
Aspects for Trace Monitoring

Pavel Avgustinov1, Eric Bodden2, Elnar Hajiyev1, Laurie Hendren2,
Ondřej Lhoták3, Oege de Moor1, Neil Ongkingco1, Damien Sereni1,

Ganesh Sittampalam1, Julian Tibble1, Mathieu Verbaere1

1 Programming Tools Group, Oxford University, United Kingdom
2 Sable Research Group, McGill University, Montréal, Canada

3 Programming Languages Group, University of Waterloo, Waterloo, Canada

Abstract. A trace monitorobserves the sequence of events in a system, and takes
appropriate action when a given pattern occurs in that sequence. Aspect-oriented
programming provides a convenient framework for writing such trace monitors.
We provide a brief introduction to aspect-oriented programming in AspectJ. As-
pectJ only provides support for triggering extra code with single events, and we
present a new language feature (namedtracematches) that allows one to directly
express patterns that range over the whole current trace. Implementing this fea-
ture efficiently is challenging, and we report on our work towards that goal.
Another drawback of AspectJ is the highly syntactic nature of the event patterns,
often requiring the programmer to list all methods that havea certain property,
rather than specifying that property itself. We argue thatDatalogprovides an ap-
propriate notation for describing such properties. Furthermore, all of the existing
patterns in AspectJ can be reduced to Datalog via simple rewrite rules.
This research is carried out withabc, an extensible optimising compiler for As-
pectJ, which is freely available for download.

1 Introduction

When checking temporal properties at runtime, it is convenient to use a special tool for
instrumentation. Ideally we would like to give a clean, declarative specification of the
property to be checked, and then leave it to a tool to insert the appropriate instrumen-
tation, possibly applying optimisations to reduce the overheads inherent in checking
properties at runtime.

Aspect-oriented programming shares many of these goals, and in fact its stated am-
bitions are even grander, namely to improve software modularity in general. Briefly, an
aspect observes all events (method calls, field sets/gets, exceptions, . . .) that occur in
a system, and when certain events of interest happen, the aspect runs some extra code
of its own. The events of interest are specified by the programmer via special patterns
namedpointcuts; the intercepted events are namedjoinpoints.

In this paper, we aim to assess the suitability of AspectJ (the most popular aspect-
oriented programming language) for checking temporal properties. We do this via a
familiar example, namely that of checking the safe use of enumerations (no updates to
the underlying collection may happen while an enumeration is in progress).

In AspectJ one can specify only patterns that range over individual events, and we
present a language extension where patterns can range over the whole computation

history instead. It is quite hard to implement such a featureefficiently, and we report on
the success we have had in approaching the efficiency of hand-coded solutions.

Another difficulty with AspectJ is that the patterns are verysyntactic. It is common,
for instance, that one needs to intercept calls to ‘any methods of a classC that may
change the state ofC’. In AspectJ the solution is to list all such methods by name.We
propose to useDatalog instead to write queries that directly capture the propertyin
question. Datalog is a little more verbose than the pattern language of AspectJ, but we
show AspectJ patterns are merely syntactic sugar: they can all be translated into Datalog
via a set of simple rewrite rules.

2 Aspect-oriented Programming

In this section, we present aspect-oriented programming using fail-safeEnumerations
as a motivating example. In subsequent sections, we will show how the aspect-oriented
implementation of this example can be further improved using tracematches and Data-
log pointcuts.

TheEnumerationinterface is an older version of the more well-knownIterator type:
in particular it provides anextElementmethod, and alsohasMoreElements. An impor-
tant difference is that implementations ofIterator are expected to befail-fast: if the
underlying collection is modified while iteration is in progress (through any method
other thanIterator.remove()) an exception should be thrown. There is no such expecta-
tion for implementations ofEnumeration.

To illustrate, suppose we have a vectorv that is accessed by two concurrent threads.
Thread 1 creates an enumeration (saye) overv, and does some enumeration steps. In
the meantime, thread 2 modifiesv by adding an element. When thread 1 does another
enumeration step, its result is undefined. This situation isillustrated in Figure 1.

THREAD 1: THREAD 2:

. . .
Enumeration e =new MyEnum(v);
. . .
Elt a = (Elt) e.nextElement(); . . .
. . . v.add(b)
a = (Elt) e.nextElement(); . . .

Fig. 1. Unsafe use ofEnumeration.

Of course there is an easy way to make implementations ofEnumerationsafe. First,
add astampfield of typelong to both theVectorclass, and to any class implementing
Enumeration. One can think of this stamp as a version number: we use it to check
whether the current version of a vector is the same as when theenumeration was created.
Furthermore, everyEnumerationshould have asourcefield, which records the data
source (aVector) being enumerated.

Whenever a new enumeratione over a vectorv is created, we make the following
assignments:

2

e.stamp = v.stamp;
e. source = v;

The version of a vectorv changes upon each modification, so whenever a change is
made tov, we execute

v.stamp++;

Finally, whenever we do an enumeration step, it is checked that the version numbers
are still in synch:

if (e . source !=null && e.stamp != e. source .stamp)
throw new ConcurrentModificationException ();

We must make the check that the source is not null in case the enumeratione is in fact
not over a vector, but instead over some other collection type.

2.1 Aspects

Aspect-oriented programming provides us with the means to implement the check out-
lined above in a nice, modular fashion. Intuitively, an aspect can inject new members
into existing classes (the newstampandsourcefields above). An aspect can also inter-
cept events like the creation of an enumeration, and executesome extra code.

In AspectJ, aspects are implemented via aweaverthat takes the original system
and the aspect, and it instruments the original system as described in the aspect. As a
consequence, aspects achieve the goal set out at the beginning of this paper: the instru-
mentation code is neatly separated from the system being observed.

An outline of the aspect for the example of fail-fast enumeration is shown in Figure
2. Note how we introduce thestampfield onVectorby the declaration on Line 3. It is
declaredprivate— that means it is visible only from the aspect that introduced it.

