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Abstract. A trace monitorobserves the sequence of events in a system, and takes
appropriate action when a given pattern occurs in that segué\spect-oriented
programming provides a convenient framework for writingtstrace monitors.
We provide a brief introduction to aspect-oriented prograng in AspectJ. As-
pectJ only provides support for triggering extra code witlgke events, and we
present a new language feature (nartradematchesthat allows one to directly
express patterns that range over the whole current traggemnenting this fea-
ture efficiently is challenging, and we report on our work &ods that goal.
Another drawback of AspectJ is the highly syntactic natdre event patterns,
often requiring the programmer to list all methods that haweertain property,
rather than specifying that property itself. We argue Datialog provides an ap-
propriate notation for describing such properties. Furttoge, all of the existing
patterns in AspectJ can be reduced to Datalog via simpldteemales.

This research is carried out wittbc, an extensible optimising compiler for As-
pectJ, which is freely available for download.

1 Introduction

When checking temporal properties at runtime, it is consettio use a special tool for
instrumentation. Ideally we would like to give a clean, @eative specification of the
property to be checked, and then leave it to a tool to inserafipropriate instrumen-
tation, possibly applying optimisations to reduce the beads inherent in checking
properties at runtime.

Aspect-oriented programming shares many of these goalsndact its stated am-
bitions are even grander, namely to improve software mattyia general. Briefly, an
aspect observes all events (method calls, field sets/getsptons, ...) that occur in
a system, and when certain events of interest happen, tleetasms some extra code
of its own. The events of interest are specified by the progranvia special patterns
namedpointcuts the intercepted events are nanjeidpoints

In this paper, we aim to assess the suitability of Aspec# iftlost popular aspect-
oriented programming language) for checking temporal @rigs. We do this via a
familiar example, namely that of checking the safe use ofrearations (no updates to
the underlying collection may happen while an enumerasan progress).

In AspectJ one can specify only patterns that range oveviohail events, and we
present a language extension where patterns can rangehaverible computation



history instead. It is quite hard to implement such a feagffieiently, and we report on
the success we have had in approaching the efficiency of baseld solutions.

Another difficulty with AspectJ is that the patterns are v@ytactic. It is common,
for instance, that one needs to intercept calls to ‘any nuthad a clas<C that may
change the state @'. In AspectJ the solution is to list all such methods by na¥ie.
propose to us®atalog instead to write queries that directly capture the proparty
question. Datalog is a little more verbose than the patemrguage of AspectJ, but we
show AspectJ patterns are merely syntactic sugar: theyldamtaanslated into Datalog
via a set of simple rewrite rules.

2 Agpect-oriented Programming

In this section, we present aspect-oriented programmimgydail-safeEnumeratios
as a motivating example. In subsequent sections, we wilstaw the aspect-oriented
implementation of this example can be further improvedgisiacematches and Data-
log pointcuts.

TheEnumeratiorinterface is an older version of the more well-knokarator type:
in particular it provides aextElemenmethod, and alshasMoreElementAn impor-
tant difference is that implementations loérator are expected to bfail-fast if the
underlying collection is modified while iteration is in pmegs (through any method
other thariterator.remové€)) an exception should be thrown. There is no such expecta-
tion for implementations odEnumeration

To illustrate, suppose we have a vectdihat is accessed by two concurrent threads.
Thread 1 creates an enumeration (sppverv, and does some enumeration steps. In
the meantime, thread 2 modifiedy adding an element. When thread 1 does another
enumeration step, its result is undefined. This situatidiiustrated in Figure 1.

THREAD 1: THREAD 2:

Enumeration e mew MyEnum(v);

Elt a = (Elt) e.nextElement(); .
. v.add(b)
a = (Elt) e.nextElement();

Fig. 1. Unsafe use oEnumeration

Of course there is an easy way to make implementatioBsafmeratiorsafe. First,
add astampfield of typelongto both theVectorclass, and to any class implementing
Enumeration One can think of this stamp as a version number: we use it églkch
whether the current version of a vector is the same as whemtimeeration was created.
Furthermore, everfEnumerationshould have aourcefield, which records the data
source (a&vecton being enumerated.

