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ABSTRACT

We have reimplemented the frontend of the extensible As-
pectBench Compiler for AspectJ, using the aspect-oriented
meta-compiler JastAdd. The original frontend was purely
object-oriented. Each frontend extends Java with AspectJ
and an additional set of pointcuts in a modular fashion. In
this paper we give a detailed comparison of both approaches
and show a number of advantages of using JastAdd: the im-
plementation is half the size, twice as fast, concerns are bet-
ter localised, extensions are composable, and computations
are automatically scheduled.

JastAdd provides a very constrained form of static AOP
where only inter-type declarations and method execution
interception are supported. However, additional modulari-
sation mechanisms from the compiler construction commu-
nity are supported in the form of demand-driven evaluation
and attribute grammars. Our implementation would not
have benefited from a richer pointcut language, while both
demand-drive evaluation and declarative attributes were es-
sential in enabling composable extensions and flexible mod-
ularisation.

We believe that the AOP community at large can benefit
from acknowledging demand-driven evaluation as an impor-
tant modularisation mechanism. Also, reference attribute
grammars enhance the extensible implementation of graph-
based computations that rely on context-sensitive informa-
tion.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features; D.3.4 [Programming Languages|: Proces-
sors—Compilers

General Terms

Languages, Design
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1. INTRODUCTION

Although compiler construction is a very well-developed
field, the problem of creating extensible compilers still poses
great challenges from the point of view of modularisation.
In programming languages research, it is quite common to
extend a language with new features or constructs, and to
add additional analyses. Ideally, it should be possible to
make such extensions completely self-contained, and to en-
able and compose them at will, to allow experimentation
with different sets of language features. Moreover, exten-
sions should be modularised internally so that each can be
understood in isolation. These requirements put extreme
tension on traditional modularisation mechanisms provided
by the language used to implement them.

The AspectBench Compiler (abc) is an extensible AspectJ
compiler intended as a workbench for aspect-oriented lan-
guage research, and it has been successfully adopted as the
basis of implementation for a number of extensions (e.g.
[2,3,14]). The system is divided into a frontend, taking care
of static semantic analysis, and a backend, performing opti-
misation and aspect weaving. The AspectJ frontend is itself
implemented as a modular extension to the Polyglot exten-
sible Java frontend framework [23]. Polyglot is an object-
oriented framework based on standard Java which relies on
extensible visitor patterns for modular extensibility.

We have reimplemented the frontend using the aspect-
oriented meta-compiler tool JastAdd [10]. Extended AspectJ
(EAJ) is a set of modest language extensions the authors
of abc developed to demonstrate its extensibility; we have
also ported these to the new frontend in order to compare
the ease with which new features can be added. In this
paper, we give a detailed comparison of both approaches
and show a number of advantages of using JastAdd: smaller
implementation, faster compilation, composable extensions,
enhanced localisation of concerns and automatic scheduling
of computations.

Much work has been devoted to the so called FEzxpres-
sion Problem (thus named by Phil Wadler [30]), which con-
cerns separating a model from computations performed on
that model, while still enabling modular extensions to both
the model and the computations. To some extent, this
is indeed addressed by the fact that all information in a
Jast Add-based frontend is stored on AST nodes, and so can



be adapted as and when new AST nodes are added. How-
ever, in our experience a much harder problem is then how
to separate conceptually different computations that inter-
act with each other. The key to such separation in the new
frontend was to combine I'TDs (inter-type declarations) with
demand-driven evaluation and attribute grammars. We be-
lieve that the AOP community at large can benefit from
acknowledging demand-driven evaluation as an important
modularisation mechanism. Attribute grammars, with sup-
port for references, can enhance extensibility and modularity
of context-sensitive graph-based computations compared to
using more traditional AOP techniques.
The contribution of this paper is three-fold:

1. We present a large-scale case study comparing aspect-
oriented compiler construction to a visitor-based object-
oriented approach.

2. We give a qualitative and quantitative comparison of
the merits of various aspect-oriented and compiler-
construction modularisation mechanisms. In our ex-
periments a very constrained from of static AOP suf-
ficed, but demand-driven evaluation and declarative
attributes were essential for composable extensions and
localisation of concerns.

3. By improving the already well-received abc compiler
with the techniques discussed in this paper, we provide
a more flexible research platform for AspectJ language
extensions.

The rest of the paper is structured as follows. First we
give an overview of the Polyglot and JastAdd based fron-
tends for abc in Section 2.1. Then we introduce the various
modularisation mechanisms used by Polyglot in Section 2.2
and by JastAdd in Section 2.3. Section 3 contains a de-
tailed comparison of the frontends from the point of view of
separation of concerns, size, and performance. We discuss,
summarise and generalise our results in Section 4. Related
work is presented in Section 5 and we conclude and outline
future work in Section 6.

2. BACKGROUND

2.1 abc architecture

This section gives a brief overview of the abc Aspect]
compiler. As usual in the field of compiler construction,
the overall architecture can be roughly divided into a front-
end and a backend component, and this paper deals mainly
with the former — the original abc backend is reused as
is. The purpose of the frontend is to parse source code
into an abstract syntax tree (AST), and then perform static
semantic analyses, e.g. name binding, type checking, and
class hierarchy wellformedness checking. If no errors are
found then it instantiates an intermediate code model used
by the backend.

The fronted can conceptually be divided into the follow-
ing phases: lexing, parsing, static semantic analysis, ab-
stract syntax tree transformations, and backend code model
instantiation. Lexing and parsing build an initial AST on
which semantic analysis is performed. This clean separation
enables us to replace the parser with any kind of parsing
technology that can build an AST. We can therefore ben-
efit from recent advances in extensible parsing technology,

e.g., [12,29]. In the rest of this paper we assume that a
suitable parsing technology has been used to build an AST
and static semantic analysis is about to start. Our current
implementation uses LALR parsing and a separate scanner
with lexical states. Further details on parsing AspectJ are
available in [4, 6].

The backend of abc uses the Soot optimisation framework
for Java and analyses Jimple, which is a typed 3 address
intermediate code model [27]. An additional Aspectinfo
model is used by the weaver in the backend to match point-
cuts, weave advice, and weave inter-type declarations. The
frontend is thus responsible for instantiating both models
by generating Jimple code and populating the AspectInfo
structure. A common technique to simplify such genera-
tion is to first normalise the AST through a series of tree
transformations.