Similarly, we introduce thestampandsourcefields on theEnumerationinterface,
along with appropriate accessor methods (Lines 6–12). Thishas the effect of introduc-
ing these new members on everyimplementationof Enumerationas well.

This mechanism of introducing new members onto existing classes is an admittedly
rather crude form ofopen classes; we shall briefly mention some more disciplined al-
ternatives below.

Now our task is to program the requisite updates to these newly introduced fields. In
AspectJ, one does this through so-calledadvicedeclarations. A piece of advice consists
of a pattern (thepointcut) describing the event we wish to intercept, some extra code to
execute, and an instruction when to execute that code (before or after the event).

Figure 3 shows three pieces of advice. The first piece, on Lines 1-6, intercepts all
constructor calls on implementations of the enumeration interface, where the construc-
tor call has the data sourcedsof typeVectoras its actual argument. We are assuming,
therefore, that all enumerations over vectors are created via such constructor calls. As
indicated earlier, here we have to set the version number (stamp) of the enumeration, as
well as itssourcefield.

The next piece of advice in Figure 3, on Lines 8-12, intercepts updates to theVec-
tor class, and whenever they occur, the version number is incremented. Here we have

3

1 public aspect SafeEnum{
2
3 private long Vector .stamp = 0;
4
5 // introduce new members on every implementation of Enumeration
6 private long Enumeration.stamp;
7 private void Enumeration.setStamp(long n) { stamp = n;}
8 private long Enumeration.getStamp(){ return stamp;}
9

10 private Vector Enumeration.source ;
11 private void Enumeration.setSource (Vector v){ vector = v;}
12 private Vector Enumeration.getSource (){return vector ;}
13
14 // ... intercept creation , update and nextElement ...
15 }

Fig. 2. Making Enumerationsafe.

employed a named pointcutvector updateto describe all calls to methods that may
change the state ofVector, and we shall look at its definition shortly.

The final piece of advice in Figure 3 occurs on Lines 14-19. This intercepts calls to
nextElement, and it checks whether the version number on the enumerationagrees with
that on the vector. If they do not coincide, an exception is thrown.

1 synchronized after (Vector ds) returning (Enumeration e) :
2 call (Enumeration+.new (..)) && args(ds)
3 {
4 e.setStamp(ds.stamp);
5 e. setSource (ds);
6 }
7
8 synchronized after (Vector ds) :
9 vector update() &&target (ds)

10 {
11 ds.stamp++;
12 }
13
14 synchronized before(Enumeration e) :
15 call (Object Enumeration.nextElement ()) &&target(e)
16 {
17 if (e.getSource () !=null && e.getStamp() != e.getSource (). stamp)
18 throw new ConcurrentModificationException ();
19 }

Fig. 3. Advice for safe enumeration.

The final piece of code we must write to complete this aspect isthe pointcut for
intercepting calls that may change the state of theVectorclass. The received way of
doing that is to carefully examine each method inVector, and list it in the pointcut. The

4

result is shown in Figure 4. Note that to reduce the number of disjucts, we have used
wildcards in the name patterns.

pointcut vector update() :
call (∗ Vector .add∗ (..)) ||
call (∗ Vector . clear ()) ||
call (∗ Vector . insertElementAt (..)) ||
call (∗ Vector .remove∗ (..)) ||
call (∗ Vector . retainAll (..)) ||
call (∗ Vector . set∗ (..));

Fig. 4. Pointcut for updates onVector.

To use the aspect we have just written, one just includes it onthe command line
of the compiler, and the result is an instrumented version ofthe original program, now
with the ability to catch unsafe uses of enumerations over vectors, whenever they occur.

2.2 Pros and cons of aspects

The advantages of using aspects are apparent. It allows easy, flexible instrumentation,
while retaining the advantages (in particular good compiler error messages) of a high-
level programming language. Experiments show that for the above example, the over-
heads introduced by aspects (as compared to making the changes by hand in the original
program) are negligible. Finally, AspectJ is a fairly mature programming language, with
good tool support, and numerous textbooks for newcomers to get started.

Not all is rosy, however. Our purpose is to check a property oftraces – that no
updates occur during enumeration – and while that property is encodedin the above
aspect, it would be much preferable to state the property directly, in an appropriate
specification formalism. The compiler should then generatethe checking code from the
specification. Also the pointcut in Figure 4 leaves much to bedesired: for a library class
like Vectorit might be acceptable, but what about a class that might change over time?
Whenever a new method is introduced, we have to remember thatthe pointcut may need
to be altered as well. Both of these problems (direct specification of trace properties and
semantic pointcuts) will be addressed below.

There are some further disadvantages of aspects that we shall not discuss further, but
it is still worthwhile to mention them here. For now, the semantics of aspects remain an
area of active research. In particular, a crisp definition ofthe AspectJ language itself is
still lacking. More generally, aspects introduce many problems with modular reasoning
about programs, because they can interfere with existing code in unpredictable ways.

Finally, above we have made light of the problem of modifyinglibrary classes like
VectorandEnumeration. Without support in the JVM, this is hard to achieve, and if we
wish to use a compile-time weaver some trickery is needed to replace everyVectorin an
application by our own subclassMyVector. These changes, while somewhat akward, can
be concisely expressed in AspectJ as well; a complete version of the above aspect, with
these changes incorporated, is available on-line as part ofa more general benchmark
suite [2].

5

2.3 Further reading

The AspectJ language was introduced by Kiczaleset al. in [55]. It is now widely used
in practice, and there is a wealth of textbooks available, for instance [19, 27, 41, 56,
57, 63]. We found especially Laddad’s book [57] very helpful, because it discusses a
wide variety of applications. It also identifies some commondesign patterns in aspect-
oriented programming.