Whenever a new enumeratierover a vectow is created, we make the following
assignments:



e.stamp = v.stamp;
e.source =v;

The version of a vector changes upon each modification, so whenever a change is
made tov, we execute

v.stamp++;

Finally, whenever we do an enumeration step, it is checkattiie version numbers
are still in synch:

if (e.source !=null && e.stamp !=e.source.stamp)
throw new ConcurrentModificationException ();

We must make the check that the source is not null in case thmemtiore is in fact
not over a vector, but instead over some other collectioa.typ

2.1 Aspects

Aspect-oriented programming provides us with the meansmfdement the check out-
lined above in a nice, modular fashion. Intuitively, an asgmn inject new members
into existing classes (the nestampandsourcefields above). An aspect can also inter-
cept events like the creation of an enumeration, and exsome extra code.

In AspectJ, aspects are implemented viagaverthat takes the original system
and the aspect, and it instruments the original system asided in the aspect. As a
consequence, aspects achieve the goal set out at the begofrihis paper: the instru-
mentation code is neatly separated from the system beireywdzs

An outline of the aspect for the example of fail-fast enurtiereis shown in Figure
2. Note how we introduce th&tampfield onVectorby the declaration on Line 3. It is
declaredprivate— that means it is visible only from the aspect that introdLite

Similarly, we introduce thstampandsourcefields on theEnumerationinterface,
along with appropriate accessor methods (Lines 6—12).Adsshe effect of introduc-
ing these new members on evémyplementatiorof Enumeratioras well.

This mechanism of introducing new members onto existingsga is an admittedly
rather crude form obpen classesve shall briefly mention some more disciplined al-
ternatives below.

Now our task is to program the requisite updates to thesgnawbduced fields. In
AspectJ, one does this through so-cabelticedeclarations. A piece of advice consists
of a pattern (thg@ointcu) describing the event we wish to intercept, some extra code t
execute, and an instruction when to execute that code @efafter the event).

Figure 3 shows three pieces of advice. The first piece, onsLin8, intercepts all
constructor calls on implementations of the enumeratiteriace, where the construc-
tor call has the data sourds of type Vectoras its actual argument. We are assuming,
therefore, that all enumerations over vectors are createduch constructor calls. As
indicated earlier, here we have to set the version nungt@m{) of the enumeration, as
well as itssourcefield.

The next piece of advice in Figure 3, on Lines 8-12, interseypidates to th¥ec-
tor class, and whenever they occur, the version number is irerted. Here we have
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public aspect SafeEnum{
private long Vector.stamp = 0;

/I introduce new members on every implementation of Enuinara
private long Enumeration.stamp;
private void Enumeration.setStampg n) { stamp =n;}
private long Enumeration.getStamp() return stamp; }

private Vector Enumeration.source;
private void Enumeration.setSource (Vector ¥)vector = v}
private Vector Enumeration.getSource {return vector }

/I ... intercept creation, update and nextElement ...

Fig. 2. Making Enumeratiorsafe.

employed a named pointcuector updateto describe all calls to methods that may
change the state &fector, and we shall look at its definition shortly.

The final piece of advice in Figure 3 occurs on Lines 14-19sTitiercepts calls to
nextElementand it checks whether the version number on the enumeragices with
that on the vector. If they do not coincide, an exceptioniiewhm.

synchronized after (Vector ds)returning (Enumeration e) :
call (Enumerationiew(..)) && args(ds)
{

e.setStamp(ds.stamp);
e.setSource (ds);

}

synchronized after (Vector ds) :
vector update() &&target (ds)
{

ds.stamp++;

}

synchronized before(Enumeration e) :
call (Object Enumeration.nextElement()) &&rget(e)

if (e.getSource() !=mull && e.getStamp() = e.getSource (). stamp)
throw new ConcurrentModificationException ();
}

Fig. 3. Advice for safe enumeration.