Figure 1 shows a schematic overview of the abc compiler.
The frontend is based on the Polyglot framework for exten-
sible Java frontends [23]. There is no code generation in
Polyglot, but Soot provides the JavaToJimple component
which translates the attributed AST into Jimple. AspectJ
is implemented as a separate language component which ex-
tends both Polyglot and JavaToJimple. That component
implements the features and checks of AspectJ in the front-
end and instantiates the AspectInfo structure. Further lan-
guage components can then be added to the system, e.g.
EAJ, which adds more pointcuts to AspectJ. The extension
is separated into a frontend, for static semantic analysis, and
a backend, providing matching for the new pointcuts.
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Polyglot Java .4 JavaTodimple abc
Java ) o
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A4 4 +
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EAJ EAJ Frontend EAJ weaver
(1.6K LOC) (1.4K LOC)
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language reusable extends information component
extension component  component flow size

Figure 1: Overview of the Polyglot-based frontend
in abc. Components are annotated with their sizes
in lines of code. Java 1.4 is modularly extended to
support AspectJ and EAJ.

The clean separation between the frontend and backend
allows us to create a replacement frontend which can be
plugged into the compiler without changing the backend.
Indeed, the new frontend is plugged into abc as any other
extension with the main difference that it replaces the entire
frontend, rather than extending the Polyglot based front-
end. That way we can reuse the backend as is without any
changes, including the backend extension for EAJ.

Figure 2 shows the new frontend, based on the Java 1.4
frontend in the JastAdd Extensible Java Compiler [10]. Jast-
Add uses a different AST than Polyglot and we therefore
had to use a different component to generate Jimple for the
backend. A separate component normalises the AST prior



to that generaton, e.g., flattening of nested classes. AspectJ
is implemented through two reusable components: an inter-
type declaration (ITD) component which is then extended
by a pointcuts and advice component. This separation en-
ables I'TDs to be used independently of pointcuts and advice,
e.g. to implement ITDs in the JastAdd compiler itself.

The Polyglot and JastAdd based implementations are quite
similar at the component level. The main difference is that
AspectJ is divided into two components in the latter solu-
tion. However, we see no reason why the Polyglot based
frontend could not be split into the same structure. The
difference in size between the two approaches is, however,
quite striking: each JastAdd component is less then half the
size of the corresponding Polyglot component. In Section 3
we analyse why this is the case, and also show additional
benefits of the JastAdd based implementation in terms of
improved localisation of concerns within each component.
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Figure 2: Overview of the JastAdd based frontend
in abc. Components are annotated with their sizes
in lines of code. Java 1.4 is modularly extended to
support AspectJ and EAJ.

2.2 Polyglot extension mechanisms

Polyglot [23] is a frontend for Java intended for imple-
menting extensions to the base language. By default, Java
source code is parsed into an abstract syntax tree; then,
Polyglot performs all the static checks required by the Java
language in a number of passes which may rewrite the tree.
The output is an annotated Java AST, complete with type
information, which is written back to a Java source file that
any standards-compliant Java compiler should be able to
process. In the context of abc, Polyglot is used as a front-
end for Soot, and so the Java to Jimple module inside Soot
compiles the final AST into the Jimple intermediate repre-
sentation, suppressing the output of Java files. It should
be noted that the discussion in this paper pertains to Poly-
glot 1.3.*%, the basis of abc.

Polyglot uses a number of design patterns to achieve ex-
tensibility while remaining in the realm of pure Java. Chief
among them is an intricate system of delegate and extension
objects that allows functionality to be inserted in the middle
of the AST hierarchy. Each AST node has a corresponding
concrete class and also an interface; moreover, it is asso-

ciated with an extension and a delegate object which can
be used to add extra information to existing nodes, or to
modify the behaviour of particular methods, as long as the
overriding conventions of always calling instance methods
through the delegate are enforced.

In order to be able to change or extend existing AST
nodes, another convention is necessary — such classes can
only be instantiated through the Factory pattern. This
means that rather than calling the constructor directly, a
method on the AST node factory is used throughout the
code that in turn allocates the object; if necessary, this
method can be overridden in a subclass of the factory, al-
lowing the programmer to replace all instances of one node
with an extended version.

In addition to AST nodes, Polyglot has type nodes that
represent the types and signatures of classes, methods, and
fields. Like AST nodes, type nodes are constructed using
a factory for extensibility. During compilation the AST is
annotated with type nodes, once the names in the program
have been resolved.

Finally, the transformations of the AST are implemented
by strictly following the visitor pattern. A number of generic
visitor passes are performed; each AST node includes generic
methods for traversing its children, and can optionally rewrite
nodes it visits to implement transformations and disam-
biguations. By performing appropriate actions at each node,
such visitor passes are used to implement the static checks
required by the Java specification (e.g. type checking, def-
inite assignment etc.); in abe, they also implement some of
the transformations required for AspectJ.

Note that each pass performs one specific task, and is
meant to update the input tree non-destructively. As a re-
sult, it is easy to insert new passes in between existing ones
to implement new functionality; indeed, abc augments Poly-
glot’s default 16 passes to 42. It is worth pointing out that
each pass does significantly less work than traditional com-
piler passes to allow for more fine-grained extensibility, so
these large numbers aren’t entirely surprising. It is up to the
developer of an extension to determine where in this multi-
tude of passes their own passes should be inserted; execution
always follows the pre-determined order.

2.2.1 lllustration: A Small Extension

To make the discussion above a little more concrete, we
will briefly discuss a small extension to the AspectJ lan-
guage, focussing on Polyglot’s extensibility mechanisms rather
than abc’s.

