M1 {
class C1, C2;
friend A3,A1,A2,A4;
expose : C1.pointcut1() || A4.pointcut2();

}
module M2 {

class C3;
friend A3,A4;
expose : A4.pointcut2();

}

Figure 15: Normalised open composition

It should be noted that while a parent’s friend aspects are
not added to the child when using constrained composition,
the precedence order of the aspects would be the same as
if the child was included using open composition. Thus in
Figure 13, A3 comes before A1 while A4 comes after A2, even
though A3 and A4 do not appear as friend aspects of M1.

The module hierarchy is required to be free of cycles.
Modules may only be included in at most one other module:
this prevents other modules from indiscriminately exposing
additional pointcuts using open composition. As the module
hierarchy is envisioned to closely follow the package hierar-
chy, this limitation should not produce too many problems
in practice.

The purpose of normalisation is to reduce all modules to
the simple hiding construct of Section 2.1. It is possible
that intermediate modules along the way to a normal form
violate the constraint that each aspect occurs in only one

6

module, because we distribute the parent’s friends among
multiple children. Fortunately, one can prove that a unique
total order is defined by the original modules, and all the
resulting lists of friendly aspects are compatible with that
unique total order. This will be discussed in detail in Section
5.

Normalisation does preserve the property that each class
is part of only one module: this is very important, for oth-
erwise the resulting visibility pointcut of that class would
not be well defined. It is for this reason that we have chosen
not to make friendly aspects implicit classes declared in a
module.

3.7 Private visibility modifier
It may sometimes be desirable to expose a visibility point-

cut that applies only to the immediate members of a module,
without affecting the visibility of its included modules. This
allows a programmer to expose arbitrary pointcuts that only
apply to the immediate members of a module, without wor-
rying about its effects on any included modules. To do this,
an advertise or expose declaration is modified by the key-
word private. Private visibility pointcuts only apply to the
immediate class members and friend aspects of the mod-
ule. Figure 16 shows an example that uses private visibility
declarations, and Figure 17 shows its normal form.

module M1 {
class C1, C2;
friend A1;
open M2;
expose: A1.pointcut1();
private expose : A1.pointcut2();

}

module M2 {
class C3, C4;
friend A2;
expose : A2.pointcut3();

}

Figure 16: Private visibility modifier

module M1 {
class C1, C2;
friend A1;
expose: A1.pointcut1() || A1.pointcut2();

}
module M2 {

class C3, C4;
friend A1, A2;
expose : A1.pointcut1() || A2.pointcut3();

}

Figure 17: Normalised private visibility

3.8 Root module modifier
In certain circumstances, it may also be necessary that

a module be unavailable for composition, to ensure that it
defines the final visibility pointcuts for all the classes it con-
tains. As an example, one may wish to define a master
module that includes all other modules and is used to en-
force a constraint on all those modules. To ensure that the
constraints are not overriden by a new module by including

the master module, the master module must be unavailable
for inclusion in any other module. Our design for open mod-
ules introduces the root visibility modifier to specify that a
module cannot be included by any other module in the com-
pilation. Figure 18 shows an example of a root module that
does not allow any advice to apply to constructors in the
modules M1 to M3.

root module MasterModule {
constrain M1, M2, M3;
expose: !call(∗ new .(..));

}

Figure 18: Root module modifier

4. EXTENDED EXAMPLE
We now provide an example of the usage of open mod-

ules on a substantial program written in AspectJ. Ants is
an implementation of a simulator for the problem given in
the 2004 ICFP Programming Contest [1]. The problem in-
volves two teams of ants on a hexagonal grid containing food
and obstacles. Each can perform a specific set of actions;
among these actions is the ability to test their immediate
vicinity for certain conditions. The problem specifies rules
for movement and combat between ants, which occurs when
ants from opposite teams happen to be on adjacent hexes.
The simulation proceeds in discrete rounds, and an ant can
perform at most one action per round. The sequence of ac-
tions of an ant in a team is defined by a finite state machine,
and the goal of each team is to collect more food that its
opponent.

4.1 System Description
The simulator loads a world specification, and the respec-

tive state machines of each of the ant teams. It then simu-
lates the movement of the ants following the rules specified
in the problem, displaying the results on a graphical user
interface.