Method interception as found in aspect-oriented programming has its origins in
previous work on meta-programming with objects, in particular [14, 54]. Of course
there have been earlier systems that provided similar formsof method interception, for
instance the POP-2 language [23] or even Cobol [59]. It was only with the advent of
aspects, however, that this language feature was recognised as a structuring mechanism
in its own right: before that, it was mostly used for debugging purposes.

The static features of aspects, namely the ability to injectnew class members into
existing classes also has a long history. Harrison and Ossher coined the termsubject-
oriented programming[48], but arguably their composition mechanisms are much more
powerful than those offered by AspectJ, as their open classes can be symmetrically
composed. Recent years have seen a lot of research on giving open classes a more
disciplined basis, for instance [26]. Nested inheritance [64] and virtual classes [37, 65]
have similar goals, while satisfying stronger formal properties.

While AspectJ is presently the most popular aspect-oriented programming lan-
guage, it is certainly not the only language available. CaesarJ adds dynamic deployment
of aspects, creating new instances of aspect classes and attaching them to computations
at runtime; it also has a notion of virtual classes instead ofAspectJ’s member injec-
tions [7]. A long list of current aspect-oriented programming systems can be found
at [6].

Following closely on the growing popularity of aspect-oriented programming, re-
searchers have started to address the problem of defining itssemantics. An early attempt
was a definitional interpreter by Wandet al. [76]; this offered little help, however, in
reasoning about aspect code. More refined models have since been proposed by Walker
et al. [74], Brunset al. [21], and Aldrich [4]. Aldrich’s model is especially attractive
because it gives a basis for modular reasoning about aspects. We have ourselves adapted
his language design to a full extension of the AspectJ language [66].

Our own interest in AspectJ started with a study of the runtime overheads [36]. At
the time, it was believed that such overheads are negligible, but it turns out that certain
features (in particular thecflow pointcut andaround advice) can lead to substantial
costs at runtime. We therefore decided to implement our own extensible, optimising
compiler, named theAspectBench Compiler, or abc for short [8]. Using its analysis
infrastructure, we were able to eliminate most of the overheads we identified earlier [9]
(one of the optimisations had been proposed earlier in [70],for a small toy language).
abcis however not only intended for optimisation; it is also designed as a workbench for
experiments in language design. The two major case studies we have undertaken so far
are tracematches [5] (discussed in the next section), and open modules [66] (mentioned
above). A detailed overview of all the work onabc to date, as well as a comparison
with the other AspectJ compilerajc, can be found in [10].abcitself can be downloaded
from [1].

6

3 Tracematches

Tracematchesare a new feature that we have introduced into AspectJ. As mentioned
earlier, normal advice in AspectJ is triggered by single events. Instead, in tracematches
one can specify a regular pattern that is matched against thewhole computation history
so far.

We need to be a bit more precise about the nature of events at this point. In AspectJ,
pointcuts intercept composite events like method calls, which have a duration. Instead,
when we talk about a trace, we mean the sequence of before/after actions associated
with such composite events: these are atomic.

To illustrate, an example tracematch is shown in Figure 5. Itis intended to intro-
duce an autosave feature into an existing editor system. A tracematch consists of three
parts: the declaration of the symbols (events) of interest (Lines 3 and 4), a regular pat-
tern (Line 6) and a piece of code (Line 8). Here there are two symbols: the end of a
saveoperation, and the end of the execution of a command. The pattern specifies five
consecutive occurrences of theactionsymbol. Because we have declared an interest in
saves as well, that means the pattern only matches if five actions occur, with no inter-
vening saves. When that happens, the extra code is run, and here that is just theautosave
method.

1 tracematch() {
2
3 sym saveafter : call (∗ Application .save ()) || call (∗ Application . autosave ());
4 sym action after : call (∗ Command.execute());
5
6 action [5]
7
8 { Application . autosave ();}
9 }

Fig. 5. An example tracematch.

This is an important point: the symbol declarations determine what trace we match
against. The original trace isfiltered, leaving out all events that do not correspond to a
declared symbol. The pattern is then matched against all suffixes of the filtered trace,
and when it matches, the code in the body of the tracematch is executed. Note that we
never filter out the very last event that happened: if we did, one could run the code
some time after an actual match occurred, with some irrelevant events in between. This
process of filtering and matching is illustrated in Figure 6.

The above tracematch is atypical because it does not bind anyvariables. Local trace-
match variables may be declared in the header, and are bound by the matching process.
In Figure 7, we have displayed a tracematch that is equivalent to the aspect for safe enu-
meration discussed earlier. This tracematch does bind two variables, namely the vector
dsand the enumeratione (Line 1). Here there are three symbols of interest (Lines 3-5):
creating an enumeration, doing a next step, and updating thesource. We wish to catch
unsafe uses of enumerations, and this is expressed by the pattern (Line 7). First we see

7

Fig. 6. Filtering of traces (no variables).

an enumeration being created, then zero or more ‘next’ steps, one or more updates and
finally an erroneous attempt to continue the enumeration.

1 tracematch(Vector ds, Enumeration e){
2
3 sym create enumafter returning(e) : call (Enumeration+.new (..)) && args(ds);
4 sym call next before : call (Object Enumeration.nextElement ()) &&target(e);
5 sym update sourceafter : vector update() &&target(ds);
6
7 create enum call next∗ update source+ call next
8
9 { throw new ConcurrentModificationException ();}

10
11 }

Fig. 7. Tracematch for safe enumeration.

It might appear that there is no need to mention the intervening enumeration steps
via call next *. However, because of our definition of matching via filtering, that would
be wrong. The pattern is matched against all suffixes of the filtered trace, and not to
arbitrary subsequences.

The precise meaning of filtering in the presence of local tracematch variables is de-
fined in the obvious manner: instantiate the free variables in all possible ways, and then
match as we did before. This process is illustrated in Figure8. As the figure suggests, if
a match occurs with multiple variable bindings, the extra code is run for each of those
bindings separately.