We would like to implement the feature of global point-
cuts (which actually form a part of the EAJ extension to
AspectJ). This feature would allow us to specify a partic-
ular pointcut that restricts the applicability of every piece
of advice in aspects matching a certain class-name pattern.
We can write something like global : * : !within(Hidden); to
ensure that no advice could ever apply to the Hidden class,
or global : Aspect : !within(Aspect); to prevent advice in a
particular aspect from applying to itself. Thus, the general
form of a global pointcut declaration is

global : <ClassNamePattern> : <Pointcut>;

The first step in implementing this as an extension to
abc is to define the new keyword in the lexer and augment
the parser specification with new productions describing the
syntax. We will skip the details, as they aren’t immediately
relevant to Polyglot and are also covered elsewhere [4].



Then, we need to define a new AST node for the newly
added language construct. As mentioned above, it is crucial
to adhere to the rigorous use of factories and interfaces to
create new nodes and invoke their members, respectively.
Thus, we define a new interface for a global pointcut decla-
ration, listing any public methods we might need in it:

public interface GlobalPointcutDecl extends PointcutDecl {
public void registerGlobalPointcut(GlobalPointcuts visitor,
Context context,
GPNodeFactory nf);

The method will be called to insert the pointcut into a
static data structure keeping track of all global pointcuts in
the program. Of course this interface also offers all public
members declared in its superinterface, PointcutDecl.

Then, we need to write a concrete class implementing the
interface, which is given the name GlobalPointcutDecl_c by
convention. Quite a bit of boilerplate code is required (a
constructor and methods that allow visitors to traverse or
rewrite the node generically); of course a concrete implemen-
tation for the method registerGlobalPointcut () should also be
provided.

In order to instantiate this new class, we need to define a
new AST node factory extending the existing version; this
provides the following new method:

public GlobalPointcutDecl GlobalPointcutDecl (Position pos,
ClassNamePatternExpr pattern, Pointcut pc,
String name, TypeNode voidn) {
return new GlobalPointcutDecl_c(pos, pattern, pc,
name, voidn);

This method is invoked by the semantic actions in the
extended parser to create appropriate AST nodes.

Finally, to actually implement the functionality of our new
extension, we need to add some new Polyglot passes that
know how to validate the global pointcut AST node and
transform it. Concretely, we need two phases: First, all
global pointcuts need to be collected, and then each pointcut
in aspects matching the pattern must be conjoined with the
pointcut of the corresponding global pointcut declaration.
For reasons of brevity, one might combine the two passes
into a single class called GlobalPointcuts and use a field to
toggle between the two modes of operation. The following
snippet illustrates the behaviour of the visitor upon entering
an AST node:

public NodeVisitor enter(Node parent, Node n) {
if (pass == COLLECT) &&
n instanceof GlobalPointcutDecl) {
((GlobalPointcutDecl)n).
registerGlobalPointcut (this, context (),
nodeFactory);

}

return super.enter(parent, n);

}

Thus, if we are entering a node of the appropriate type,
we cause it to register itself with the static data structure for
global pointcuts, and then delegate the actual work of con-
tinuing the traversal to the superclass. The second phase of
the transformation takes place in the leave() method, which
is called when a visitor leaves an AST node and has the
option of rewriting the node. If pass == CONJOIN and the
current node is a pointcut expression, we return the con-
junction of the node with each matching global pointcut.

With this, the work required for a purely frontend-based
extension is complete.

2.3 JastAdd modularisation mechanisms

JastAdd is a meta-compiler system that combines ideas
from the aspect oriented and compiler construction commu-
nities. It has been used successfully to implement a complete
Java 1.4 frontend with multiple backends, full Java 5 support
through modular extensions [10], and additional modules for
optional type systems (e.g. non-null types [9]). The key
to its extensibility is a declarative extension to Java based
on object-orientation, inter-type declarations, and attribute
grammars with support for reference attributes, nontermi-
nal attributes, and circular attributes. These features allow
extensions to be specified modularly and then combined au-
tomatically by the tool.

Specification order is irrelevant in a declarative specifi-
cation formalism, and the criterion for grouping a set of
attributes and equations into modules is purely the promo-
tion of reuse and understandability. We usually decompose
compiler extensions at two levels. First we decompose the
system into components based on large parts of functionality
that are expected to be reused. One may for instance want
to extend a Java 1.4 compiler with the following components:
Java 5 (i.e. generics, attributes, enumerations and enhanced
for-loops, which could all be components in their own right),
pointcuts and advice, and inter-type declarations. At a more
fine-grained level we decompose a component into modules
primarily based on understandability.

The JastAdd formalism extends Java with two new kinds
of modules: abstract grammar modules for specifying ab-
stract syntax trees (ASTs), and attribute modules for speci-
fying behaviour in a declarative fashion. These modules can
be used from and combined with imperative Java classes.

2.3.1 Abstract grammars

JastAdd uses a small domain-specific language to define
abstract grammars and generates Java classes that are used
as AST nodes. The abstract grammar defines both an in-
heritance hierarchy and a composition hierarchy. Consider
the code snippet below, which will be our running example
for the rest of this section:

Program ::= Stmt;
abstract Stmt;

Block : Stmt ::= Stmtx;
EmptyStmt : Stmt;

Each production defines a node type and if applicable the
kind of children that node may have. The example de-
fines four node types: Program, Stmt, Block, and EmptyStmt.
Block and EmptyStmt both inherit Stmt, which is abstract
and used to hold behaviour common to all kinds of state-
ments. Arbitrarily deep class hierarchies can be formed this
way to include many abstraction levels. Composition is de-
fined by adding an ’::=’ to a production and stating the
desired children. The example states that a Program has a
single child of type Stmt, while a Block has a list of chil-
dren of type Stmt. The generated classes contains getters
and setters used to traverse node children and build the
AST respectively. Each node implicitly inherits the special
class ASTNode, which provides a generic way to traverse the
AST. More complex traversal patterns can be implemented
by overriding a traversal in specific node classes. The fol-



lowing code snipped defines a traversal that visits the AST
but stops at Block nodes:

public void ASTNode.visitStopAtBlock() {
for(int i = 0; i < getNumChild())
getChild(i). visitStopAtBlock();

public void Block.visitStopAtBlock() { }

2.3.2 Inter-type declarations

Inter-type declarations can be used to insert additional be-
haviour into an existing class hierarchy. JastAdd takes an
extreme approach where all behaviour is defined using I'TDs
injected into the AST nodes generated from the abstract
grammar. The ITDs supported in JastAdd differ slightly
from AspectJ. Methods, constructors, and fields may be in-
troduced in existing classes by explicitly naming the target
class. Those members may also be introduced through in-
terfaces, as long as there is no visible implementation in any
class implementing the target interface. Declare parents dif-
fers from AspectJ in that only interfaces may be added to
classes, and that those classes must be explicitly enumerated
without using patterns.