Figure 19 shows an abbreviated UML diagram of the Ants
application. Aspects are distinguished from ordinary classes
by having a * before their name in the class specification.
The dependency lines in the diagram also include advice
application caused by aspects.

The Ants application is composed of seven major pack-
ages: automaton, command, model, parser, viewer, debug, and
profile . The first four packages form the core of the simula-
tion. The viewer package contains the GUI implementation.
The debug package contain aspects that verify certain con-
ditions on the whole of the program, while the aspects in
profile check for any memory allocations that occur in the
simulation’s inner loop.

The automaton package contains the representation of the
state machine used by the ant teams. The command package
contains classes that represent the various actions that an
ant can perform. It also contains an aspect Comment that
adds the ability to parse comments in the ant state machine
specification file. The model package contains classes that
represent the different entities that form part of the sim-
ulation. It also contains two aspects, Combat and Resting

that implement combat between ants and resting behaviour
respectively. The parser package contains the parser for the
ant specification files.

7

Figure 19: Ants

The viewer package contains the GUI implementation. This
includes the Update aspect, which intercepts any events which
should trigger a screen update.

The debug package contains aspects that verify certain
conditions over the entire application, namely CheckScores,
CommandTracer, WorldDumper and LiveAnts. CheckScores ver-
ifies the score kept by the World class by checking it against
the score computed by directly counting number of food
hexes in the map. CommandTracer intercepts every ant ac-
tion and displays it on standard output. WorldDumper is
triggered at the end of each round, when it scans the state
of the hex grid and dumps it to a file. LiveAnts performs
a sanity check on the set of ants in the simulator’s list. It
verifies that the list contains all of the ants that are still
alive, and that it contains no dead ants.

The profile package contains the aspects NoNewInRound

and NoNewInCmd. These aspects check allocations in in-
ner loop of the simulation, as these may cause performance
problems. NoNewInCmd checks for any allocations in the ex-
ecution of an ant action, while NoNewInRound checks for any
allocations that may occur while a round is being performed.

4.2 Module Specification
We now show how open modules can be used to specify the

class-aspect interfaces in the application. Figure 20 shows
a set of module declarations that may be used for the Ants
application.

The modules closely follow the package structure of the
application, with some modules containing more than one
package. Aspects that belong to a package are declared to
be a friend of the module that contains the package.

We believe that expose should be used with caution, as
exposing joinpoints internal to a module allows external as-
pects to weave around advice, making it difficult to reason
about the code internal to the module. We use the rule of
thumb that if a joinpoint is to be made visible, the most
preferred option is to use advertise, followed by expose to,

module Model {
class model.∗;
class automaton.∗;
friend model.Combat, model.Resting;
advertise : call(∗ model.World.round());
expose : call(∗ model.Ant.kill ());

}
module Command {

class command.∗;
class parser .∗;
friend command.Comment;
advertise : call(∗ command.Command.step(..));

}
module DebugAndProfile {

class profile .∗;
class debug.∗;
friend profile .NoNewInCmd, profile.NoNewInRound;
friend debug.WorldDumper, debug.LiveAnts,

debug.CommandTracer, debug.CheckScores;
open Model, Command;

}
module AntSystem {

class viewer.∗;
friend viewer.Update;
constrain DebugAndProfile;
private expose to profile.∗: call (∗.new(..));

}
module JavaLang {

class java .lang .∗;
advertise : !call(java .lang.StringBuffer .new(..));

}

Figure 20: Ants Module Specification

and if there is no other choice, by expose.
The Model module contains the packages that represent

the entities in the simulation, namely model and automaton.
It advertises external calls to World.round, which performs
a single round in the simulation. It also exposes the inter-
nal event Ant. kill . It was necessary to use expose on the
calls to Ant. kill as most of these calls occur inside classes
in Module. Using advertise would have hidden too many of
these events.

An alternative solution would have been to place Ant and
its related aspects into a separate module, perhaps even a
separate package, and then advertise the calls to Ant. kill

from that module. This illustrates how the use of open
modules may uncover opportunities for refactoring which
would have otherwise gone unnoticed.