While it is nice to understand the semantics of tracematchesin terms of all possible
instantiations of its free variables, that does not providea basis for implementation. We
therefore also require an operational semantics. It is fairly obvious that this semantics
will keep a finite state machine for the pattern. Each state ofthe machine is labelled
with a constraintthat describes the variable bindings made to arrive at that state. To
wit, these constraints are equalities (variable = object),inequalities (variable6= object),

8

Fig. 8. Filtering of traces (with variables).

or combinations with conjunction and disjunction of these.A detailed definition of the
operational semantics can be found in our original paper on tracematches [5].

Unfortunately a direct implementation of the operational semantics does not yield a
practical system. The main problem is that of memory leaks, and there are two possible
sources of these. First, we may hang on too long to existing objects, merely because
they were bound to a tracematch variable. Second, partial matches may stay around
forever, despite the fact that they can never be completed. In fact, we keep our con-
straints in disjunctive normal form, so ‘partial matches’ correspond to disjuncts in our
representation of constraints.

To solve the problem of memory leaks, we have devised a staticanalysis of the
tracematch, which classifies each variablev on each states in one of three categories:

collectable when all paths in the automaton froms to all final states contain a transition
that bindsv. In that case we can use weak references for bindings ofv. Further-
more, when the garbage collector nullifies that weak reference, we can discard all
disjuncts that contain it.

weak not collectable, but the advice body does not mentionv. We can still use weak
references for bindings ofv, but it would be incorrect to discard a disjunct upon
nullification.

strong not collectable and not weak. A normal strong reference mustbe used to store
bindings ofv.

Note that this is a purely local analysis on the tracematch, involving no analysis of the
instrumented system, so that it does not significantly affect compile times.

The technique appears to be highly effective in practice. Asan example, we have
applied this instrumentation to JHotDraw, the popular opensource drawing program.
It has a feature for animating a drawing; that in fact introduces an unsafe use of enu-
merations, because one can edit the drawing while the animation is in progress. The
results of measuring memory usage over time are shown in Figure 9. We compared a
number of different systems. First, we evaluated our tracematch implementation with
leak detection and prevention disabled, using strong references for everything. This line

9

(TMNoLeak) stops after a few steps because execution becomes infeasibly slow. PQL
is a runtime trace property checking system created by Monica Lam and her students
at Stanford [61]. We tried several version of this benchmarkwith PQL (PQL and PQL-
Neg), and both show linear memory growth over time. Next the figure shows a naive
aspect (AjNaive), that instead of using new fields associates time stamps via an iden-
tity hash map. The figure also shows a smarter aspect (AjNormal), that uses a weak
identity hash map for the same purpose, and finally our optimised implementation of
tracematches. The aspect shown at the beginning of this paper also has constant space
usage. More details of these experiments can be found in a technical report [11].

Fig. 9. Memory usage for SAFEENUM (moving average to show trends).

Timewise our implementation is still quite a lot behind the hand-coded aspect at the
beginning of this paper. The time taken for 100,000 animation steps is shown in Figure
10. TM indicates our optimised implementation, whereas AjGold is the ‘gold standard’
aspect shown earlier. We believe that a static analysis of the instrumented program can
bring one closer to the gold standard, but for now that remains future work. While this
result may appear disappointing, we should mention the instrumented animation is still
quite usable on a normal PC.

Figure 11 shows some further substantial applications of tracematches. It would
take us too far afield to discuss each of these in detail, but a number of interesting
trends can be identified. The first column shows the name of thetracematch being ap-
plied, the second the base program being instrumented, and the third column displays
the size of that base program. Note that we have used some non-trivial applications. The
column marked ‘none’ shows the execution time, in seconds, of the non-instrumented
application. The ‘AspectJ’ column displays the execution time of a hand-coded version
in AspectJ for each benchmark. The final three columns measure our own implemen-
tation. ‘leak’ refers to switching off the above analysis, whereas ‘noidx’ means that
we do not use a special indexing data structure to quickly identify the relevant partial
matches when a new variable binding occurs. The final column is our optimised im-

10

Fig. 10. Runtimes for SAFEENUM.

plementation with both leak prevention and indexing switched on. Clearly indexing is
just as important as leak prevention, as indicated by the highlighted numbers in the top
three rows. The interested reader is referred to [11] for full details of these and other
experiments. The full experimental setup is available on-line for others to try with their
own monitoring systems [2].

Fig. 11. More tracematch benchmarks.

11

3.1 Summary of tracematches

The implementation of tracematches is surprisingly trickyto get right. Even ignoring
the issue of space leaks, we found several bugs in our first prototype, which only came
to light when we tried to prove the equivalence of the declarative and operational seman-
tics. As shown by the above experiments, the implementationhas now been thoroughly
tested, and it is available in the standard distribution of theAspectBench Compiler (abc)
for AspectJ.

The key to our efficient implementation consists of two parts: the prevention of
memory leaks, and an efficient data structure for retrievingpartial matches. Both of
these only rely on local analysis of the tracematch itself, not of the instrumented pro-
gram. We are currently investigating analyses of the instrumented program that may
help to approach the efficiency of hand-coded solutions.

3.2 Further reading

The idea of generating trace monitors from specifications isan old one, and there exists
a very large amount of previous research on this topic,e.g.[5,12,16,17,25,28,28,31–
35, 38, 40, 50, 61, 71, 72, 75]. These studies range from applications in medical image
generation through business rules to theoretical investigations of the underlying calcu-
lus. The way the patterns are specified varies, and temporal logic, regular expressions
and context-free languages all have been considered.

One theme shines through all of these previous works: trace monitors are an at-
tractive, useful notion, worthy of integration into a mainstream programming language.
This has not happened, however, because it turns out to be very difficult to generate
efficient code when the trace monitor is phrased as a declarative specification.

Our own contributions have been to provide a solid semantic basis for trace moni-
tors [5] (in particular a proof of equivalence between the declarative and operational se-
mantics), and to devise optimisations that make trace monitors feasible in practice [11].