Locally declared methods and inter-type methods may be
replaced by another inter-type method declaration. This
enables an extension to refine the behaviour in an exist-
ing component without editing the component source files.
The method to be refined is explicitly named and if several
refinements apply to that same method, they need to be
explicitly ordered. The method being refined may be called
from the refinement, if the original behaviour is need in com-
puting the new behaviour. From an AspectJ viewpoint this
corresponds to intercepting a method-execution join-point
and applying around advice. This is the only pointcut and
advice like construct supported in JastAdd and applies to
methods, constructors, and attribute equations.

2.3.3 Declarative attributes

Compilation tasks are usually implemented in JastAdd
using attribute grammars where attributes are defined by
equations. The equations are defined in a syntax-directed
style, solving a problem for each AST node in isolation. The
order in which these equations are specified is irrelevant: the
underlying attribute evaluation engine orders the evaluation
of individual equations and combines them into a global so-
lution. Attributes enable arbitrary decomposition which in
turn promotes reuse and better localisation of concerns. At-
tribute grammars were first introduced by Knuth [20] and
numereous extensions have been proposed over the years.
Of particular interest for this work is the support for refer-
ence valued attributes [16], allowing computations on graph
structures rather than trees, and cirular attributes [22], en-
abling automatic fixed-point iteration for mutually depen-
dent attributes.

Synthesised attributes are quite similar to virtual meth-
ods without externally visible side-effects. An attribute is
specified in a class and equations for that attribute may be
overridden in subclasses. The requirement of no side-effects
allows the results from such methods to be cached for ef-
ficiency. Consider the example below computing the total
number of statements in a subtree. Each Stmt has a syn-
thesised attribute called size(). Since there is no equation
in Stmt this can be considered an abstract method with
the additional constraint that overriding methods must be

free from side-effects. The equation in Block iterates over
its children, adding the sizes of subtrees. The size of the
EmptyStmt is 1 and defined using a convenient functional
style syntax which can be used when the value is a single ex-
pression. In our experience, the functional syntax promotes
dividing a problem into smaller and smaller subproblems
until the solution is almost trivial. The individual parts are
then composed automatically by the underlying attribute
evaluation engine.

// number of statements in subtree
syn int Stmt.size ();
eq Block.size() {
int size = 1; // a block is itself a statement
for(int i = 0; i < getNumStmt(); i++)
// add the contained statements
size += getStmt(i).size();
return size;

eq EmptyStmt.size() = 1;

Inherited attributes propagate information about the cur-
rent context downwards in the tree and decouple the use
of an attribute from its definition. The node reading an
attribute need not be aware of which node defines that
value but only that there is an ancestral node providing an
equation. Consider the example below, which determines
whether a statement is nested in another statement or not.
The Stmt need not know if it is a child of a Program node
or a Block node — only that there is an equation for the
nestedInStmt () attribute. This is a remarkably simple way to
describe properties dealing, for instance, with containment
and visible declarations, i.e., it enables abstraction over the
current context.

inh boolean Stmt.nestedInStmt ();
eq Program.getStmt().nestedInStmt () = false;
eq Block.getStmt().nestedInStmt() = true;

2.3.4 The attributed AST

Synthesised and inherited attributes can easily be com-
bined to compute new properties. Suppose, for example,
that we would like to determine, for each statement, the
outermost enclosing statement. We can achieve this by com-
bining the inherited attribute enclosingStmt(), which gives
the immediately enclosing block (if there is one), with the
nestedInStmt() attribute defined above: For statements which
are not nested, the outermost enclosing statement is just
this; for all others, it is the outermost enclosing statement
of the immediately enclosing statement.

inh Stmt Stmt.enclosingStmt();
eq Block.getStmt().enclosingStmt() = this;

syn Stmt Stmt.topStmt() =
nestedInStmt () ? enclosingStmt().topStmt() : this;

Note that in the above, both enclosingStmt() and topStmt()
are so-called reference attributes — attributes that hold ref-
erences to other AST nodes. Since each compilation task
has been recast into the problem of defining attributes on
the AST, such reference attributes turn out to be extremely
useful. Consider, for example, name analysis: Each name
used in a program should be bound to the corresponding
declaration, according to the scoping rules of the language.
We can therefore define an attribute on each name node
whose value references the declaration.



In general, reference attributes allow us to superimpose
graphs onto the AST, which can then be used by other at-
tributes defining additional analyses. This makes it straight-
forward to use the AST as the only data structure, elim-
inating the need for external data structures like symbol
tables. The main benefit is that now the same extension
mechanisms that apply to ASTs and attributes can be used
for all compile-time data structures. A more thorough de-
scription of how to combine attributes (including circular at-
tributes) to implement extensible name binding, type anal-
ysis and definite assignment checking for Java can be found
in [8-10,22].

2.3.5 lllustration: A small example revisited

For completeness, we will briefly indicate what steps would
be necessary to implement the purely frontend-based exten-
sion of global pointcuts discussed in Section 2.2.1 in Jast-
Add. Again, we will assume that the parser and lexer have
already been extended so that the syntax of our extension
is recognised and appropriate ASTs are built.

Rather refreshingly, there is no boilerplate code to write,
so we can jump straight into the semantic work that was
done by two AST visitor passes in Polyglot. First of all, we
need to collect all global pointcuts from the entire program
into a single list. This can be achieved with the following
attribute definitions:

inh lazy List BodyDecl.globalPointcutDecls();
eq Program.getCompilationUnit().globalPointcutDecls() =
collectGlobals (new List());

syn ASTNode.collectGlobals(List globals) {
for(int i = 0; i < getNumChild(); i++)
globals = getChild(i). collectGlobals ( globals );
return globals;

}
eq GlobalPointcutDecl.collectGlobals(List globals) =
globals .add(this);

We use a combination of inherited and synthesised at-
tributes: collectGlobals () traverses all children of the current
node and adds global pointcuts to a list, which is exposed to
all AST nodes as the inherited attribute globalPointcutDecls().
Now it is trivial to modify the code generation for each
PointcutExpr node to conjoin the global pointcuts with it-
self.