The Command module contains the packages command and
parser. It advertises the external calls to Command.step,
which executes the action specified by the command. The
package parser was also included in this module as the pur-
pose of its only member, CommandParser, is to parse ant
specification files and generate the corresponding Command

objects.
The DebugAndProfile module shows how open composition

can be used to integrate intrusive debugging and profiling
aspects into an AspectJ program. DebugAndProfile opens
up the modules Model and Command, and has the aspects in
debug and profile as friends.

The aspects in debug and profile apply advice to join-
points that span multiple packages, thus it would have been
messy if they were declared friends of each of those modules,
or if those modules had declared a visibility pointcut to al-
low access from the aspects. The solution is to declare the
aspects as friends of a module, and then open up the mod-

8

ules to which the aspects apply. This gives the debugging
and profiling aspects unrestricted access to all the members
of the included modules.

It should be emphasised that opening up a module using
open composition places the responsibility of modularity on
the owner of the including module. As open composition
allows aspects unrestricted access to a module and may also
expand its visibility, the guarantees about modularity made
by the included module is effectively overridden by the in-
cluding module. Thus the owner of the including module
must be prepared to deal with any problems caused by a
change in implementation of any of the members of the in-
cluded module. These effects may be minimised by not ex-
posing additional signatures when using open composition.
This way, only the friend aspects of the including module
are vulnerable to changes in the included module.

The module AntSystem shows how to restrict the visibil-
ity of the entire application. It contains the package viewer,
and has the aspect Update as a friend. It uses constrained
composition to include DebugAndProfile, and does not have
a non-private signature, effectively conjoining false to the
exposed pointcuts of DebugAndProfile and causing all exter-
nal aspects to fail in matching joinpoints that belong to the
application.

The module AntSystem also exposes a private visibility
pointcut to the profiling aspects. As it is private, it has
no effect on DebugAndProfile and its children, and only ap-
plies to viewer.∗ and viewer.Update. This allows the aspects
NoNewInCmd and NoNewInRound to inspect constructor calls
in viewer.

Finally, the module JavaLang hides calls to the constructor
of java.lang.StringBuffer. This prevents the profiling aspects
from generating false positives caused by StringBuffer allo-
cations due to string literals.

Although this example uses pointcut primitives to de-
fine visibility pointcuts in the interests of clarity, it is rec-
ommended that named pointcuts be used when defining
advertise or expose declarations, as in Figure 21. This en-
courages external aspects to use the named pointcut, thus
insulating them from any changes to the visibility point-
cut [9].

module ModuleA {
expose : AspectA.fieldGets();
class classes .∗;

}
aspect AspectA {

pointcut fieldGets() : get(∗ ∗.∗) && within(classes.∗);
}

Figure 21: Using named pointcuts

4.3 Class visibility
To illustrate the effect of normalisation on the visibility

pointcuts and the friend aspects of a class, we pick the class
model.Ant and derive its visibility. Model.Ant is a member of
the Model module, which has the visibility specification

advertise : call(∗ model.World.round());
expose : call(∗ model.Ant.kill ());

and the friend aspects model.Combat and model.Resting. Hence
the initial visibility specification for model.Ant is

class Ant advertise : call(∗ model.World.round())
expose: call(∗ model.Ant.kill())

friend model.Combat, model.Resting

Note that

advertise : call(∗ model.World.round());

in the module Model is equivalent to

expose : call(∗ model.World.round()) &&
!within(model.∗ || automaton.∗);

Thus the annotated Ant class is equivalent to

class Ant expose :
(call(∗ model.World.round()) &&

!within(model.∗ || automaton.∗)
|| call(∗ model.Ant.kill ())
friend model.Combat, model.Resting

The module Model is included in DebugAndProfile using
open composition. Since DebugAndProfile does not expose
any pointcuts, its only effect on model.Ants is to add the
debugging and profiling aspects to its list of friend aspects.
Thus the annotated Ant class now becomes

class Ant expose :
(call(∗ model.World.round()) &&

!within(model.∗ || automaton.∗))
|| call(∗ model.Ant.kill ())
friend profile .NoNewInCmd, profile.NoNewInRound,

debug.WorldDumper, debug.LiveAnts,
debug.CommandTracer, debug.CheckScores,
model.Combat, model.Resting

