
abc: an Implementation of AspectJ

Oege de Moor
Programming Tools Group

University of Oxford

joint work with
Ganesh Sittampalam, Sascha Kuzins, Chris Allan,

Pavel Avgustinov, Julian Tibble, Damien Sereni (Oxford)
Laurie Hendren, Jennifer Lhoták, Ondrej Lhoták, Bruno Dufour,

Christopher Goard, Clark Verbrugge (McGill)
Aske Simon Christensen (Århus)

What is AspectJ?

 disciplined metaprogramming

The bluffer's guide to aspect-lingo
Intertype declarations:
inject new members into
existing classes at compile-time

aspect observes base program
when certain patterns of events happen,
run some extra code

Static:

Dynamic:

“join point” = event = node in (dynamic) call graph

“pointcut” = pattern of events = set of nodes in call graph

“shadow” = program point that corresponds to join point

“advice” = extra code

EJB policy enforcement

public aspect DetectEJBViolations {

 pointcut uiCalls() : call(* java.awt.*+.*(..));

 before() : uiCalls() && cflow(call(* EnterpriseBean+.*(..))) {
System.err.println("UI call from EJB");

 }

}

Memoisation
abstract aspect Tabling {
 Hashtable table;
 abstract pointcut toMemo();

 before() : toMemo() && !cflowbelow(toMemo()) {
table = new Hashtable();

 }

 Object around(Object n) : toMemo() && args(n) {
 Object entry = table.get(n);

if (entry == null) {
 entry = proceed(n);
 table.put(n, entry);

 }
 return entry;
 }
}

Larger example: Ant Tournaments

Original task: ICFP 2005 programming contest
(won with Haskell by team from progtools group at Oxford)

Two ant hills do combat:
hill with most food wins

Practical assignment for 3rd year / MSc course:
construct pure Java simulator
add aspects for:
 - tracing

- checking invariants
- viewer

No Allocations in Inner Loop
aspect NoNewInRound {
 private int allocations;

 before() : call(* World.play(..)) {
 allocations = 0;
 }

 before() : cflow(call(* World.play(..))) && call(*.new(..)) &&
 !call(java.lang.StringBuffer.new(..)) {
 System.err.println("allocation during play: "+

thisJoinPoint.getSourceLocation());
 allocations++;
 }

 after() : call(* World.play(..)) {
 if (allocations > 0)
 System.err.println("allocations per game "+allocations);
 }
}

Aspects in Ants Tournaments
command:

Introduce comments
debugging:

Check Scores
Command Tracer
Live Ants
World Dumper

model:
Combat rules
Resting rules

profile:
No allocations in inner loop

style:
Use getters and setters

viewer:
Updating of hexagons

can all be included or excluded at w
ill

ajc: “standard” AspectJ compiler

aspects

java source

 jars

ajc class files

● builds on Eclipse compiler
● weaving with BCEL
● aims to be fast
● about 45KLOC, excluding IDE support

“weaving”

Daniel Sabbah (VP of development@ IBM): “critical to our survival”

● initially developed at Xerox Parc
● now part of Eclipse
● development mostly at IBM

What do you pay at runtime?

From the FAQ on aspectj.org:

We aim for the performance of our implementation of
AspectJ to be on par with the same functionality
hand-coded in Java. Anything significantly less
should be considered a bug.

...we believe that code generated by AspectJ has
negligible performance overhead.

Measuring the cost with *J

frontend

tagging bytecode
weaver

modified ajc

JVMPI interface

standard JVM

*J dynamic metric tool

JVMPI agent

metric analyser with
tag propagator

standard metrics

AspectJ-specific metrics

Dufour, Goard et al,
OOPSLA 2004

ajc 1.2 performance

DCM ProdLin Bean NllChk Figure LoD
0

10

20

30

40

50

60

70

80

90

100

Overheads(%)

Slowdown(*)

The need for a second compiler

● language definition other than test suite

● explore AOP language design space

● experiment with better code generation

● experiment with static analyses

 for safety checks and optimisations

Architecture of abc
.class .java

bytecode

AspectJ
AST

polyglot-based frontend

separator

advice weaving + postprocessing

Jimple IR

code generation + static weaving

Java
AST

Aspect
Info

fr
on

te
nd

ba
ck

en
d

Focus on optimising cflow

pointcut fooFromBar(int x) :
call(* foo()) &&
cflow(call(* bar(*)) && args(x))

foo

bar

call stack: bind x to the argument of
the last call to bar

bar
Obvious implementation:
maintain stack of bindings

push before each call to bar
pop after each call to bar
check top upon each call to foo