4 Datalog pointcuts

We now turn to the way individual events are intercepted in AspectJ. Recall the defini-
tion of thevector updatepointcut in Figure 4: it was just a list of the relevant methods.
It would be much nicer to express the desired semantic property directly, and leave it to
the weaver to identify individual methods that satisfy the property.

So in this example, what is the property exactly? We are interested in methods that
may change the behaviour of thenextElementmethod on theEnumerationinterface.
Therefore, we seek to identify those methods ofVector that write to a memory loca-
tion that may be read by an implementation ofnextElement. How do we express that
intuition in a formal notation?

The key idea is that the program could be regarded as a relational database. Pointcuts
are then just queries over that database, which are used to identify shadows. A shadow
is a piece of code which at run-time gives rise to an event (a joinpoint) that can be
intercepted by AspectJ.

12

Examples of the relations that make up a program are shown in Figure 12. The
first three refer to declarations; theimplementsrelation is not transitive. The shadow
relations identify calls, method bodies, and field gets. Of course this list is not complete:
there are shadows for all kinds of events that can be intercepted in AspectJ. Finally, there
is the lexical containment relationcontains. Again this is not assumed to be transitive.

typeDecl (RefType T, String N, Boolean IsIntf, Package P)
T has name N in package P, IsIntf indicates T interface or not

implements (Class C, Interface I)
C implements interface I

methodDecl (Method M, String N, RefType C, Type T)
M has name N, is declared in C, and has return type T

callShadow (Shadow S, Method M, RefType T)
S is a call to M with static receiver type T

executionShadow (Shadow S, Method M)
S is the body of M

getShadow (Shadow S, Field F, RefType T)
S is get of F with static receiver type T

contains (Element P, Element C)
C is lexically contained in P

Fig. 12. Program relations.

We now have to decide on the query language for identifying shadows where the
aspect weaver will insert some extra code. Many authors havesuggested the use of logic
programming for this purpose, in particular Prolog. There are numerous problems with
that choice, however. First, it is notoriously hard to predict whether a Prolog query ter-
minates. In the present setting, non-terminating queries yield uncompilable programs,
which is undesirable. Second, to achieve acceptable efficiency, Prolog programs must
be annotated with parameter modes, with the cut operation and with tabling instruc-
tions. Again, for this application that would not be acceptable. Yet, the arguments for
using logic programming, in particular recursive queries,are quite compelling.

The appropriate choice is therefore ‘safe, stratifiedDatalog’ [39]. Datalog is similar
to Prolog, but it does not allow the use of data structures; consequently its implemen-
tation is far simpler. The restriction to safe, stratified Datalog programs guarantees that
all queries terminate. Yet, this restricted query languageis powerful enough to express
the properties we desire.

This is illustrated in Figure 13, which identifies the updatemethodsM of theVector
class. It starts by finding theVectorclass, and some implementationI of Enumeration;
I contains a methodN namednextElement. We check whether there exists a fieldF that
may be read byN, while it may be written byM.

It remains to show how predicates likemayRead(N,F) can be defined. The key is
that N does not need to directly readF; we must also cater for the situation whereN
calls another method, which in turn readsF. Similarly, the read shadow may not be
directly lexically contained in the body ofN, but perhaps in a method of a local class
defined insideN. The relevant Datalog query is shown in Figure 14:M may transitively
contain a shadowG which is a read of the fieldF.

13

vector update method(Method M) :-
// M is a method in a class V named Vector
typeDecl(V,’Vector’, ,),
methodDecl(M, ,V, ,),

// N is a method named nextElement in an
// implementation I of the Enumeration interface
typeDecl(E,’Enumeration’,,),
implements(I,E),
methodDecl(N,’nextElement’,I,),

// N may read field F (possibly via a chain of calls)
mayRead(N,F),

// M may write field F
mayWrite(M,F).

Fig. 13. Datalog for update methods.

mayRead(Method M,Field F) :-
callContains(M,G),
getShadow(F,G).

callContains(Method M, Shadow G) :-
mayCall*(M,M’), // static call chain from M to M’
executionShadow(E,M’),// body of M’ is E
contains+(E,G), // it contains a shadow G

mayCall*(Method X, Method Z) :- X=Z, method(X).
mayCall*(Method X, Method Z) :- mayCall(X,Y),mayCall*(Y,Z).

contains+(Element X, Element Z) :- contains(X,Z).
contains+(Element X, Element Z) :- contains(X,Y),contains+(Y,Z).

Fig. 14. Definition of mayRead.

4.1 An alternative surface syntax

Datalog is powerful, but for really simple pointcuts (like identifying calls to a method
with a specific signature) it is verbose and awkward. By contrast, the AspectJ pointcut
language shines in such examples, not least because any valid method signature is also
a valid AspectJ method pattern. This is one of the reasons newcomers find AspectJ easy
to pick up: if you know Java, you know how to express simple pointcuts. Can we give
Datalog a similarly attractive syntax?

One might also be concerned about the formal expressive power of Datalog. When
it comes to the finer points of AspectJ pointcuts, can they really be expressed as Datalog
queries?

The answer to both of these questions is ‘yes’. We have constructed a translation
from AspectJ pointcuts to Datalog, which consists solely ofsimple rewrite rules. It is

14

our intention to open up that implementation to advanced users, so they can define new
query notations, along with rules for reducing them to Datalog.

Here is an example rule, used in the translation ofcall pointcuts.

aj2dl(call(methconstrpat),C,S)
→

∃ X, R : (methconstrpat2dl(methconstrpat,C,R,X), callShadow(S,X,R))

The constructoraj2dl(PC,C,S) is used to drive the translation: it takes a pointcutPC,
the current aspect classC, and a shadowS. This will be reduced to a Datalog query
containing justC and S as free variables. Our implementation usesStratego, which
allows one to record the rewrite rules in concrete syntax, almost exactly as shown above
[73].