Finally, DebugAndProfile is included in AntSystem using
constrained composition. We note that constrained com-
position conjoins non-private pointcuts with the pointcuts
of the included module, and exposes the existing visibil-
ity pointcuts to the friend aspects of the including module.
As AntSystem contains no non-private visibility pointcuts, it
conjoins false to the existing visibility pointcut, thus making
the annotated Ant class

class Ant expose :
(false &&

((call(∗ model.World.round()) &&
!within(model.∗ || automaton.∗))

|| call(∗ model.Ant.kill ()))
)
||
(thisAspect(viewer.Update) &&

(call(∗ model.World.round()) &&
!within(model.∗ || automaton.∗))

|| call(∗ model.Ant.kill ())
)
friend profile .NoNewInCmd, profile.NoNewInRound,

debug.WorldDumper, debug.LiveAnts,
debug.CommandTracer, debug.CheckScores,
model.Combat, model.Resting

which simplifies to

class Ant expose :
(thisAspect(viewer.Update) &&

(call(∗ model.World.round()) &&
!within(model.∗ || automaton.∗))

|| call(∗ model.Ant.kill ())
)
friend profile .NoNewInCmd, profile.NoNewInRound,

debug.WorldDumper, debug.LiveAnts,
debug.CommandTracer, debug.CheckScores,
model.Combat, model.Resting

Note that the private visibility pointcut of AntSystem has
no effect on model.Ant.

9

The derivation of the annotated class highlights several
decisions made in the design of open modules for AspectJ.
The derivation is a straightforward process of following the
chain of compositions starting from the module in which the
class is an immediate member. As a class may only occur in
one module and a module may be included in at most one
module, a class’ visibility annotation is completely deter-
mined by a simple path starting from the module in which
it is an immediate member and ending with the topmost
ancestor of that module in the composition tree. This is
similar to following the inheritance hierarchy of classes in
Java when determining the behaviour of a derived class.

Had the design allowed a class to occur in multiple mod-
ules, or a module to be included in multiple modules, one
would have had to follow all the paths starting from the
class to determine its visibility. This would have potentially
coupled unrelated modules merely because they contribute
to the visibility pointcut of a common class, thus making
the modules themselves less modular.

It should also be noted that the introduction of open mod-
ules into the Ants application did not require any change
in the application’s code. The module definitions are in
a file that is separate from Java and AspectJ code. The
module namespace is also separate from that of Java and
AspectJ, thus classes and aspects may not refer to the mod-
ules themselves. While this prevents the implementation of
potentially useful pointcuts such as within(Module), it does
mean that open modules may be added to or removed from
a compilation without requiring any changes to the code.

The current implementation of open modules in abc gen-
erates warnings when advice that normally applies to a join-
point is prevented from doing so because it does not comply
with the visibility pointcuts defined for that joinpoint. This
provides a compile-time hint that a certain aspect may be
too imprecisely defined.

5. PRECEDENCE PROPERTIES
Apart from specifying the interface between classes and

their client aspects, open modules may also be used to spec-
ify the ordering of the aspects included in modules. Indeed,
it can be shown that if the set of module definitions follow
certain constraints, a total order can be imposed on all the
aspects in a tree rooted at a particular module.

We abstract a module m to be a sequence composed of
aspects a and other modules m′ to represent the sequence of
friend aspects and module compositions defined in a module.

Definition (Valid Open Module Set)
We say a set Sm of modules is a valid open module set if

it satisfies the following properties:

1. An aspect is included in at most one module.

2. If a module m includes a module m′, then m′ must
also be in the set.

3. A module can be included in at most one module, and
there are no cyclical module inclusions.

A top-level module is a module that is not included in any
other modules in a valid open module set.

We can now state our formal result and prove it.

Theorem

Given a valid open module set Sm, let S′

m
be any valid

subset of Sm that has a single top-level module (i.e. S′

m

is a tree in the module hierarchy). Then we can define a
unique total order on the precedence of the friend aspects
of modules in S′

m
.

Proof

The proof is by construction: We exhibit a procedure to
obtain the total order of precedence from the root module
m of S′

m
. Recall that we think of a module as an ordered

list of friend aspects and included modules.