3. CASE STUDY: EXTENSIBLE ASPECTJ
FRONTENDS COMPARISON

3.1 Inter-type declarations

The pervasive use of inter-type declarations in the Jast Add-
based frontend results in a starkly different modularisation
to that of the Polyglot-based frontend, as shown by Figure 3
and Figure 4. There is less scattering of related code in the
Jast Add-based frontend, and the AspectJ language concepts
and constructs map, on the whole, directly to the module
structure.

As discussed in Section 2.2, there are broadly three kinds
of classes in Polyglot—AST nodes, types nodes, and AST
visitors. This leads to the related code being split into sepa-
rate files. For example, note the division of the code for
inter-type declarations into 11 files in 3 directories. Al-
though dividing code into smaller, simpler modules is the

AST NODES

Patterns (30)

Pointcut designators (25)
Advice and named
pointcut declarations (20)
Inter-type declarations (5)
Declare parents (6)

EXTENSION NODES
Inter-type declarations (14)

TYPES

Pointcuts, aspects, and
advice type-instances (3)
Inter-type declarations (3)

Aspect-aware context (2)

VISITORS

Pattern matching (5)
Pointcut dependency
analysis (1)

Inter-type declarations (3)
Name mangling (2)
Declare parents (2)
Initialising backend (6)
Aspect precedence (2)
Building new types (1)
Miscellaneous checks (2)

Figure 3: Decomposition of the Polyglot-based abc

frontend.

The parenthesised numbers show the

number of files for each concern.

INTER-TYPE DECLARATIONS
Declare parents (2)

Declare precedence (2)
Inter-type common code (2)

(the following have a file
each for: the AST, name-
analysis, error-checking,
and code generation)
Inter-type fields (4)
Inter-type methods (4)
Inter-type constructors (4)

PATTERNS, POINTCUTS,
AND ADVICE

AspectJ AST (1)
Advice (1)

Implicit methods (1)
Implicit variables (1)
Declare error / soft (1)
Patterns (1)

Pointcuts (1)

TRANSLATION TO
BACKEND STRUCTURES,
AND CODE GENERATION

INTERACTION BETWEEN
MODULES

Declare precedence /
backend structures (1)
ITDs / code generation (1)

Advice (1)

Class and method
categories (1)
Patterns (1)
Pointcuts (1)

Figure 4: Decomposition of the JastAdd-based abc
frontend. The parenthesised numbers show the
number of files for each concern.

programmer’s main weapon against complexity, the divi-
sions in Figure 3 are not information-hiding: they therefore
hinder, rather than help, understanding.

In contrast, the freedom of using ITDs to declare at-
tributes on any node, from any implementation file, allows
the code to be carefully structured around the concepts
of the problem domain — in this case, the language con-
structs of AspectJ. In particular, note that there are mod-
ules listed in Figure 4 that do not appear at all in Fig-
ure 3. One such module is Implicit Variables, which imple-
ments support for variables representing the current join-
point — thisJoinPoint, thisJoinPointStaticPart, and thisFEn-
closingJoinPointStaticPart. This module does not appear in
the modularisation of the Polyglot-based frontend because
its implementation is split up into little pieces of code in
the local, advice, and if-pointcut AST classes, and the visi-
tor for propagating data needed for the compiler to generate
methods.

Another effect of using I'TDs is that the need to use fac-
tories for instantiating AST and type objects is eliminated.



Polyglot uses factories so that any classes of the base-compiler
can be replaced with classes implementing new or different
behaviour. For maximal flexibility, the Polyglot convention
is to have a separate interface and implementation class for
every AST and type node. By using ITDs, the code that
would have been put into a new class can simply be injected
into the old. The Factories/interfaces line of Table 1 shows
the resulting savings in lines-of-code’. This additional code
was time-consuming and error-prone to write, and arguably
obscured the intention of the rest of the code, so the use of
ITDs was a significant improvement.

abc (Polyglot) | abc (JastAdd)

lines files | lines files

Factories/interfaces 5104 102 0 0
Nodes and members 436 109 94 7
Complete frontend 16745 254 | 4582 41

Table 1: The overheads of factories and class def-
initions, compared to that of ITDs and a DSL for
generating AST nodes

Table 1 also demonstrates the effect of using JastAdd’s
domain-specific language for defining the inheritance hier-
archy and structure of AST nodes. For the Polyglot-based
frontend, the number of lines devoted to Nodes and members
was calculated by counting only those lines of AST source
files that are part of the class definition itself (i.e. name/in-
terfaces/superclass) or declare fields for child AST nodes.
Grammars are commonly used to concisely and clearly ex-
plain the structure of languages and data-structures, and the
Jast Add-based frontend benefits much more from this clar-
ity than it does from the reduced number of lines-of-code:
one complaint the authors have often experienced and heard
from colleagues is that they found it very difficult to initially
understand the relationship between the many different AST
nodes in Polyglot and the Polyglot-based abc frontend.

3.2 Phases and Demand-Driven Evaluation

The original abc frontend performs 42 explicitly-scheduled
passes over the program AST, using visitors from Polyglot,
JavaToJimple, and the Polyglot-based AspectJ frontend it-
self. The main reason for the large number of passes is that
most non-trivial transformations or computations performed
on the AST require more than one pass.

The global-pointcut-declaration example described in Sec-
tion 2.2.1 is illustrates a two-pass visitor: before one visitor
could transform the advice-pointcuts in the program accord-
ing to the global-pointcut declarations, those declarations
had to first be collected by a separate pass. If the decla-
rations were collected by the same tree-walk as the trans-
forming pass, then global-pointcut declarations would only
apply to advice that was textually after them! The transfor-
mation pass has a data-dependence on the collection pass,
and therefore also a temporal dependence.

The trouble with the large number of passes is that the
temporal dependencies between them are implicit and brit-
tle. Whilst implementing the global-pointcut-declarations
extension, it took more than an hour of experimentation to

L All line counts were generated using SLOCCount by David
A. Wheeler

find the right order to run the new passes in relation to the
old.

