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Abstract
A trace monitorobserves an execution trace at runtime;
when it recognises a specified sequence of events, the mon-
itor runs extra code. In the aspect-oriented programming
community, the idea originated as a generalisation of the
advice-trigger mechanism: instead of matching on single
events (joinpoints), one matches on a sequence of events.
The runtime verification community has been investigating
similar mechanisms for a number of years, specifying the
event patterns in terms of temporal logic, and applying the
monitors to hardware and software.

In recent years trace monitors have been adapted for use
with mainstream object-oriented languages. In this setting,
a crucial feature is to allow the programmer to quantify
over groups of related objects when expressing the sequence
of events to match. While many language proposals exist
for allowing such features, until now no implementation
had scalable performance: execution on all but very simple
examples was infeasible.

This paper rectifies that situation, by identifying two opti-
misations for generatingfeasibletrace monitors from declar-
ative specifications of the relevant event pattern. We restrict
ourselves to optimisations that do not have a significant im-
pact on compile-time: they only analyse the event pattern,
and not the monitored code itself.

The first optimisation is an important improvement over
an earlier proposal in [2] to avoid space leaks. The second
optimisation is a form of indexing for partial matches. Such
indexing needs to be very carefully designed to avoid intro-
ducing new space leaks, and the resulting data structure is
highly non-trivial.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Compilers

General Terms Experimentation, Languages, Performance
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1. INTRODUCTION
Trace monitorsobserve the current execution trace, and ex-
ecute some extra code when the trace matches a given pat-
tern. Many runtime verification concerns can be expressed
as trace monitors very naturally, simply by picking out vio-
lating traces.

A trace monitor is usually specified declaratively in two
parts: firstly, a pattern describing which traces should match,
and secondly, an action that should be executed when a pro-
gram trace matches. The actual implementation of the trace
monitor is automatically generated from its specification,
typically in the form of instrumentation of a base program.

There is a very large amount of previous research on this
topic,e.g.[2,7,8,11,13–16,19,21,22,25,26,28,30]. These
studies range from applications in medical image generation
through business rules to theoretical investigations of the un-
derlying calculus. The way the patterns are specified varies,
and temporal logic, regular expressions and context-free lan-
guages have all been considered.

One theme shines through all of these previous works:
trace monitors are an attractive, useful notion, worthy of
integration into a mainstream programming language. This
has not happened, however, because it turns out to be very
difficult to generate efficient code when the trace monitor is
phrased as a declarative specification.

The challenge is particularly severe when the specifica-
tions trace the behaviour of a group of several objects si-
multaneously. For example, when checking that a lock is al-
ways acquired and released in the same method invocation,
we need to track the locked resource, as well as the method
invocation in question. Similarly, when checking that a col-
lection is not modified while iteration is in progress, we need
to track the state of the collection as well as its iterators.
For this reason, numerous of the above proposals (in partic-
ular [2, 11, 14, 21, 25]) have a facility forbinding multiple
variables during the matching process. Many more systems
do not allow free variables in the trace patterns; in our ex-
perience, this feature is indispensable for many real-world
examples, and therefore the focus of this work is optimising
systemswith free variables.



In our experiments, however, none of these systems (in-
cluding our own in [2]) managed to generatefeasibletrace
monitors. The generated monitors are adequate as a proof of
concept, but they cannot be used in practice on substantial
systems.

For some applications, it may be possible to use the sub-
stantial body of related work onstatic type-state verifica-
tion,e.g.[18]. However, that invariably entails interprocedu-
ral analysis of the observed code. This is costly, and the as-
sumption that all the code is available before load-time can-
not be satisfied in practice. Furthermore, before such costly
techniques are explored, we must first determine how far one
can get with cheaper techniques.
Contribution This paper shows, for the first time, how to
generatefeasibletrace monitors from declarative specifica-
tions that use free variables. Furthermore, our techniques
rely only on analysis of the trace specification, not on costly
whole-program analyses of the monitored code. Any mon-
itoring system, regardless of the chosen specification for-
malism, must implement the techniques presented here to
achieve feasibility.

Specifically, the detailed contributions are as follows:
Benchmarks:
• We present the first benchmark set of substantial, realistic

applications of runtime monitoring.

• Each of these monitors has been coded by hand (in the
programming language AspectJ), and also in the specifi-
cation formalism of [2].