Definition (Induced Aspect Order)
Let m be the only top-level module of a valid open module

set Sm. The aspect order aspectorder(m) induced by m is

aspectorder(〈〉) = 〈〉

aspectorder(〈a〉 a s) = 〈a〉 a aspectorder(s)

aspectorder(〈m′〉 a s) = aspectorder(m′) a aspectorder(s)

In the above, we use a to denote list concatenation. As
an example, given three modules m1, m2, m3

m1 = 〈a1, m2, a2, m3〉

m2 = 〈a3, a4〉

m3 = 〈a5, a6〉

with m1 being the top-level module, then

aspectorder(m1) = 〈a1, a3, a4, a2, a5, a6〉

Claim: aspectorder(m) defines the required total order
on the module hierarchy tree S′

m
rooted at m.

Since m is the only top level module of S′

m
, every other

module in S′

m
must be a descendant of m, as cyclical inclu-

sions are not allowed in S′

m
.

As aspectorder(m) is already a sequence, it only needs to
be shown that it contains no duplicate elements, and that
it contains all the aspects that are friends of modules in
Sm. The first condition is proved by induction, using the
constraints on modules of a valid open module set. The sec-
ond is satisfied by observing that aspectorder is a traversal,
hence aspectorder(m) must contain the aspects of m and its
descendants. 2

Note that the theorem only allows us to totally order open
module sets that have only one top level module. In general,
an open module set may contain several disjoint trees. To
define a total order on these trees, one must include all the
top-level modules in a single module.

6. IMPLEMENTATION
Open modules for AspectJ were implemented as an exten-

sion in the AspectBench compiler (abc) [2,4–6]. abc is built
on the Polyglot extensible compiler framework [12] and the
Soot optimisation framework [15].

Adding an extension to abc involves the extension of the
parser to process any new syntax introduced by the exten-
sion, the addition of abstract syntax tree (AST) nodes to
represent the new constructs and the modification of the
matching and weaving behaviour of the compiler. abc is
designed to be extensible, and allows these modifications
through Polyglot’s extensible parser generator, and by using
factories and interfaces to allow for changes to the behaviour
of the existing AST, matching and weaving classes.

The open module extension required an extension of the
AspectJ syntax to include module definitions, an internal

10

representation of the modules and a modification to the
matcher to implement the effect of visibility pointcuts. The
syntax extensions and AST nodes were implemented by the
prescribed method of extending the parser specification and
subclassing the existing Polyglot AST nodes.

The implementation of visibility pointcuts required an ex-
tension of abc’s matcher. abc provides a way to add new
pointcuts as well as to modify the matching behaviour of
an existing pointcut, but did not allow for an extension of
the matcher itself. Visibility pointcuts add a new condition
to the matching process: a piece of advice must satisfy the
visibility criteria of a class before it is woven. As such it
is best implemented as an extension to abc’s matcher. This
required a refactoring of the existing abc matcher to allow
for an extension to override the matcher’s behaviour, as well
as a generalisation of the way data is passed to the matcher.

Except for the matcher, abc’s extension mechanisms worked
remarkably well during the implementation of the open mod-
ule extension. The changes to the matcher have remedied
an oversight in abc’s extensibility, making it easier to imple-
ment extensions similar to open modules.

7. RELATED WORK

Aldrich. Open modules were proposed by Aldrich [3] as a
way to allow for modular reasoning while using advice. His
design uses a small functional language called TinyAspect.
Each module contains a set of functions and advice, as well
as a signature, which determines which points in the code
are available to advice outside the module. This signature
forms a contract between a module and external advice: ex-
ternal advice must comply with the signature, and in return
any change in the implementation of the module must main-
tain the semantics of the signature, thus insulating external
advice from changes in the module. It also allows for mod-
ule composition (our constrain construct), and defines the
effect that composition has on the signatures. The proposal
defines a set of equivalence rules which may be used to deter-
mine if a change in the implementation of a module violates
the contract implied by the module’s signature.

Aldrich’s paper was the starting point of the investigations
reported here. Relative to his work, our main contribution
is to extend the design to full AspectJ: this involved dealing
with non-call joinpoints, the result about consistent aspect
precedence, and the reduction to the simple expose anno-
tation on classes. Furthermore we introduced the notion of
opening a module, which again can be reduced to the normal
form.

One might argue that the opening construct defined in
this paper destroys Aldrich’s formal result about modular
reasoning. Our response is that modular reasoning is possi-
ble, provided one knows the whole module specification, as
then it is possible to calculate exactly what joinpoints are
exposed by each class. We furthermore feel that such a mi-
nor complication is amply justified by the pragmatic advan-
tages of module opening: in aspect-oriented programming,
it is essential that the programmer can assert responsibility
for joinpoints that occur in parts of the system not originally
written by her.