The Jast Add-based frontend has only 5 explicitly-scheduled
passes: 3 for checking or transforming the AST (report-
ing errors, weaving inter-type declarations, and flattening
nested classes), and two for code generation. Although
the frontend contains other code for (partial) tree-walks
and more complicated traversals, they are all scheduled dy-
namically and automatically. This is possible because at-
tributes are evaluated on-demand, with optional caching for
attributes which are expensive to compute.

For example, recall that in the JastAdd code for imple-
menting global-pointcut-declarations shown in Section 2.3.5,
the list of all declarations is returned by the inherited at-
tribute globalPointcutDecls(). This attribute may be evalu-
ated at any time — automatically triggering the traversal
to collect all the relevant declarations. Since the attribute is
marked lazy, its value is cached after being evaluated once.

Demand-driven evaluation has an important effect on mod-
ularity: code can be decomposed by activity, rather than
according to temporal constraints. The resulting modules
are also more easily composed with new modules because
there is no need to manually discover and track temporal
dependencies, manually merge long lists of passes, or even
break what would have been circular temporal dependencies
(unless, of course, the actual data-dependencies are also cir-
cular).

Even industrial-strength compilers can suffer from unex-
pected surprises due to the combination of global data struc-
tures and mis-scheduling. Consider the AspectJ program
below where the inheritance hierarchy is changed using de-
clare parents and the class Middle is inserted in between
Lower and Upper. The Lower class has a single field of type
Inner. That type is only visible if the declare parents clause
is considered when looking up member types in Lower. The
current version of ajc gives a strange result when compil-
ing this program. If the member class Unrelated is included
in Upper then Inner is bound correctly, but if we remove
Unrelated then Inner can not be found. The unrelated mem-
ber type in Upper will thus cause member classes made vis-
ible through declare parents to be considered. These mem-
bers are, however, not considered otherwise. In our declara-
tive implementation of member type lookup we can change
a single equation to either include declare parents, the ap-
proach taken in abc, or exclude declare parents, the intended
behaviour in ajc, when computing member types.

class Upper {
// if we remove Unrelated then ajc
// fails to bind Inner in Lower
class Unrelated { }

class Middle extends Upper {
class Inner { }

class Lower extends Upper {
Inner inner;

aspect Aspect {
declare parents: Lower extends Middle;

}

3.3 Traversal and Inherited Attributes

Recall from Section 2.3.4 that inherited attributes provide
an AST node with simple and flexible access to information



about its environment or context. Whilst a synthesised at-
tribute is evaluated by traversing the AST top-down, inher-
ited attributes are implemented in the JastAdd system by
traversing up the tree. In contrast, Polyglot visitors only
traverse the tree top-down and left-to-right. This section
examines the consequences of this difference.

Polyglot visitors are well-suited to some problems. For
example, the problem of resolving local variable names in
well-nested blocks is straightforwardly solved in Polyglot by
the visitor maintaining a stack-based context: upon entry to
a block, a new scope is pushed onto the stack; the scope is
populated by local variable declarations; the whole context
is used to resolve names; and upon exit the top scope is
popped off.

However, the problem of resolving types, methods and
fields — in which uses may appear before definitions, and
the definitions may be in a super-type of the current class
— is less straightforward. It is solved in Polyglot by using
monolithic data-structures, which are populated gradually
during several separate passes over the whole AST: there
are several kinds of name-disambiguation passes, which are
followed by a type-building pass.

Section 2.3.4 outlined how the same problem is solved
using JastAdd: combinations of inherited and synthesised
reference attributes, when evaluated and cached, form a
graph superimposed on the AST — the AST is the sole
data-structure. This has several advantages. Firstly, since
the attributes are evaluated on-demand, time and memory
is conserved in comparison to populating large monolithic
data-structures with data when much of it may not be used
(execution time measurements are shown in Section 3.4).
Secondly, the algorithms used are more easily understood
because they are not broken up into parts residing in sep-
arate visitor classes. Finally, the attributes are much more
flexible than monolithic data-structures. In the Polyglot-
based abc frontend, the pattern-matcher constructs a com-
pletely separate representation of the program’s package and
class structure than that used by the type-checker — despite
much of the data being equivalent — because the monolithic
data structures used by the latter were not quite flexible
enough. In contrast, implementing the pattern matcher in
the JastAdd-based frontend was greatly simplified by using
the pre-existing attributes for navigating the inheritance hi-
erarchy of the program.

3.3.1 Inherited attributes using AspectJ

Fans of Laddad’s AspectJ textbook, AspectJ in Action,
may be thinking at this point that an inherited attribute
sounds similar to the wormhole pattern described in the
book. Indeed, both involve capturing context and using
it without explicitly passing it through any intermediate
stages. Note, though, that when referring to inherited at-
tributes, context means the nodes above an AST node on
the path to the root; when referring to the wormhole pat-
tern, context refers to the methods on the call-stack. Since
these two notions of context correspond for a standard re-
cursive implementation of a tree-walk, an AspectJ equiva-
lent is shown below for the globalPointcutDecls() inherited
attribute described in Section 2.3.5, along with the original
JastAdd version.

Firstly, using AspectJ and the wormhole pattern (together
with caching):

aspect CollectGlobalPointcutDecls

{
pointcut context(Program prog):
call(void Program.x(..)) && target(prog);
pointcut globalPointcutDecls():
call(List BodyDecl.globalPointcutDecls());
public List BodyDecl.globalPointcutDecls()
throw new RuntimeException(
”should._always_be_intercepted!”);
}
private List BodyDecl.cachedGPDs = null;
List around(Program prog):
cflow(context (prog)) && globalPointcutDecls()
if (prog.cachedGPDs == null)
prog.cachedGPDs =
prog. collectGlobals (new List());
return prog.cachedGPDs;
}
}

Secondly, the JastAdd equivalent:

inh lazy BodyDecl.globalPointcutDecls();
eq Program.getCompilationUnit().globalPointcutDecls() =
collectGlobals (new List());

3.4 Computational Cost

A natural question that arises is, of course, what price
must be paid in terms of performance. Demand-driven eval-
uation has some overheads compared to a hand-optimised
solution written purely for speed; also, a certain amount of
generality is unavoidable when trying to design an extensible
framework, and this in turn adds to execution time.