• This set of benchmarks (which is publicly available
at [1]) thus provides the first solid basis for experimental
evaluation of trace monitoring features.

Leak detection and prevention:
• We demonstrate that space leaks are a show-stopping

bottleneck when naı̈vely generating trace monitors.
• In [2] an analysis was briefly sketched for eliminating

that problem. We identify a crucial flaw in that analysis,
and show how it can be remedied via the novel notion of
persistent weak references. We then go on to show how to
extend the analysis to detect and prevent additional leaks.

• Unlike [2], we then proceed to carefully evaluate the
effects of the optimisation.

Indexing of partial solution sets:
• We exhibit another show-stopping performance problem,

namely the need to update the set of partial solutions
whenever a relevant event occurs.

• We propose an automatic technique for choosing an ap-
propriate index structure on the set of partial solutions,
which is purely based on the monitor specification.

• Furthermore, we present an indexing data structure that
does not introduce new space leaks, and thus combines
well with the above leak prevention technique. Again this
involves very careful and subtle use of weak references:
naı̈ve indexing would worsen space leakage.

• Finally, we provide a set of algorithms to update such
indexing data structures (avoiding costly unnecessary in-
termediate data-structures) and present an argument for
why these algorithms are correct.

2. TRACE MONITORING
We first outline the basic strategy for generating executable
code from trace monitors, via a specific example. Variations
of the same code generation strategy can be found in any
trace monitoring system, but our primary focus is on trace-
matches [2] — the system that this work evaluates and opti-
mises.

As previously mentioned, a trace monitor is a combina-
tion of a pattern and an action to run when the program trace
matches that pattern. In a tracematch, the pattern is defined
in three parts: a set of variables, an alphabet of symbols (de-
fined in terms of the variables), and a regular expression over
the symbols.

A common runtime verification property is that of safe-
enumeration:

After an enumeration is created, the data-source upon
which it is based may not be modified while the enu-
meration is in use — that is, until the last call to its
nextElement()method.

To check this property with a tracematch, two variables are
required. One of them will range over collections that might
be iterated; in the Java 1.2 API these are instances of the
classVector, and so we will use the identifierv. The second
variable,e, ranges over enumerations. Symbols are defined
using AspectJ pointcuts — a language for intercepting run-
time events [23] — but for clarity we give an informal defi-
nition of the three required symbols.

CREATE an enumeratione is created from a Vectorv
UPDATE the Vectorv is modified
NEXT thenextElement()method is called one

Finally, the regexp which specifies a violation of the safe-
enumeration property is ‘CREATE NEXT∗ UPDATE+ NEXT’.

What does it mean for such a regular expression (which
includes free variables) to match the program trace? Con-
sider the execution history shown in Table 1. The left side of
the table shows a sequence of symbol-matching events from
a program trace. For each event, the corresponding symbol
and the objects bound tov ande are shown.

On the right side of the table, we show two substitutions
of objects for tracematch variables. Each substitution defines
a projection of the original sequence to a string over the sym-
bol alphabet, found by including the symbols from lines on
the left of the table that have compatible variable bindings.

The tracematch action is triggered if there is some sub-
stitution for which the regular expression matches a suffix
of the projected string. For example, in the table above, the
substitutionv = v1 ∧ e = e1 results in the projected string
CREATE NEXT UPDATE NEXT, which matches the regular



Symbol v e v = v2 v = v1

e = e3 e = e1

CREATE v1 e1 CREATE

CREATE v1 e2

NEXT e2

NEXT e1 NEXT

UPDATE v1 UPDATE

CREATE v2 e3 CREATE

NEXT e3 NEXT

NEXT e1 NEXT (∗)
UPDATE v2 UPDATE

Table 1. An example execution history

Figure 1. An automaton with states labelled by constraints

expression. The action is triggeredat the eventwhich com-
pleted the match (i.e. the line marked (∗), not the line after,
even though the projected string still matches).

When a tracematch is compiled, the regular expression is
translated into a finite state automaton. Such automata are
well understood, and can be easily constructed from regular
expressions. Variants also exist for other formalisms such
as context-free grammars and linear temporal logic. In par-
ticular, automata are much better suited toonlinematching,
which is why they are used here instead of keeping a regular
expression representation.