4.2 Further reading

Various deficiencies of the AspectJ pointcut language are well-documented in the litera-
ture and on mailing lists [13,18,22,49]. Such dissatisfaction has led to several proposals
for adopting Prolog as an alternative pointcut language [30,43,45]. Indeed, examples of
systems that have built on those ideas are Alpha, Aspicere, Carma, Compose*, LogicAJ,
Sally, and Soul [3, 15, 20, 42, 44, 47, 69]. However, the complex operational behaviour
of Prolog renders it, in our view, too strong for the purpose of a pointcut language. We
believe that this is the principal reason that none of these research prototypes has found
widespread usage.

The program understanding community has long advocated a view of software sys-
tems as a relational database [24, 60]. They also considerednew query languages, in-
cluding Prolog, with [53] being an early example. It was soonrealised that at a min-
imum, the query language must be able to express transitive closure [67]. Jarzabek
proposed a language named PQL [52] that added such operatorsto a variant of SQL
(not to be confused with PQL of Lamet al., discussed below). The SQL syntax makes
it rather awkward to express graph traversals concisely, however. A modern system that
uses a tabled variant of Prolog is JQuery [51,62].

The program analysis community has also frequently revisited the use of logic pro-
gramming for specifying analyses. An early example making the connection is a paper
by Reps [68]. More recently [29] provided an overview of the advantages of using logic
programming to specify complex dataflow analyses. Very recently Martin et al. pro-
posed another PQL (not to be confused with Jarzabek’s language discussed above), to
find bugs in compiled programs [58,61]. Interestingly, the underlying machinery is that
of Datalog, but with a completely different implementation, using BDDs to represent
solution sets [77].

All these developments led us to the conclusion that Datalogis an appropriate query
language for applications in program understanding, for pointcuts in aspect-oriented
programming, and for program analysis. We have implementedthe CodeQuest system
as a first prototype, and are now working towards its integration into our AspectJ com-
piler abc[46].

15

5 Conclusion

We have shown how aspects can be used for checking temporal properties at runtime.
The design and implementation of new features for such property checking is an in-
teresting new field, requiring the joint efforts of experts in specification formalisms, in
aspect-orientation, in program analysis and in compiler construction. We believe we
have only scratched the surface, and hopefully this paper will encourage others to join
us in our exploration. It would be especially interesting toconsider other logics for
expressing trace properties. One of us (Bodden) has alreadyimplemented a similar sys-
tem [17,71] based on LTL in lieu of regular patterns, also on top ofabc.

It is important that a system for runtime instrumentation allows the programmer to
make a judicious choice between static properties and dynamic ones. Our use of Datalog
to describe compile-time analysis, for the purpose of identifying instrumentation points,
is a step in that direction.

It is unlikely that a perfect specification notation can be found to express all desir-
able properties. It seems that an extensible syntax, where programmers can introduce
new notations that are reduced to existing notions, provides a good compromise.
AcknowledgmentsWe would like to thank Chris Allan, Aske Simon Christensen, Sascha
Kuzins and Jennifer Lhoták for the collaboration that led up to this work. This re-
search has been supported, in part, by EPSRC in the United Kingdom and by NSERC
in Canada.

References

1. abc. The AspectBench Compiler. Home page with downloads,FAQ, documentation, support
mailing lists, and bug database.http://aspectbench.org.

2. abc team. Trace monitoring benchmarks.http://abc.comlab.ox.ac.uk/
packages/tmbenches.tar.gz, 2006.

3. Bram Adams. Aspicere.http://users.ugent.be/∼badams/aspicere/, 2004.
4. Jonathan Aldrich. Open Modules: modular reasoning aboutadvice. In Andrew P. Black,

editor,Proceedings of ECOOP 2005, 2005.
5. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,

Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.
Adding Trace Matching with Free Variables to AspectJ. InObject-Oriented Programming,
Systems, Languages and Applications, pages 345–364. ACM Press, 2005.

6. AOSD.NET. Tools for developers.http://www.aosd.net/wiki/index.php?
title=Tools for Developers, 2006.

7. Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of AspectJ.
In Transactions on Aspect-Oriented Software Development, volume 3880 ofLecture Notes
in Computer Science, pages 135–173. Springer, 2006.

8. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. abc: An extensible AspectJ compiler. InAspect-Oriented Software Development
(AOSD), pages 87–98. ACM Press, 2005.

9. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. Optimising aspectj. InPLDI ’05: Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementation, pages 117–128, New York, NY,
USA, 2005. ACM Press.

16

10. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer
Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. abc: An extensible AspectJ compiler. InTransactions on Aspect-Oriented Software
Development, volume 3880 ofLecture Notes in Computer Science, pages 293–334. Springer,
2006.

11. Pavel Avgustinov, Julian Tibble, Eric Bodden, Laurie Hendren, Ondřej Lhoták, Oege
de Moor, Neil Ongkingco, and Ganesh Sittampalam. Efficient Trace Monitoring. Tech-
nical Report abc-2006-1, AspectBench Compiler Project, 2006. http://abc.comlab.
ox.ac.uk/techreports#abc-2006-1.

12. Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based runtime
verification. InFifth International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 04), volume 2937 ofLecture Notes in Computer Science, pages 44–
57. Springer, 2003.

13. Ohad Barzilay, Yishai A. Feldman, Shmuel Tyszberowicz,and Amiram Yehudai. Call and
execution semantics in AspectJ. InFoundations Of Aspect Languages (FOAL), pages 19–24,
2004. Technical report TR #04-04, Department of Computer Science, Iowa State University.

14. Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik, and Frank
Zdybel. Commonloops: merging common lisp and object-oriented programming. In Nor-
man K. Meyrowitz, editor,ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), volume 791, pages 152–184. ACM Press, 1986.