The final piece of code we must write to complete this aspetitagpointcut for
intercepting calls that may change the state of\thetorclass. The received way of
doing that is to carefully examine each method/attor, and list it in the pointcut. The



result is shown in Figure 4. Note that to reduce the numbeisjpficts, we have used
wildcards in the hame patterns.

pointcut vector update() :
cal (x Vector.add (..)) ||
call (x Vector. clear ()) ||
call (x Vector.insertElementAt (..)) ||
call (x Vector.remove (..)) ||
cal (x Vector. retainAll (..)) ||
call (x Vector.sek (..));

Fig. 4. Pointcut for updates ovector.

To use the aspect we have just written, one just includes thercommand line
of the compiler, and the result is an instrumented versigh®briginal program, now
with the ability to catch unsafe uses of enumerations ovetors, whenever they occur.

2.2 Prosand cons of aspects

The advantages of using aspects are apparent. It allowsfeEaghle instrumentation,

while retaining the advantages (in particular good comgteor messages) of a high-
level programming language. Experiments show that for bwvea example, the over-
heads introduced by aspects (as compared to making theehpfand in the original

program) are negligible. Finally, AspectJ is a fairly matprogramming language, with
good tool support, and numerous textbooks for newcomersttstgrted.

Not all is rosy, however. Our purpose is to check a propertyrades — that no
updates occur during enumeration — and while that propsmy¢odedn the above
aspect, it would be much preferable to state the propersctly;, in an appropriate
specification formalism. The compiler should then gendtsehecking code from the
specification. Also the pointcutin Figure 4 leaves much tdé&gred: for a library class
like Vectorit might be acceptable, but what about a class that mightgdarer time?
Whenever a new method is introduced, we have to remembeahthpbintcut may need
to be altered as well. Both of these problems (direct spetiéin of trace properties and
semantic pointcuts) will be addressed below.

There are some further disadvantages of aspects that washdiscuss further, but
it is still worthwhile to mention them here. For now, the serties of aspects remain an
area of active research. In particular, a crisp definitiothefAspectJ language itself is
still lacking. More generally, aspects introduce many feois with modular reasoning
about programs, because they can interfere with existidg aounpredictable ways.

Finally, above we have made light of the problem of modiflibgary classes like
VectorandEnumerationWithout support in the JVM, this is hard to achieve, and if we
wish to use a compile-time weaver some trickery is needeeltiace everyectorin an
application by our own subcladsy\Vector These changes, while somewhat akward, can
be concisely expressed in AspectJ as well; a complete veofitne above aspect, with
these changes incorporated, is available on-line as partnobre general benchmark
suite [2].



2.3 Further reading

The AspectJ language was introduced by Kiczelesl. in [55]. It is now widely used
in practice, and there is a wealth of textbooks available,rfetance [19, 27, 41, 56,
57, 63]. We found especially Laddad’s book [57] very helphdcause it discusses a
wide variety of applications. It also identifies some comrdesign patterns in aspect-
oriented programming.

Method interception as found in aspect-oriented programgnhias its origins in
previous work on meta-programming with objects, in pattcyl4, 54]. Of course
there have been earlier systems that provided similar fofmeethod interception, for
instance the POP-2 language [23] or even Cobol [59]. It wdg with the advent of
aspects, however, that this language feature was recaiggmsss structuring mechanism
in its own right: before that, it was mostly used for debuggaurposes.

The static features of aspects, namely the ability to injeet class members into
existing classes also has a long history. Harrison and @ssireed the ternsubject-
oriented programmin@48], but arguably their composition mechanisms are muctemo
powerful than those offered by AspectJ, as their open clasaa be symmetrically
composed. Recent years have seen a lot of research on gpergaasses a more
disciplined basis, for instance [26]. Nested inheritaréq gnd virtual classes [37, 65]
have similar goals, while satisfying stronger formal pnties.

While AspectJ is presently the most popular aspect-oriept@gramming lan-
guage, itis certainly not the only language available. @akadds dynamic deployment
of aspects, creating new instances of aspect classes anbiag them to computations
at runtime; it also has a notion of virtual classes insteadsgdect)'s member injec-
tions [7]. A long list of current aspect-oriented programmisystems can be found
at [6].