As we saw above, matches with different variable bind-
ings should be independent of each other and may be in-
terleaved. This means that, conceptually at least, a separate
finite automaton is required for every possible binding —
an unbounded number. However, it is possible to simulate
this collection of automata by using a single automaton and
labelling its states with constraints. An example of such a la-
belled automaton for the safe-enumeration property is shown
in Figure 1. A constraintC, labelling a statei, is interpreted
as follows: “there is an automaton in statei for each vari-
able binding that satisfiesC”. Constraints are boolean ex-
pressions, consisting of(x = v), (x 6= v), ∧, and∨ (for
tracematch variablesx and objectsv), and are stored in dis-
junctive normal form.

The reader may be wondering, as is quite common in
our experience, why we chose to label the states of the
automaton with constraints. Would it not be simpler to store
each variable binding together with a state counter and, when
an event occurs, find the appropriate binding and just update
the counter? There are two problems with this technique.
Firstly, it is not applicable in cases where the implementation
may store partial variable bindings (where only some of the
monitor variables are bound to objects). Secondly, the fine-
grained leak-elimination strategies described in Section4 are
not possible when bindings are stored in this way.

For the interested reader, the actual source for the safe-
enumeration monitor is shown below, but the focus of this
paper is code generation rather than language design.

1 tracematch(Vector v, Enumeration e){
2 sym createenumafter returning(e) :
3 call (Enumeration+.new (..)) &&args(v);
4 sym call next before :
5 call (Object Enumeration.nextElement ()) &&target(e);
6 sym updatesource after :
7 vector update () &&target(v);
8

9 createenum callnext∗ updatesource+ callnext
10

11 {
12 throw new ConcurrentModificationException ();
13 }
14 }

Lines 2–7 declare the individual event patterns, Line 9 con-
tains the regular pattern that is matched against the current
trace, and Lines 11–13 constitute the extra code that is exe-
cuted upon a successful match. A detailed discussion of the
pertinent language design decisions can be found in [2].

3. BENCHMARKS
We now present our benchmark collection. In selecting
benchmarks, our main inspiration was the literature on run-
time verification, and also on trace-based aspect-oriented
programming. We scrupulously included base programs
where the overheads are likely to be substantial. An alter-
native, taken in [9], is to apply a single tracematch to many
unrelated base programs. This allows research into cheap
strategies for eliminating inapplicable monitors (indeed[9]
demonstrates such a strategy). However, it is not appropriate
in this context because it would wrongly give the impression
that overheads are low, simply because the benchmarks may
not heavily engage in the monitored events. Also, we pro-
vide a ‘gold standard’ for each benchmark, consisting of a
hand-coded best possible solution.

To our knowledge, this is the first collection of trace mon-
itoring benchmarks especially constructed to cover a wide
variety of properties, while highlighting potential overheads.
It is publicly available for others to use in comparative ex-
periments. Indeed, the fact that the designers of JavaMOP



recently adapted some of our examples for their own sys-
tem [17] confirms that these benchmarks are not tailored just
for tracematches, and lends support to our claim that they set
a useful standard for all runtime verification systems.

Below we first informally describe the benchmarks, each
consisting of a (monitor, base program) pair. Then we define
the gold standard to compare against, namely highly hand-
optimised AspectJ implementations. Finally we take our ini-
tial measurements, using the naı̈ve implementation of trace-
matches to determine where the main performance problems
are.

Monitors and base programs

SAFEENUM This is the example mentioned in the previous
section: we would like to throw an exception when a
collection is modified while an enumeration over that
collection is in progress. We apply it to JHotDraw [20],
a Java graphics package that allows the user to animate a
drawing’s components in a visually appealing manner.

The animation loop contains a call toThread.sleep to
slow down movement; we removed that to truly observe
the overheads incurred by trace monitoring, and also min-
imised the window to factor out the cost of display oper-
ations. The effect of these measures is that enumerating
the figure elements at each frame dominates the cost of
the animation loop, and one would thus expect overheads
to be very large indeed. JHotdraw’s use of enumerations
is actually unsafe because one can edit the drawing while
animation is in progress, and when that is done, our mon-
itor catches the violation.