In this section, we shall demonstrate that the runtime
costs of employing the declarative JastAdd system are not
at all prohibitive — in fact, performance is significantly bet-
ter for the JastAdd-based frontend (abc-ja for brevity in
what follows) than for the original abc, written in pure Java
and using Polyglot’s extensibility mechanisms. An in-depth
study of performance considerations is beyond the scope of
this paper, however, and the interested reader is referred
to [10] for a more thorough treatment.

To test the performance of the AspectJ extension, we com-
piled AJHOTDRAW [28], an aspect-oriented refactoring of
JHOTDRAW [11] that makes heavy use of ITDs, pointcuts
and advice, declare parents, declare soft and other features
of AspectJ. Also, since Java is (mostly) a subset of Aspectl,
we repeated our measurements with the original pure-Java
version of JHOTDRAW.

Our results are summarised in Table 2. Generally, com-
pilation time with abc is dominated by the backend, Soot,
which performs some expensive analyses and optimisations.
This is the reason why we give a separate running time for
just the frontend passes of the compiler, which is, of course,
the only difference between abc and abc-ja. We can see that
typically the time spent in the front-end is reduced by more
than 50%, and correspondingly the overall runtime drops by
around 25% with the new frontend.

These observations are roughly in line with the previously
reported performance numbers for the JastAdd system as a
Java compiler, and so should come as no surprise. The fact
that we can achieve such better performance with a smaller
amount of better structured code is particularly pleasing.



[ Benchmark | Lines of Code || abc (frontend) | abc (full) | abc-ja (frontend) | abc (full) |
AJHOTDRAW 21055 44.35s 84.41s 21.80s 64.73s
JHOTDRAW 28385 51.68s 97.42s 24.21s 72.83s

Table 2: Times for frontend passes and full compilation for our benchmarks

4. DISCUSSION

In Section 3 we compared a pure object-oriented imple-
mentation in Java with an aspect-oriented solution imple-
mented using JastAdd. In this section we discuss the main
differences in implementing an AspectJ frontend from an
extensibility and modularity point of view. We also try to
generalise some of our conclusions to either the domain of
extensible compiler construction or aspect-oriented software
development at large.

The classical decomposition of a compiler is into an under-
lying tree structure and a number of computations operating
on top of that structure. Such computations are often im-
plemented using the visitor pattern in object-oriented lan-
guages. Extensibility of such structures is traditionally a
problem and many compiler frameworks support extensions
to either the tree structure or to the computations, but not
both. This particular problem has been called the Ezpres-
ston Problem in recent years, and there have been many
proposals of extensible visitors, extended type systems, and
new language features to solve the problem.

Polyglot is based on an extensible visitor pattern which
allows for such decomposition and extension in both dimen-
sions. Combining modules with different decomposition cri-
teria is, however, cumbersome. Consider the scenario where
a base compiler is decomposed in a tree structure and a set
of analyses, while extensions are decomposed in one module
for each new language construct. Each language construct
needs to extend one or more visitors and these new visitors
need to be explicitly combined either through a linear inher-
itance hierarchy or a visitor pattern supporting composition
of visitors. Both solutions introduce unnecessary dependen-
cies between unrelated language constructs, which makes it
harder to combine extensions.

Inter-type declarations provide a more flexible solution in
which the addition of node types and new methods in exist-
ing node types can be modularised freely, particularly when
combined with declarative attributes, as discussed below.
Visitor patterns also rely on some glue code being written
to enable extensibility. This is not only tedious but also error
prone, which we ourselves experienced while using Polyglot:
If the pattern is not followed correctly then the solution is
not extensible. A possible drawback of using inter-type dec-
larations is that a traversal pattern defined using introduced
methods can not be reused in the same way as a visitor. This
is not, in our experience, a problem since traversal patterns
are either very simple, e.g., a bottom-up-left-right traversal,
or so complex that they are not reused. We implement sim-
ple traversals using the generic traversal functionality pro-
vided in the top node in the JastAdd AST hierarchy. If a
complex traversal needs to be reused it can be parameterised
by an argument containing the actual computation for each
node. Another drawback is that most systems supporting
ITDs require a full program analysis during compilation.

An often overlooked problem is how handling of depen-
dencies between different analyses affects modularity. Con-

sider the problem of name resolution and type binding in an
object-oriented language. The type of an expression access-
ing a field depends on name resolution, since the field name
needs to be looked up and associated with a corresponding
declaration to determine its type. However, it is perfectly
fine for such a field to be defined in a superclass or even
an implemented interface. We thus have to compute the in-
heritance hierarchy prior to looking up fields, which makes
name resolution depend on type binding. Therefore, name
resolution and type binding are mutually dependent.

A visitor based solution would solve this problem by schedul-
ing a number of traversals over the AST where passes share
information through external data-structures, e.g. symbol
tables. Such structures are usually hard to extend mod-
ularly to support new language features. Moreover, when
adding inter-type declarations to a language we introduce
new dependences between name resolution and type bind-
ing and must therefore schedule new passes which affect the
information in the symbol table. Incorrect scheduling may
result in strange behaviour such as the example with inner
classes in Section 3.2. Dependencies between computations
thus restrict the way we can modularise visitors and require
error prone scheduling of visitor passes.

These problems are alleviated by using declarative at-
tributes in JastAdd which provides two new modularisa-
tion mechanisms: demand-driven evaluation and inherited
attributes.

This enables arbitrary modularisation at the attribute
level, which makes it trivial to decompose the system ac-
cording to any desired criterion.

The functional programming community has for a long
time acknowledged lazy evaluation as an important mod-
ularisation mechanism [18]. The demand-driven evaluation
used in JastAdd is a simplified form of lazy evaluation where
attributes are evaluated lazily but arguments are evaluated
strictly. It allows us to specify general properties for AST
nodes at various levels of abstraction and only pay the eval-
uation cost if they are actually needed.