Following closely on the growing popularity of aspect-otied programming, re-
searchers have started to address the problem of definsgnitantics. An early attempt
was a definitional interpreter by Warad al. [76]; this offered little help, however, in
reasoning about aspect code. More refined models have secepboposed by Walker
et al. [74], Brunset al.[21], and Aldrich [4]. Aldrich’s model is especially attrae
because it gives a basis for modular reasoning about aspéetsave ourselves adapted
his language design to a full extension of the AspectJ lagg(G6].

Our own interest in AspectJ started with a study of the ruatowerheads [36]. At
the time, it was believed that such overheads are negligibkst turns out that certain
features (in particular theflow pointcut andaround advice) can lead to substantial
costs at runtime. We therefore decided to implement our awensible, optimising
compiler, named théspectBench Compilepr abc for short [8]. Using its analysis
infrastructure, we were able to eliminate most of the ovadseve identified earlier [9]
(one of the optimisations had been proposed earlier in fé0la small toy language).
abcis however not only intended for optimisation; it is alsoidesd as a workbench for
experiments in language design. The two major case studidsmwe undertaken so far
are tracematches [5] (discussed in the next section), agl mpdules [66] (mentioned
above). A detailed overview of all the work @bcto date, as well as a comparison
with the other AspectJ compilajc, can be found in [10fabcitself can be downloaded
from [1].
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3 Tracematches

Tracematchesre a new feature that we have introduced into Aspect]. Agiomed
earlier, normal advice in AspectJ is triggered by singlenésdnstead, in tracematches
one can specify a regular pattern that is matched againstitbke computation history
so far.

We need to be a bit more precise about the nature of events atiint. In AspectJ,
pointcuts intercept composite events like method calls¢ckvhave a duration. Instead,
when we talk about a trace, we mean the sequence of befereéations associated
with such composite events: these are atomic.

To illustrate, an example tracematch is shown in Figure & ihtended to intro-
duce an autosave feature into an existing editor systemacdetnatch consists of three
parts: the declaration of the symbols (events) of intelgse6 3 and 4), a regular pat-
tern (Line 6) and a piece of code (Line 8). Here there are twobs}s: the end of a
saveoperation, and the end of the execution of a command. Therpatpecifies five
consecutive occurrences of thetionsymbol. Because we have declared an interest in
saves as well, that means the pattern only matches if fiverecticcur, with no inter-
vening saves. When that happens, the extra code is run, amthiagis just thautosave
method.

tracematch() {

sym save after : call ( « Application.save() )|| cal ( = Application .autosave () );
sym action after : call ( * Command.execute() );

action [5]

{ Application . autosave ();}

Fig.5. An example tracematch.

This is an important point: the symbol declarations detaemvhat trace we match
against. The original trace fétered, leaving out all events that do not correspond to a
declared symbol. The pattern is then matched against dikesifof the filtered trace,
and when it matches, the code in the body of the tracematcteuged. Note that we
never filter out the very last event that happened: if we digg oould run the code
some time after an actual match occurred, with some irrateents in between. This
process of filtering and matching is illustrated in Figure 6.

The above tracematch is atypical because it does not bindaaiaples. Local trace-
match variables may be declared in the header, and are bguhd matching process.
In Figure 7, we have displayed a tracematch that is equivtdeéhe aspect for safe enu-
meration discussed earlier. This tracematch does bind aniables, namely the vector
dsand the enumeratiom(Line 1). Here there are three symbols of interest (Line$:3-5
creating an enumeration, doing a next step, and updatingptinee. We wish to catch
unsafe uses of enumerations, and this is expressed by tieempé@tine 7). First we see
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sequence of before/after events

remove all events that do not
match a symbol, except last one

[T TT ] et [ ] 1]

match filtered trace
with regular expression

if successful, run extra code

Fig. 6. Filtering of traces (no variables).

an enumeration being created, then zero or more ‘next’ stefesor more updates and
finally an erroneous attempt to continue the enumeration.

tracematch(Vector ds, Enumeration e}

sym create enumafter returning(e) : call (Enumeration+new(..)) && args(ds);
sym call_next before : call (Object Enumeration.nextElement()) &i&rget(e);
sym update sourceafter : vector update() &&target(ds);

create enum call next« update source+ call next

{ throw new ConcurrentModificationException ()}

Fig. 7. Tracematch for safe enumeration.