15. Christoph Bockisch. Alpha.http://www.st.informatik.tu-darmstadt.de/
static/pages/projects/alpha/index.html, 2005.

16. Christoph Bockisch, Mira Mezini, and Klaus Ostermann. Quantifying over dynamic prop-
erties of program execution. In2nd Dynamic Aspects Workshop (DAW05), Technical Report
05.01, pages 71–75. Research Institute for Advanced Computer Science, 2005.

17. Eric Bodden. J-LO - A tool for runtime-checking temporalassertions. Master’s thesis,
RWTH Aachen University, 2005.

18. Ron Bodkin. Pointcuts need a long form.http://dev.eclipse.org/mhonarc/
lists/aspectj-users/msg05971.html, 2006.

19. Oliver Böhm.Aspectorientierte Programmierung mit AspectJ 5. Dpunkt.verlag, 2006.
20. Johan Brichau, Kim Mens, and Kris de Volder. SOUL/aop.http://prog.vub.ac.be/

research/aop/soulaop.html, 2002.
21. Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely. µABC: a minimal aspect

calculus. InProceedings of CONCUR 2004, volume 3170 ofLecture Notes in Computer
Science, pages 209–224, 2004.

22. Bill Burke. hasandhasfieldpointcut expressions.http://aosd.net/pipermail/
discuss aosd.net/2004-May/000958.html, 2004.

23. Rod M. Burstall and Robin J. Popplestone. POP-2 reference manual. In Bernard Meltzer
and Donald Michie, editors,Machine Intellingence, volume 5, pages 207–246. Edinburgh
University Press, 1968.

24. Yih Chen, Michael Nishimoto, and C. V. Ramamoorthy. The Cinformation abstraction
system.IEEE Transactions on Software Engineering, 16(3):325–334, 1990.

25. Marı́a Augustina Cibrán and Bart Verheecke. Dynamic business rules for web service com-
position. In2nd Dynamic Aspects Workshop (DAW05), pages 13–18, 2005.

26. Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava: modular
open classes and symmetric multiple dispatch for java. InOOPSLA ’00: Proceedings of the
15th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 130–145, New York, NY, USA, 2000. ACM Press.

27. Adrian Colyer, Andy Clement, George Harley, and MatthewWebster. Eclipse AspectJ:
Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ development tools.
Addison-Wesley, 2004.

17

28. Marcelo d’Amorim and Klaus Havelund. Event-based runtime verification of java programs.
In WODA ’05: Proceedings of the third international workshop on Dynamic analysis, pages
1–7. ACM Press, 2005.

29. Stephen Dawson, C. R. Ramakrishnan, and David Scott Warren. Practical program analysis
using general purpose logic programming systems. InACM Symposium on Programming
Language Design and Implementation, pages 117–126. ACM Press, 1996.

30. Kris de Volder. Aspect-oriented logic meta-programming. In Pierre Cointe, editor,2nd In-
ternational Conference on Meta-level Architectures and Reflection, volume 1616 ofSpringer
Lecture Notes in Computer Science, pages 250–272, 1999.

31. Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection and reso-
lution of aspect interactions. InProceedings of the ACM SIGPLAN/SIGSOFT Conference on
Generative Programming and Component Engineering (GPCE’02), pages 173–188, 2002.

32. Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interaction anal-
ysis of stateful aspects. In Karl Lieberherr, editor,3rd International Conference on Aspect-
oriented Software Development, pages 141–150, 2004.

33. Rémi Douence, Pascal Fradet, and Mario Südholt. Trace-based aspects. InAspect-oriented
Software Development, pages 141–150. Addison-Wesley, 2004.

34. Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Marc Ségura, and Mario
Südholt. An expressive aspect language for system applications with arachne. InAspect-
Oriented Software Development, pages 27–38, 2005.

35. Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition of crosscuts. In
Akinori Yonezawa and Satoshi Matsuoka, editors,Reflection 2001, volume 2192 ofLecture
Notes in Computer Science, pages 170–186. Springer, 2001.

36. Bruno Dufour, Christopher Goard, Laurie Hendren, Oege de Moor, Ganesh Sittampalam,
and Clark Verbrugge. Measuring the dynamic behaviour of aspectj programs. InOOP-
SLA ’04: Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 150–169, New York, NY, USA,
2004. ACM Press.

37. Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. InPOPL
’06: Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 270–282, New York, NY, USA, 2006. ACM Press.

38. Thomas Fritz, Marc Ségura, Mario Südholt, Egon Wuchner, and Jean-Marc Menaud. An ap-
plication of dynamic AOP to medical image generation. In2nd Dynamic Aspects Workshop
(DAW05), Technical Report 05.01, pages 5–12. Research Institute for Advanced Computer
Science, 2005.

39. Hervé Gallaire and Jack Minker.Logic and Databases. Plenum Press, New York, 1978.
40. Simon Goldsmith, Robert O’Callahan, and Alex Aiken. Relational queries over program

traces. InProceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 385–402, 2005.

41. Joseph D. Gradecki and Nicholas Lesiecki.Mastering AspectJ: Aspect-Oriented Program-
ming in Java. Wiley, 2003.

42. Trese group. Compose*.http://janus.cs.utwente.nl:8000/twiki/bin/
view/Composer/, 2005.

43. Stefan Hanenberg Günter Kniesel, Tobias Rho. Evolvable pattern implementations need
generic aspects. InProc. of ECOOP 2004 Workshop on Reflection, AOP and Meta-Datafor
Software Evolution, pages 116–126. June 2004.

44. Kris Gybels. Carma. http://prog.vub.ac.be/∼kgybels/Research/AOP.
html, 2004.

45. Kris Gybels and Johan Brichau. Arranging language features for more robust pattern-based
crosscuts. In2nd International Conference on Aspect-oriented SoftwareDevelopment, pages
60–69. ACM Press, 2003.

18

46. Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest: scalable source code
queries with Datalog. In Dave Thomas, editor,Proceedings of ECOOP 2006, Lecture Notes
in Computer Science. Springer, 2006.