Gudmundson and Kiczales. Gudmundson and Kiczales
outline the idea of pointcut interfaces [9]. This involves an-

notating a class with named pointcuts, which expose join-
points of interest in that class. This named pointcut is then
used by aspects when defining advice that apply to the class.
They also provided a way to define such pointcuts for pack-
ages by defining them in a special Pointcuts class, and to
the whole program using a similar method. They do not,
however, provide a way to extend or constrain the interface
without directly modifying the interface specifications in the
class annotations.

Our intermediate representation (normal form) for open
modules is clearly akin to the annotations of Gudmundson
and Kiczales: what we have added is the notion of specify-
ing the annotations via module specifications. Indeed, we
believe it is undesirable that programmers write such an-
notations directly: it violates the principle of obliviousness
(that classes are unaware of the aspects that may advise
their code), and it is inflexible: often different module spec-
ifications may apply to the same class in different circum-
stances. It is thus important that module specifications are
separated from the classes to which they apply.

Mezini and Kiczales. Mezini and Kiczales propose aspect
aware interfaces [11] to define how aspects may modify classes.
These interfaces annotate method declarations with the as-
pect and the type of advice that may apply to them. They,
however, only consider execution joinpoints. Referring to
the work of Aldrich on modular reasoning, they argue mod-
ular reasoning can be applied as soon as the aspect interfaces
are known; and the aspect interfaces can be automatically
calculated through a global analysis of the whole system.

This use of an ‘initial global analysis’ is similar to our
claim that modular reasoning about AspectJ is facilitated
by considering the whole module specification, together with
the code in question. The difference, however, is that the
module specification is typically very small compared to the
system as a whole, and in top-down design, the module spec-
ification is available before the system is complete.

Clifton and Leavens. Clifton and Leavens also address the
problem of modular reasoning via annotations that state
what aspect may affect a given part of the code [7]. A dis-
tinctive feature of their proposal is that they distinguish
between spectators (aspects that merely observe) and assis-
tants (aspects that add new functionality). Assistants can
only apply where explicitly allowed via an annotation. To
reduce the burden of writing annotations, aspect maps are
introduced, which allow the specification of multiple anno-
tations in one place.

Aspect maps are similar to open modules, but far more
restricted, and they lack the combining forms of constrain
and open. At present it is not possible to distinguish between
spectators and assistants in our design. Ideally, one might
write for instance

expose to pure foo.bar..* : pointcut;

That is, the given set of joinpoints is exposed only to pure
aspects in a subpackage of foo.bar.

We believe that this would be a very valuable feature, but
it is independent of the proposal for open modules. Instead,
we plan to introduce the new optional modifier pure on as-
pects, and provide compiler support for checking that the
advice in the aspect is indeed pure. In fact, in an initial
investigation, we have found it necessary to implement a

11

more general feature, where an aspect is annotated with the
construct

pure on 〈classname-pattern〉 except 〈pointcut〉 :
〈aspect-declaration〉

That is, we assert that an aspect does not introduce side-
effects at any joinpoints which have a signature owned by
classes that match the pattern, except at those that match
the given pointcut. This makes it possible, for example, to
state that printing on System.err is not considered a purity
violation. Details of this design, and an initial implementa-
tion using the Soot analysis framework, can be found in [13].

Dantas and Walker. Dantas and Walker have also pro-
posed a notion of harmless advice [8], which is advice that
does not modify the execution of the joinpoint it intercepts.
Exposing a pointcut in a module renders it vulnerable to
around advice, which may choose to bypass the execution of
the joinpoint it intercepts. It may be desirable allow only
harmless advice to apply to certain points in a module.

Again, we believe such classification of advice effects to
be an important issue in aspect-oriented programming, but
from the language design point of view, it should be treated
separately from modules.

8. CONCLUSIONS
We have presented a detailed design for the addition of

open modules to AspectJ. Open modules provide a conve-
nient notation for summarising the interaction between as-
pects and other parts of the code. Starting with the original
proposal of Aldrich, we enhanced it to encompass the whole
of AspectJ.