It might appear that there is no need to mention the intengeahumeration steps
viacall _next*. However, because of our definition of matching via filteritigt would
be wrong. The pattern is matched against all suffixes of tterditl trace, and not to
arbitrary subsequences.

The precise meaning of filtering in the presence of locakmaatch variables is de-
fined in the obvious manner: instantiate the free varialledl ipossible ways, and then
match as we did before. This process is illustrated in Figures the figure suggests, if
a match occurs with multiple variable bindings, the extrdec run for each of those
bindings separately.

While it is nice to understand the semantics of tracematichiesms of all possible
instantiations of its free variables, that does not proaidkasis for implementation. We
therefore also require an operational semantics. It isyfalovious that this semantics
will keep a finite state machine for the pattern. Each stattn®fmachine is labelled
with a constraintthat describes the variable bindings made to arrive at taéd.sTo
wit, these constraints are equalities (variable = objéugqualities (variables object),



sequence of before/after events

filter for every
instantiation
of the variables

I BT [

match filtered trace match filtered trace
with instance of with instance of
regular expression regular expression

if successful, run extra code if successful, run extra code

|

Fig. 8. Filtering of traces (with variables).

or combinations with conjunction and disjunction of the&eletailed definition of the
operational semantics can be found in our original paperamematches [5].

Unfortunately a direct implementation of the operatiomahantics does not yield a
practical system. The main problem is that of memory leakd there are two possible
sources of these. First, we may hang on too long to existifgctdy merely because
they were bound to a tracematch variable. Second, partitdhea may stay around
forever, despite the fact that they can never be completethct, we keep our con-
straints in disjunctive normal form, so ‘partial matchestrespond to disjuncts in our
representation of constraints.

To solve the problem of memory leaks, we have devised a siatitysis of the
tracematch, which classifies each variabten each statein one of three categories:

collectable when all paths in the automaton frasto all final states contain a transition
that bindsv. In that case we can use weak references for bindings Btirther-
more, when the garbage collector nullifies that weak referewe can discard all
disjuncts that contain it.

weak not collectable, but the advice body does not mentiowe can still use weak
references for bindings of, but it would be incorrect to discard a disjunct upon
nullification.

strong not collectable and not weak. A normal strong reference mestsed to store
bindings ofv.

Note that this is a purely local analysis on the tracematahnlving no analysis of the
instrumented system, so that it does not significantly affempile times.

The technique appears to be highly effective in practiceal&xample, we have
applied this instrumentation to JHotDraw, the popular opearce drawing program.
It has a feature for animating a drawing; that in fact introelian unsafe use of enu-
merations, because one can edit the drawing while the aioimitin progress. The
results of measuring memory usage over time are shown inréiguWe compared a
number of different systems. First, we evaluated our tratemimplementation with
leak detection and prevention disabled, using strongeatass for everything. This line



(TMNoLeak) stops after a few steps because execution besorfeasibly slow. PQL
is a runtime trace property checking system created by Moh&m and her students
at Stanford [61]. We tried several version of this benchnwétk PQL (PQL and PQL-
Neg), and both show linear memory growth over time. Next tharé shows a naive
aspect (AjNaive), that instead of using new fields assceititee stamps via an iden-
tity hash map. The figure also shows a smarter aspect (AjN@rthat uses a weak
identity hash map for the same purpose, and finally our opéthimplementation of
tracematches. The aspect shown at the beginning of this péggehas constant space
usage. More details of these experiments can be found irhaited report [11].

Memory usage every 100 steps [MB]

1000

PQL, PQLNeg
100
AjNaive
TMNoLeak
10
// / AjNormal
! 0 25000 50000 75000 100000

Fig.9. Memory usage for SFEENUM (moving average to show trends).

Timewise our implementation is still quite a lot behind ttentd-coded aspect at the
beginning of this paper. The time taken for 100,000 aninmegteps is shown in Figure
10. TM indicates our optimised implementation, whereasd@\ s the ‘gold standard’
aspect shown earlier. We believe that a static analysiseofistrumented program can
bring one closer to the gold standard, but for now that reeaiture work. While this
result may appear disappointing, we should mention theunmstnted animation is still
quite usable on a normal PC.