NULLTRACK This is a debugging concern. We aim to pro-
vide a trace monitor that can help track down the cause
for a NullPointerException. We do this by intercepting all
field writes where a fieldf is set tonull, followed by no
intervening assignment of a non-null value until we see
a read off followed by a null pointer exception — the
trace monitor then reports all fields that were set tonull,
and where that happened. However, to improve precision
of the reported possible causes, we also demand that the
field get that is assumed to have triggered the exception
and the exception itself occur on the same line.

Note that this is intrinsically a very expensive monitor,
because it involves a large number of instrumentation
points: all field reads and writes, and all method calls.
We applied it to CertRevSim, a discrete event simulator
used to evaluate the performance of various certificate
revocation schemes.

HASHCODE Another common runtime verification con-
cern, this trace monitor checks the property that when-
ever an object is stored in a data structure indexed by
its hash code (e.g.a HashSet), and subsequently a mem-
bership test is executed, the object’s hash code hasn’t
changed in the meantime (if it has, we could get false

negatives). This is expensive to check at runtime for a
different reason: if the base program makes heavy use of
hash-based data structures, the trace monitor will have
to keep track of very many partial matches, one for each
object stored.

We applied this to two different base programs: Firstly,
AProVE [3], a termination prover for term-rewriting sys-
tems which we chose for its heavy use of hash sets, and
also because it is precisely the type of complex, large ap-
plication where this tracematch can be helpful. We also
applied HASHCODE to Weka [31], a machine learning li-
brary that makes extensive use of HashMaps, but which
is substantially smaller than AProVE.

OBSERVER The observer pattern is a popular example in
the aspect-oriented programming community. Whenever
a subject changes its state, all registered observers must
be notified; with AOP (and with trace monitoring) it is
possible to achieve this without the subject explicitly
making such notifications.

The base program here is AJHotDraw [27], an aspect-
oriented rewrite of JHotDraw, which uses the observer
pattern for its display updates. Again, this benchmark
has been chosen to fairly measure worst-case over-
heads: in AJHotDraw, each subject has precisely one
observer; there is thus considerable cost involved in us-
ing a data structure that caters for multiple observers,
without knowledge of the one-to-one correspondence.
Again, we removed all delays from the animation loop
and minimised the window to factor out display opera-
tion overheads.

DBPOOLING This is an example proposed by Laddad in
his AspectJ text book [24]. The idea is that in a partic-
ular database application, creating and establishing con-
nections is the most expensive operation, so, whenever
possible, we want to pool existing connections and reuse
them, rather than creating new ones.

The base program in this case is artificial — a slight
modification of the example in Laddad’s book, simply
connecting to the database multiple times and perform-
ing database operations. The AspectJ version we used
is Laddad’s. Note that for this example, we expect the
trace monitor toimproveperformance rather than hinder
it, since it would prevent unnecessary connections from
being established.

LUI NMETH Here we are concerned with checking a stylis-
tic rule. Whenever a lock is acquired, it should be re-
leased before the enclosing method returns. Checking
this rule with a trace monitor was proposed as a moti-
vating example by the authors of PQL [25]. It is particu-
larly interesting because it requires matching method en-
try/exit pairs at runtime, which is in general a context-
free language problem. However, making judicious use
of variable bindings, it turns out that it is possible to



express this using weaker formalisms; we encoded it in
tracematches, which only allow regular expressions as
patterns.

The base program we chose here is Jigsaw [29], the
W3C’s leading edge web server platform. It makes fre-
quent use of locking and unlocking, so there are plenty
of points of interest. In fact, Jigsaw violates the style rule
being checked, and our monitor catches the violations.

REWEAVE The abc compiler makes use of an optimisa-
tion phase termedreweaving, during which the effects of
weaving aspect code are undone and weaving is repeated
using more precise analysis results obtained on the pre-
viously woven code [5]. Of course the correctness of this
relies on properly undoing the effects of the first weaving
step, so that the reweaving process can start form a clean
state. In terms of trace monitoring, if a field is written to
during the execution of theweave()method, isnotwritten
to during unweaving, and is read during reweaving, then
it is very likely that it was not reset properly, and an error
should be reported.

We applied this to theabc compiler itself, and used the
instrumented version to compile a small program to ob-
tain our numbers.