Despite the fact that we deal with an industrial-strength
language, the definition of our new feature is particularly
simple thanks to an intermediate representation, which pro-
vides a normal form for hiding constructs in AspectJ. We
validated our design via many concrete examples, and demon-
strated its use on a more substantial one that involves eight
separate aspects. The claim that our proposal constitutes
a seamless extension of the existing AspectJ language was
underpinned by a formal result which guarantees that the
use of open modules cannot lead to precedence conflicts.

We have implemented open modules in abc, the extensible
research compiler for AspectJ. Open modules are part of
abc’s 2.0 release, so others can experiment with their use.
Our own plan for future development is to combine open
modules with an effect analysis for advice [13].

9. REFERENCES
[1] ICFP 2004. 7th annual ICFP programming contest.

http://www.cis.upenn.edu/~plclub/contest/.

[2] abc. The AspectBench Compiler. Home page with
downloads, FAQ, documentation, support mailing
lists, and bug database. http://aspectbench.org.

[3] Jonathan Aldrich. Open Modules: Modular Reasoning
about Advice. In Proceedings of the European
Conference on Object-Oriented Programming, volume
3586 of LNCS, pages 144–168. Springer, 2005.

[4] Chris Allan, Pavel Avgustinov, Aske Simon
Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien
Sereni, Ganesh Sittampalam, and Julian Tibble. The

AspectBench Compiler for AspectJ. In Generative
Programming and Component Engineering, volume
3676 of LNCS, pages 10–16. Springer, 2005.

[5] Pavel Avgustinov, Aske Simon Christensen, Laurie
Hendren, Sascha Kuzins, Jennifer Lhoták, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. abc: An extensible
AspectJ compiler. In Aspect-Oriented Software
Development (AOSD), pages 87–98. ACM Press, 2005.

[6] Pavel Avgustinov, Aske Simon Christensen, Laurie
Hendren, Sascha Kuzins, Jennifer Lhoták, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh
Sittampalam, and Julian Tibble. Optimising AspectJ.
In Programming Language Design and Implementation
(PLDI), pages 117–128. ACM Press, 2005.

[7] Curtis Clifton and Gary T. Leavens. Observers and
assistants: A proposal for modular aspect-oriented
reasoning. In Gary Leavens and Ron Cytron, editors,
FOAL 2002, Technical Report 02-06, Computer
Science, Iowa State University, pages 33–44, 2002.

[8] Daniel S. Dantas and David Walker. Harmless advice.
In 12th International Workshop on Foundations of
Object-Oriented Languages, 2005. Available from
http://homepages.inf.ed.ac.uk/wadler/fool/

program/6.html.

[9] Stephan Gudmundson and Gregor Kiczales.
Addressing Practical Software Development Issues in
AspectJ with a Pointcut Interface. In ECOOP 2001
Workshop on Advanced Separation of Concerns, 2001.

[10] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In J. Lindskov Knudsen, editor,
European Conference on Object-oriented
Programming, volume 2072 of Lecture Notes in
Computer Science, pages 327–353. Springer, 2001.

[11] Gregor Kiczales and Mira Mezini. Aspect-oriented
programming and modular reasoning. In ICSE ’05:
Proceedings of the 27th international conference on
Software engineering, pages 49–58, New York, NY,
USA, 2005. ACM Press.

[12] Nathaniel Nystrom, Michael R. Clarkson, and
Andrew C. Myers. Polyglot: An extensible compiler
framework for Java. In 12th International Conference
on Compiler Construction, volume 2622 of Lecture
Notes in Computer Science, pages 138–152, 2003.

[13] Elcin Re cebli. Pure aspects. MSc dissertation,
University of Oxford. Available from
http://aspectbench.org, 2005.

[14] The AspectJ Team. The AspectJ 5 Development Kit
Developer’s Notebook. http://eclipse.org/aspectj/
doc/next/adk15notebook/, 2004.

[15] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot -
a java bytecode optimization framework. In CASCON
’99: Proceedings of the 1999 conference of the Centre
for Advanced Studies on Collaborative research,
page 13. IBM Press, 1999.

[16] Mitchell Wand. Understanding aspects: extended
abstract. In 8th ACM SIGPLAN International
Conference on Functional Programming, pages
299–300, 2003.

12