47. Stefan Hanenberg and Rainer Unland. Sally.http://dawis.icb.uni-due.de/
?id=200, 2003.

48. William Harrison and Harold Ossher. Subject-oriented programming (a critique of pure
objects). In A. Paepcke, editor,ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 411–428. ACM Press, 1993.

49. Jim Hugunin. Support for modifiers in typepatterns.http://dev.eclipse.org/
mhonarc/lists/aspectj-users/msg01578.html, 2003.

50. Peter Hui and James Riely. Temporal aspects as security automata. InFoundations of
Aspect-Oriented Languages (FOAL 2006), Workshop at AOSD 2006, Technical Report #06-
01, pages 19–28. Iowa State University, 2006.

51. Doug Janzen and Kris de Volder. Navigating and querying code without getting lost. In2nd
International Conference on Aspect-Oriented Software Development, pages 178–187, 2003.

52. Stan Jarzabek. Design of flexible static program analyzers with PQL.IEEE Transactions on
Software Engineering, 24(3):197–215, 1998.

53. Shahram Javey, Kin’ichi Mitsui, Hiroaki Nakamura, Tsuyoshi Ohira, Kazu Yasuda, Kazushi
Kuse, Tsutomu Kamimura, and Richard Helm. Architecture of the XL C++ browser. In
CASCON ’92: Proceedings of the 1992 conference of the Centrefor Advanced Studies on
Collaborative research, pages 369–379. IBM Press, 1992.

54. Gregor Kiczales and Jim des Rivieres.The Art of the Metaobject Protocol. MIT Press, 1991.
55. Gregor Kiczales, John Lamping, Anurag Menhdekar, ChrisMaeda, Cristina Lopes, Jean-

Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit and Satoshi
Matsuoka, editors,European Conference on Object-oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 220–242. Springer, 1997.

56. Ivan Kiselev.Aspect-oriented programming with AspectJ. SAMS, 2002.
57. Ramnivas Laddad.AspectJ in Action. Manning, 2003.
58. Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzintars Avots,

Michael Carbin, and Christopher Unkel. Context-sensitiveprogram analysis as database
queries. InPODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 1–12, New York, NY, USA, 2005. ACM
Press.

59. Ralf Lämmel and Kris De Schutter. What does aspect-oriented programming mean to Cobol?
In AOSD ’05: Proceedings of the 4th international conference on Aspect-oriented software
development, pages 99–110, New York, NY, USA, 2005. ACM Press.

60. Mark A. Linton. Implementing relational views of programs. In Peter B. Henderson, editor,
Software Development Environments (SDE), pages 132–140, 1984.

61. Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors us-
ing PQL: a program query language. InProceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages and Applications, pages
365–383, 2005.

62. Edward McCormick and Kris De Volder. JQuery: finding yourway through tangled code. In
OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 9–10, New York, NY, USA, 2004.
ACM Press.

63. Russell Miles.AspectJ cookbook. O’Reilly, 2004.
64. Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable extensibility via nested

inheritance. InOOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications, pages 99–115, New
York, NY, USA, 2004. ACM Press.

19

65. Martin Odersky and Matthias Zenger. Scalable componentabstractions. InOOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications, pages 41–57, New York, NY, USA, 2005. ACM Press.

66. Neil Ongkingco, Pavel Avgustinov, Julian Tibble, Laurie Hendren, Oege de Moor, and
Ganesh Sittampalam. Adding open modules to AspectJ. InAOSD ’06: Proceedings of the
5th international conference on Aspect-oriented softwaredevelopment, pages 39–50, New
York, NY, USA, 2006. ACM Press.

67. Santanu Paul and Atul Prakash. Querying source code using an algebraic query language.
IEEE Transactions on Software Engineering, 22(3):202–217, 1996.

68. Thomas W. Reps. Demand interprocedural program analysis using logic databases. InWork-
shop on Programming with Logic Databases, ILPS, pages 163–196, 1993.

69. Tobias Rho, Günter Kniesel, Malte Appeltauer, and Andreas Linder. LogicAJ. http:
//roots.iai.uni-bonn.de/research/logicaj/people, 2006.

70. Damien Sereni and Oege de Moor. Static analysis of aspects. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development (AOSD), pages 30–39,
2003.

71. Volker Stolz and Eric Bodden. Temporal Assertions usingAspectJ. InRV’05 - Fifth Work-
shop on Runtime Verification, volume 144(4) ofElectronical Notes in Theoretical Computer
Science, pages 109–124. Elsevier Science Publishers, 2005.

72. Wim Vanderperren, Davy Suvé, Marı́a Augustina Cibrán, and Bruno De Fraine. Stateful
aspects in JAsCo. InSoftware Composition: 4th International Workshop, volume 3628 of
Lecture Notes in Computer Science, pages 167–181. Springer, 2005.

73. Eelco Visser. Meta-programming with concrete object syntax. InGenerative programming
and component engineering (GPCE), pages 299–315, 2002.

74. David Walker, Steve Zdancewic, and Jay Ligatti. A theoryof aspects. InICFP ’03: Pro-
ceedings of the eighth ACM SIGPLAN international conference on Functional programming,
pages 127–139, New York, NY, USA, 2003. ACM Press.

75. Robert Walker and Kevin Viggers. Implementing protocols via declarative event patterns. In
ACM Sigsoft International Symposium on Foundations of Software Engineering (FSE-12),
pages 159–169, 2004.

76. Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice and
dynamic join points in aspect-oriented programming.ACM Trans. Program. Lang. Syst.,
26(5):890–910, 2004.

77. John Whaley, Dzintars Avots, Michael Carbin, and MonicaS. Lam. Using datalog and binary
decision diagrams for program analysis. In Kwangkeun Yi, editor, Proceedings of the 3rd
Asian Symposium on Programming Languages and Systems, volume 3780 ofLNCS, pages
97–118. Springer-Verlag, November 2005.

20