Gold standard AspectJ implementations We implemented
the trace monitoring concern for each of these benchmarks
as a tracematch, and also created a hand-coded, hand-
optimised set of plain AspectJ aspects that manually achieve
the goal. We did this in order to have a ‘gold standard’ for
each benchmark, the best possible implementation an opti-
mising compiler might aim for.

In all cases, the AspectJ code is much longer and more
complex than the tracematch specification. For example, it
often makes nifty use of weak references, and sometimes it
makes additional assumptions not available to the compiler
(for instance that all collections being enumerated have been
created in user code and not in libraries). In short, the As-
pectJ version is what an expert programmer would do for
the problem in hand.

Discussing the entire set of hand-coded solutions is be-
yond the scope of this paper, but we may highlight just one
example in detail. The general idea is that we want to follow
the “standard” method of ensuring fail-fast iterators (keeping
modification counters), but without modifying the standard
libraries. For that purpose, we subclassVectorto MyVector,
which keeps a version number as a field, which gets incre-
mented upon each update operation. That increment is im-
plemented with a piece of advice; with another piece of ad-
vice, all constructor calls onVectorare replaced by construc-
tor calls onMyVector. It is for the replacement of those con-
structor calls that we need to be sure all instances ofVector
are created within JHotDraw and not in some library code.
An automatic test for verifying this property would require
costly interprocedural analysis of the monitored code.

Each implementation ofEnumerationalso has such a ver-
sion number, copied from the underlying vector upon cre-
ation; this is introduced by the aspect as an intertype declara-
tion on theEnumerationinterface. Each time an enumeration
step is taken, a piece of advice compares the version num-
ber of the enumeration with that of the underlying vector:
when they are not equal, an exception is thrown. All pieces
of advice need to be declared assynchronized.

Such an implementation of the concern relies on a deep
understanding of the property, and it seems unlikely that
automatic code synthesis would ever be able to obtain it from
a declarative specification like a tracematch pattern.

Measurements The initial performance measurements are
given in Table 2; all benchmarks were run on a Java HotSpot
1.5.011 VM running on Linux. For this set of measure-
ments, we disabled most tracematch optimisations, simply
allowing the implementation to perform its code generation.
In particular, no attention is paid to potential space leaksor
to organising partial match sets; this is the approach that
seems to be prevalent in the field. Let us examine some of
the trends exhibited by these numbers in detail.

We can see that the tracematch performance is very close
to that of AspectJ in the case of DBPOOLING; this can
be explained by the fact that the benchmark does expen-
sive database processing that dominates the monitoring over-
heads. More surprisingly, performance is very good in the
case of LUINMETH, which is applied to a significantly
larger base program. Here, the explanation is in the trace-
match pattern. Recall that it is intended to find occurrences
of a lock being acquired and not released by the time the ac-
quiring method returns. When a method that acquired a lock
does return, therefore, it is clear that none of the associated
partial matches will need further updates, and they are inval-
idated. There is no build-up of ‘live’ partial matches over the
course of the benchmark.

Performance looks less promising for some of the other
benchmarks. REWEAVE is more than 50% slower, which
is actually a lot worse than it sounds, because the instru-
mentation only affects a small part of the benchmark exe-
cution (the reweaving cycle); HASHCODE/WEKA is more
than two times slower, NULLTRACK is — unsurprisingly —
hugely affected by the large amounts of instrumentation, tak-
ing more than 1000 times longer than equivalent AspectJ in-
strumentation, and SAFEENUM and HASHCODE/APROVE
are completely infeasible for our generated trace monitors.
Even though we let each of them run for several hours, they
did not reach anywhere near the end of the respective com-
putations. The huge slowdown was especially visible with
SAFEENUM, applied to a JHotDraw animation: the amount
of animation steps per second dropped very rapidly until it
was taking more than 10 seconds per frame, and that time
was still increasing.

These numbers alone should be sufficient to motivate the
need for further optimisations.