Intraprocedural optimisations
no variable binders?

use an integer counter instead of stack

share stacks for multiple pointcuts:
e.g. unify cflows in

call(* bar(..)) && cflow (call(* foo(..)) && args(t,*,*))
call(* bar(..)) && cflow (call(* foo(..)) && args(*,s,*))

to
cflow(call(* foo(..)) && args(x,y,*))

each cflow stack is local to a thread
perform CSE on stack retrieval within method

reduce overheads of cflow, but do not eliminate them

Analysis in abc

bytecode generator

AspectInfo
from frontend

weaver

woven
Jimple

matcher

weaving
instructions

analyses
and

optimisations

leverage existing analyses for pure Java

Desired cflow optimisations
to implement cflow(p)

update shadow:
push/pop stack at each shadow matching p

query shadow:
test whether stack nonempty

at query shadow:
predict emptiness:

if yes or no, remove test

at update shadow:
predict whether observed by any query:

if not, remove push/pop

Analysis information required

For each update shadow sh:

st ∈ mayCflow(sh) :
at statement st, we may be in the dynamic scope of sh

st ∈ mustCflow(sh) :
at statement st, we must be in the dynamic scope of sh

sh ∈ necessaryShadows:
∃ qsh ∈ mayCflow(sh) (it's queried)

∧ ¬ (∃ sh' : sh ∈ mustCflow(sh')) (otherwise it's
guaranteed to be
nonempty)

Example
aspect Aspect {
 pointcut fooFromBar(int x) :
 call(* foo()) &&
 cflow(call(* bar*(*)) && args(x));

 before(int x) : fooFromBar(x) {
 System.out.println("foo from bar, x="+x);
 }
}

public class Cflow {

 void foo() {}
 void bar1(int x) { foo(); baz(); }
 void bar2(int x) {}
 void baz() { foo(); }

 public static void main(String[] args) {
 Cflow c = new Cflow();
 c.foo();
 c.baz();
 c.bar1(3);
 c.bar2(4);
 }

}

Call Graph

bazfoo bar2bar1

baz

foo

main

bar1 bar2

foo

baz

foo

1 2 3 4

5

6

7

2nd call
triggers advice

never
triggers advice

always
triggers advice

mayCflow(3) = {5,6,7}
mustCflow(3) = {7}
necessaryShadows = {3}

Computing Analysis Information

computation of mayCflow(sh):

mayCflow { st | st is in intraprocedural shadow of sh}
repeat

for all methods m | st mayCflow : st may call m do
mayCflow mayCflow set of statements in m

until mayCflow does not change

“may call” : use Paddle framework for callgraph construction

set representation: BDDs via Jedd
(extension of Java for programming BDD-based analyses)

abc cflow performance (1)

figure quicksort sablecc ants LoD-sim LoD-
weka

Cona-
stack

Cona-sim
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

abc-none

abc-intra

abc-inter

ajc 1.2

ajc 1.2.1

abc cflow performance (2)

figure quicksort sablecc ants LoD-sim LoD-
weka

Cona-
stack

Cona-sim
0

20

40

60

80

100

120

140

160

180

200

220

abc-intra

abc-inter

ajc 1.2.1

Research Directions

● aspects are here to stay

● what might the next language look like?

● what are the main implementation challenges?

Where will AspectJ go?

open classes:
relaxed MultiJava, nested inheritance

pointcuts:
match on semantic properties
observation of traces
 via regular patterns
logic query language
hiding events

static property checking

reduce weave time:
matching automaton
for set of pointcuts

LANGUAGE:

IMPLEMENTATION:

safety checks:
“pure” aspects

incremental
compilation

EJB policy revisited
public aspect DetectEJBViolations {

 pointcut uiCalls() : call(* java.awt.*+.*(..));

 before() : uiCalls() && cflow(call(* EnterpriseBean+.*(..))) {
System.err.println("UI call from EJB");

 }

 declare error : uiCalls() && within(EnterpriseBean+)
 : "UI call from EJB";

}

“declare error/warning”:
only static pointcuts
(no cflow, this, target, args...)