Figure 11 shows some further substantial applicationsasfetmatches. It would
take us too far afield to discuss each of these in detail, butraber of interesting
trends can be identified. The first column shows the name dfgélcematch being ap-
plied, the second the base program being instrumented hantthitd column displays
the size of that base program. Note that we have used somgiviahapplications. The
column marked ‘none’ shows the execution time, in seconfdheonon-instrumented
application. The ‘AspectJ’ column displays the executioretof a hand-coded version
in AspectJ for each benchmark. The final three columns measurown implemen-
tation. ‘leak’ refers to switching off the above analysiiereas ‘noidx’ means that
we do not use a special indexing data structure to quickligtifiethe relevant partial
matches when a new variable binding occurs. The final colsrour optimised im-
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Time for 100000 iterations [s]

1000

100

1
None TMNolndex PQL AjNaive AjGold
™ TMNoFilter PQLNeg AjNormal Ajitd

Fig. 10. Runtimes for AFEENUM.

plementation with both leak prevention and indexing swéttion. Clearly indexing is

just as important as leak prevention, as indicated by thieligigted numbers in the top
three rows. The interested reader is referred to [11] fdrdetails of these and other
experiments. The full experimental setup is availableinaor others to try with their

own monitoring systems [2].

monitor base ksloc |none | aspect] leak noidx
nulltrack certrevsim 14 0.2 05 1.6 25.6
hashcode | aprove 438.7 | 345.0 458.9 >90m >90m
observer | ajhotdraw 9.9 27 29 41 ﬂ
dbpooling artificial <0.1 70.0 45 5.0 48
luinmeth jigsaw 100.9 13.6 18.0 21.9 20.9
lor jigsaw 100.9 13.6 19.9 349 347
reweave abc 51.2 45 5.4 9.1 9.0

Fig. 11. More tracematch benchmarks.
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3.1 Summary of tracematches

The implementation of tracematches is surprisingly tritdkget right. Even ignoring
the issue of space leaks, we found several bugs in our firsbtype, which only came
to light when we tried to prove the equivalence of the detikeg@and operational seman-
tics. As shown by the above experiments, the implementaismow been thoroughly
tested, and it is available in the standard distributiome#tspectBench Compiler (abc)
for AspectJ.

The key to our efficient implementation consists of two pattie prevention of
memory leaks, and an efficient data structure for retrieyiagial matches. Both of
these only rely on local analysis of the tracematch itsedf,of the instrumented pro-
gram. We are currently investigating analyses of the imsémted program that may
help to approach the efficiency of hand-coded solutions.

3.2 Further reading

The idea of generating trace monitors from specificatioasisld one, and there exists
a very large amount of previous research on this tap.[5,12,16,17,25,28,28,31—
35, 38,40,50,61, 71, 72, 75]. These studies range fromegijdns in medical image
generation through business rules to theoretical invatitigs of the underlying calcu-
lus. The way the patterns are specified varies, and tempgial, Iregular expressions
and context-free languages all have been considered.

One theme shines through all of these previous works: tramsitors are an at-
tractive, useful notion, worthy of integration into a maneam programming language.
This has not happened, however, because it turns out to pediféicult to generate
efficient code when the trace monitor is phrased as a deeksgecification.

Our own contributions have been to provide a solid semamtiistfor trace moni-
tors [5] (in particular a proof of equivalence between thelaeative and operational se-
mantics), and to devise optimisations that make trace miafiéasible in practice [11].

4 Datalog pointcuts

We now turn to the way individual events are intercepted ipeksJ. Recall the defini-
tion of thevector updatepointcut in Figure 4: it was just a list of the relevant metbod
It would be much nicer to express the desired semantic ptpgdeectly, and leave it to
the weaver to identify individual methods that satisfy thegerty.

So in this example, what is the property exactly? We areésted in methods that
may change the behaviour of tinextElementethod on theEnumerationinterface.
Therefore, we seek to identify those methods/e€torthat write to a memory loca-
tion that may be read by an implementationnetElementHow do we express that
intuition in a formal notation?