ID MONITOR BASE KSLOC NONE ASPECTJ NOOPT

1 SAFEENUM JHOTDRAW 9.5 3.1S 3.3S >90M

2 NULLTRACK CERTREVSIM 1.4 0.15S 0.6S 748S

3 HASHCODE APROVE 438.7 345S 478S >90M

4 HASHCODE WEKA 9.9 2.6S 2.7S 5.5S

5 OBSERVER AJHOTDRAW 21.1 4.2S 4.4S 9.2S

6 DBPOOLING ARTIFICIAL <0.1 30.5S 2.9S 3.3S

7 LUI NMETH JIGSAW 100.9 14.1S 18.0S 21.6S

8 REWEAVE ABC 51.2 7.8S 8.0S 12.0S

Table 2. Benchmark runtimes: No instrumentation, hand-optimised AspectJ and naı̈ve tracematches

4. MEMORY LEAK ELIMINATION
In [2], Allan et al. briefly sketch an analysis and code gen-
eration strategy to avoid introducing memory leaks into the
system. They give one example to show its effectiveness (a
version of SAFEENUM), but there is no proper experimen-
tal validation. Crucially, there is a subtle but important flaw
in their proposal, which we shall correct below by introduc-
ing the novel notion ofpersistent weak references. We then
expand that previous work by generalising the analysis to a
larger class of memory leaks, allowing early invalidation of
partial matches even in situations that previously would have
leaked. It is interesting to note that the effectiveness of this
optimisation on its own critically depends on the heap size
of the Java virtual machine.

The overall aim is to enable garbage collection of partial
matches that are guaranteed not to reach a final state in the
automaton. Roughly, that can be achieved when ‘completing
the match’ would require an extra event on an object that is
already garbage-collected itself; but because that objecthas
expired, the extra event cannot occur. We first describe the
analysis required to detect that situation.

Crucial to our strategy is the concept of aweak reference.
Normally, a reference to a runtime object prevents that ob-
ject from being reclaimed by the garbage collector. Weak
references allow the programmer to refer to an object with-
out preventing its destruction. In Java, this takes the formof
the special classjava . lang . ref .WeakRef, whose constructor
takes the referent object as an argument.WeakRefprovides a
method calledget () — calling it will return the referent, if it
still exists, andnull otherwise.

Categorising references The analysis works on the finite
state automaton generated from the regular expression of
the tracematch. For each non-initial non-final state in that
automaton, the free variables of the tracematch are divided
into three categories:

collectableWeakRefs Variables that are bound onevery
path from the current state to a final state.

weakRefs Variables that are not used in the tracematch
body and are not in the above set.

strongRefs Variables that are not in the above two sets.

As an example, consider the SAFEENUM tracematch pre-
sented above. It only has two non-initial non-final states (cf.
Figure 1). From the first of these, we need to take both an
UPDATE and aNEXT transition to reach the final state;UP-
DATE binds thev variable andNEXT bindse, so both of these
arecollectableWeakRefs. On the second state, we only need
to see aNEXT to get to the final state, so the onlycol-
lectableWeakRefs variable ise. Sincev isn’t used in the
tracematch body, it is aweakRef — if it was, it would be
classified as astrongRef on that state.

Exploiting the categorisation For variables in the first cat-
egory, it is sufficient to keep weak references (i.e. references
that do not prevent garbage collection) to the bound values,
since we are guaranteed to bind them again before reaching
a final state, and could keep a strong reference then (if nec-
essary). Moreover, if one of these weak references expires,
then we can discard the entire partial match, since it cannot
possibly reach a final state — any path to a final state would
have to bind the expired runtime value, which is impossible.
This observation might well improve the memory behaviour
of trace monitors, since it could reduce the number of live
partial matches.

Allan et al. claim that forweakRef variables, we also
only need to keep weak references. The reason is that even if
the runtime object expires, it would not actually be used, and
so keeping a strong reference would unnecessarily prevent
its garbage collection. A reference to it is only kept for
matching purposes. Note, however, that discarding partial
matches when such a variable expires is not justified, since
by definition we can reach a final state without necessarily
binding it again. It turns out that this is an oversimplified
view that can lead to not all matches being successfully
completed; we will explain this in a moment.

Finally, variables that are not necessarily re-bound on
every path to a final state and are used in the tracematch body
must be kept alive; hence we need to keep strong references
— such variables form thestrongRef category.

Of course, there are certain tracematches which inher-
ently do introduce space leaks, and this categorisation of
free variables allows the compiler to issue a warning to that
effect: if there exists a non-initial non-final state for which



collectableWeakRefs is empty, then partial matches in that
state could conceivably accumulate to an unbounded number
without ever being discarded, and a warning should be emit-
ted. Such warnings are very helpful in practice, because it is
easy to forget about performance when writing declarative
monitor specifications.