Another advantage of the declarative model with fine-
grained attributes is that, in our experience, it suffices to
consider only a very simple join-point model. JastAdd only
supports method execution interception with only one type
of advice: around advice. Moreover, the pointcut language
only supports explicit naming of a single method with a
fully qualified name. There is thus no support for quantifi-
cation or method patterns, and no dynamic pointcuts. We
believe that part of the reason that we do not need quan-
tification is that we operate on an AST with a deep class
hierarchy. There is often a common superclass that can host
the behaviour shared by many node types. In a few cases we
added a new interface, used declare parents to make some
classes implement that interface, and introduced methods
with shared behaviour through that interface. This is admit-
tedly a form of quantification, but in a very controlled fash-
ion using only explicit enumeration. Another reason may be



that in a declarative model it does not really make sense to
point out a series of execution points. We conclude that, in
our case-study, we not have benefited from a richer pointcut
language or more dynamic aspect features.

5. RELATED WORK

The structure of abc as well as extensible compiler con-
struction using JastAdd have been presented elsewhere by
one or more of the authors [1,10]. In this paper we build on
that work and give a detailed comparison between a state-of-
the-art object-oriented solution and an aspect-oriented so-
lution. We also present an improved platform for AspectJ
language research and discuss how the requirements on mod-
ularisation mechanisms can be met using a combination of
aspect-oriented and compiler construction techniques.

Extensible computations on tree structures are often im-
plemented using an extensible visitor pattern, e.g., Poly-
glot [23] or Functional Visitors [7]. AspectJ can be used to
improve the pattern as shown in [13]. Adaptive program-
ming improves on visitors by making extensible computa-
tions structure shy, in particular when used with Demeter
Interfaces [26]. These approaches all enable flexible exten-
sion of individual phases, and even composition of phases,
but they still rely on manual scheduling for ordering dif-
ferent computations. In our pure object-oriented AspectJ
frontend we were required to schedule up to 45 difference
passes manually, which turned out to be both cumbersome
and error prone.

Static features of AOP are commonly used in compiler

construction courses, e.g. [17,25], and even with course projects

implementing subsets of AspectJ [19]. We are not aware
of any courses that focus on extensible compilers or com-
bine modularisation mechanisms from the aspect-oriented
and compiler construction communities.

There are several compiler construction tools that incor-
porate ideas from the aspect oriented community. Reber-
nak et al. give a brief survey of such tools in [24]. We are
not aware of any other large-scale experiment that evaluates
benefits from using AOP compared to a pure object-oriented
approach. Hausl implemented a subset of AspectJ for the
Steamloom Virtual Machine [15]. That work is based on
JastAdd as well but does not evaluate extensibility of mod-
ularisation mechanisms.

This paper is focused on the frontend of a compiler deal-
ing with static semantic analysis, but there are other ap-
proaches to extensibility dealing with different phases of the
compilation process. Bravenboer et al. showed how parsing
ambiguities in the context of AspectJ can be handled in an
elegant fashion using Generalised LR parsing [6]. Kojarski
and Lorenz present the composition framework AWESOME,
which is a multi-language aspect weaver [21]. Bockisch and
Mezini created a meta model for pointcuts and advice which
allowed them to completely separate the frontend from the
backend in their AspectJ compiler [5]. We believe that our
frontend could easily be extended to instantitate that meta
model and then benefit from alternative backends. A sim-
ilar model, albeit unpublished, is available in abc having
a Polyglot and a JastAdd based frontend sharing a com-
mon interface to the weaver and optimiser. The described
techniques and frameworks are complementary to the re-
search presented in this paper and it would be interesting
to combine them to enhance extensibility in all phases of an
AspectJ compiler.
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6. CONCLUSIONS

We have carried out a large scale experiment in modu-
lar compiler construction using the Java based framework
Polyglot and the aspect-oriented compiler-construction tool
JastAdd to implement an extensible AspectJ frontend. Both
solutions are integrated in abc and reuse the same backend
for optimisation and aspect weaving.

By combining AOP with modularisation techniques from
the compiler construction community we gained a more flex-
ible frontend where extension components are composable
and concerns better localised. Components can be modu-
larised freely using different criteria, e.g., according to com-
putation task or as new language constructs. Moreover, the
JastAdd based implementation is about half the size of the
Polyglot solution, while still being twice as fast for AspectJ
programs as well as normal Java programs.

A substantial part of the difference in size is accounted
for by using inter-type declarations instead of an extensi-
ble visitor pattern, thereby eliminating a lot of boilerplate
code such as factories. ITDs also result in less scattering
of related code, and AspectJ language concepts and con-
structs map directly to the module structure. There are,
however, often dependencies between various phases in a
compiler frontend and such computations need to be sched-
uled manually when using imperative tree traversals. State
shared between passes need to be stored in auxiliary data
structures passed from one traversal to the other. Mutually
dependent analyses, e.g. name binding and type analysis
for object-oriented languages, need to be carried out in mul-
tiple passes, often resulting in a single concern, like name
binding, being scattered over multiple modules. The Poly-
glot solution contains 45 traversals that need to be sched-
uled manually. The JastAdd solution, on the other hand,
contains only a few phases — such as static semantic anal-
ysis, AST simplifications, and backend model instantiation
— while keeping concerns localised.

Demand-driven evaluation with caching and attribute gram-
mars provides just the right tools for describing such analy-
ses in a declarative way where the scheduling is carried out
automatically by an underlying attribute evaluation engine.
This has an important effect on modularity: code can be
decomposed by activity, rather than according to tempo-
ral constraints. Demand-driven evaluation has also proven
efficient in practice, as our JastAdd based frontend outper-
forms the Polyglot based solution by a factor of two. We
believe that the AOP community at large can benefit from
viewing demand-driven evaluation as an important modu-
larisation mechanism. Reference attribute grammars gen-
eralise attribute grammars to graphs rather than trees and
can enhance extensible implementation of graph-based com-
putations relying on context-sensitive information.

In the near future we plan to implement AspectJ 5 by
combining the AspectJ extension with a JastAdd based Java
5 extension. It will be particularly interesting to see how
these extensions interact and how to express the integration
points. In the longer term, we intend to experiment with
the same modularisation mechanisms to improve backend
extensibility in abc.
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