The key idea is that the program could be regarded as a rddtiatabase. Pointcuts
are then just queries over that database, which are usedrttfidshadowsA shadow
is a piece of code which at run-time gives rise to an eventi(@nt) that can be
intercepted by AspectJ.
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Examples of the relations that make up a program are showigird-12. The
first three refer to declarations; ti@plementgelation is not transitive. The shadow
relations identify calls, method bodies, and field gets. @irse this list is not complete:
there are shadows for all kinds of events that can be inteedép AspectJ. Finally, there
is the lexical containment relatiarontains Again this is not assumed to be transitive.

typeDecl (RefType T, String N, Boolean IsiIntf, Package P )
T has name N in package P, IsiIntf indicates T interface or not
implements (Class C, Interface I)
C implements interface |
methodDecl (Method M, String N, RefType C, Type T)
M has name N, is declared in C, and has return type T
callShadow (Shadow S, Method M, RefType T)
S is a call to M with static receiver type T
executionShadow (Shadow S, Method M)
S is the body of M
getShadow (Shadow S, Field F, RefType T)
S is get of F with static receiver type T
contains (Element P, Element C)
C is lexically contained in P

Fig.12. Program relations.

We now have to decide on the query language for identifyiraglstvs where the
aspect weaver will insert some extra code. Many authors$iaygested the use of logic
programming for this purpose, in particular Prolog. Thereraumerous problems with
that choice, however. First, it is notoriously hard to poteihether a Prolog query ter-
minates. In the present setting, non-terminating quelirds yincompilable programs,
which is undesirable. Second, to achieve acceptable effigid’rolog programs must
be annotated with parameter modes, with the cut operatidnngtih tabling instruc-
tions. Again, for this application that would not be accépgaYet, the arguments for
using logic programming, in particular recursive quergs, quite compelling.

The appropriate choice is therefore ‘safe, stratifdedalog [39]. Datalog is similar
to Prolog, but it does not allow the use of data structuressequently its implemen-
tation is far simpler. The restriction to safe, stratifiedd&)ag programs guarantees that
all queries terminate. Yet, this restricted query languagmwerful enough to express
the properties we desire.

This is illustrated in Figure 13, which identifies the updatethoddM of the Vector
class. It starts by finding théectorclass, and some implementatibaf Enumeration
| contains a methoN namednextElementWe check whether there exists a fi€ldhat
may be read bW, while it may be written byM.

It remains to show how predicates likeayRea@N,F) can be defined. The key is
thatN does not need to directly red we must also cater for the situation whéte
calls another method, which in turn readsSimilarly, the read shadow may not be
directly lexically contained in the body &, but perhaps in a method of a local class
defined insidéN. The relevant Datalog query is shown in Figure Wmay transitively
contain a shadov which is a read of the fiel#.
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vector update method(Method M) :-
/I M is a method in a class V named Vector
typeDecl(V, Vector’, , ),
methodDecl(M, ,V, , ),

/I N is a method named nextElement in an

/l implementation | of the Enumeration interface
typeDecl(E,'Enumeration’,, ),

implements(l,E),
methodDecl(N,'nextElement’,1,),

/I N may read field F (possibly via a chain of calls)
mayRead(N,F),

/I M may write field F
mayWrite(M,F).

Fig. 13. Datalog for update methods.
mayRead(Method M,Field F) :-
callContains(M,G),
getShadow(F,G).

callContains(Method M, Shadow G) :-
mayCall*(M,M"), /[ static call chain from M to M’
executionShadow(E,M")}/ body of M’ is E
contains+(E,G), /it contains a shadow G

mayCall*(Method X, Method Z) :- X=Z, method(X).
mayCall*(Method X, Method Z) :- mayCall(X,Y),mayCall*(¥).

contains+(Element X, Element Z) :- contains(X,Z).
contains+(Element X, Element Z) :- contains(X,Y),consai(Y,Z).

Fig. 14. Definition of mayRead
4.1 An alternative surface syntax

Datalog is powerful, but for really simple pointcuts (likéentifying calls to a method
with a specific signature) it is verbose and awkward. By @stfithe AspectJ pointcut
language shines in such examples, not least because adiynettiod signature is also
a valid AspectJ method pattern. This is one of the reasonsareers find AspectJ easy
to pick up: if you know Java, you know how to express simplenpmits. Can we give
Datalog a similarly attractive syntax?

One might also be concerned about the formal expressivernmfvizatalog. When
it comes to the finer points of AspectJ pointcuts, can theljyrba expressed as Datalog
queries?

The answer to both of these questions is ‘yes’. We have amtett a translation
from AspectJ pointcuts to Datalog, which consists solelgiofple rewrite rules. It is
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our intention to open up that implementation to advancedsyse they can define new
query notations, along with rules for reducing them to Degal
Here is an example rule, used in the translationaif pointcuts.

aj2dl(call(methconstrpat),C,S)

—

3 X, R : (methconstrpat2d@iethconstrpat,C,R,X), callShadow(S,X,R))

The constructorj2dI(PC,C,S) is used to drive the translation: it takes a pointe,
the current aspect clagy and a shadové. This will be reduced to a Datalog query
containing justC and S as free variables. Our implementation u&tsatego which
allows one to record the rewrite rules in concrete syntamoat exactly as shown above
[73].

4.2 Further reading

Various deficiencies of the AspectJ pointcut language alledeeumented in the litera-
ture and on mailing lists [13,18,22,49]. Such dissatisfexdtas led to several proposals
for adopting Prolog as an alternative pointcut language43@5]. Indeed, examples of
systems that have built on those ideas are Alpha, Aspicare& Compose*, LogicAJ,
Sally, and Soul [3, 15, 20,42, 44,47, 69]. However, the cexplperational behaviour
of Prolog renders it, in our view, too strong for the purpofa pointcut language. We
believe that this is the principal reason that none of thesearch prototypes has found
widespread usage.

The program understanding community has long advocateglaafi software sys-
tems as a relational database [24, 60]. They also consisgengdjuery languages, in-
cluding Prolog, with [53] being an early example. It was soealised that at a min-
imum, the query language must be able to express transigare [67]. Jarzabek
proposed a language named PQL [52] that added such opetatargariant of SQL
(not to be confused with PQL of Laset al, discussed below). The SQL syntax makes
it rather awkward to express graph traversals conciselyekier. A modern system that
uses a tabled variant of Prolog is JQuery [51, 62].

The program analysis community has also frequently reddite use of logic pro-
gramming for specifying analyses. An early example makitegdonnection is a paper
by Reps [68]. More recently [29] provided an overview of thiwantages of using logic
programming to specify complex dataflow analyses. Verymdgeévartin et al. pro-
posed another PQL (not to be confused with Jarzabek’s lgyegdiscussed above), to
find bugs in compiled programs [58, 61]. Interestingly, thelerlying machinery is that
of Datalog, but with a completely different implementatiasing BDDs to represent
solution sets [77].

All these developments led us to the conclusion that Datialag appropriate query
language for applications in program understanding, fantpats in aspect-oriented
programming, and for program analysis. We have implemehie€odeQuest system
as a first prototype, and are now working towards its intégmahto our AspectJ com-
piler abc[46].
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5 Conclusion

We have shown how aspects can be used for checking tempogsnies at runtime.
The design and implementation of new features for such ptppéecking is an in-
teresting new field, requiring the joint efforts of expertspecification formalisms, in
aspect-orientation, in program analysis and in compilerstroiction. We believe we
have only scratched the surface, and hopefully this papgeendourage others to join
us in our exploration. It would be especially interestingctmsider other logics for
expressing trace properties. One of us (Bodden) has alisgddgmented a similar sys-
tem [17,71] based on LTL in lieu of regular patterns, alsogmdf abc

It is important that a system for runtime instrumentatidowas the programmer to
make a judicious choice between static properties and digrames. Our use of Datalog
to describe compile-time analysis, for the purpose of id@ng instrumentation points,
is a step in that direction.

It is unlikely that a perfect specification notation can berfd to express all desir-
able properties. It seems that an extensible syntax, whegragmmers can introduce
new notations that are reduced to existing notions, praédgood compromise.
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