Persistent weak references To see why the original pro-
posed treatment ofweakRefs is not sound, consider the fol-
lowing simple example: Suppose we have a tracematch with
two symbols,A andB, and thatA binds a tracematch vari-
ablex. The pattern isAB, and the tracematch body doesn’t
usex, so that it is aweakRef. Imagine at some point during
program execution, we have the following constraint onx:

(x = v1) ∨ (x = v2)

and that then bothv1 andv2 expire. Weak references to ex-
pired objects returnnull, and so now the constraint becomes

(x =?) ∨ (x =?)

that is, we cannot tell the two disjuncts apart any more. Thus,
when we see anotherB event, the tracematch body would be
run once instead of twice.

This small example shows that we need to treat weak
references that do not invalidate their entire partial match
specially: We need to be able to tell them apart even after
they expire. We propose the concept ofpersistent weak ref-
erences, as explained below, to address this issue.

The defining characteristic of a persistent weak reference
should be that after its referent expires, callingget () returns
not null, but some object that uniquely identifies the origi-
nal referent. Moreover, all persistent weak references to the
same object should return the same value after it has been
garbage-collected.

It is not immediately obvious how one could achieve such
behaviour, but our work onindexing(cf. Section 5) suggests
an approach that works: Make use ofcollectable key identity
maps. We proceed by definingPersistentWeakRef, a subclass
of the standardWeakRefclass which has no publicly visi-
ble constructors. Rather, it provides a static public method
getRefFor(Object o)that can be used to create new refer-
ences. This method maintains a static identity mapm from
runtime objects to associated instances ofPersistentWeakRef;
when called, it first checks ifm already contains its parame-
ter, and if so simply returns the associated value. Otherwise,
it constructs a newPersistentWeakRef, records the correspon-
dence inm and returns it. Effectively this ensures that only
one persistent weak reference object is ever constructed for
each runtime value. The mapm has special handling for
its keys: They are stored as weak references (so as not to
prevent their garbage collection), and moreover when they
expire, the associated key/value pairs are discarded. In this
way, the memory used by the thePersistentWeakRefclass is
proportional to the number oflive referents, that is, it doesn’t
introduce any memory leaks itself.

Finally, we need to define the behaviour of theget ()
method on our new class. This proceeds as follows: First of
all, dispatch to the superclass. If the result is non-null, the
object is still alive and we can simply return it. If the result
is null, we can returnthis — that is, thePersistentWeakRef
instance. This satisfies our two requirements above, as we
can still tell apart weak references to expired objects, and
references to the same runtime object will return the same
value when it expires.

Collectable combinations of variables It is possible that a
state may have nocollectableWeaks but have one or more
combinationsof variables for which, if all the objects bound
to these variables (by a single partial match) expire, the
whole partial match may be discarded.

For example, the following pattern detects erroneous uses
of the Readerand InputStreamlibrary classes. The pattern is
taken from a benchmark by Boddenet al, in their paper
on using whole-program static analysis to optimise trace-
matches [9].

create (readR|readI ) ∗ (closeR|closeI ) + (readR|readI )

The pattern uses two variables,r and i, for the Readerand
InputStream, respectively. Thecreatesymbol is the only sym-
bol which binds both variables. The variabler is also bound
by readRandcloseR, whilst i is bound byreadI andcloseI.

The combination of alternation and the inherent symme-
try of the pattern means that neither of the variables are
ever classified ascollectableWeakRefs. Although the ob-
jects bound tor and i may be garbage collected, the data
structure for each partial match willneverbe discarded un-
less the match is completed.

Evidently this is a preventable source of memory leaks:
if, for a single partial match, both the object bound tor and
the object bound toi expire, then it is impossible to complete
the match, and thus it could be discarded.

We have extended the leak-elimination analysis to com-
pute such combinations of variables. The extension adapts
the technique, used at runtime, of labelling states with
boolean expressions. We will refer to these expressions as
collecting constraints. They consist of∧, ∨, and assertions
x (for tracematches variablesx). For example, a state la-
belledx ∨ (y ∧ z) means “a partial match on this state can
safely be discarded if the object bound tox has expired or
the objects bound toy andz have both expired.”

Collecting constraints are calculated using the following
formula, wherei

a
−→ j means there is a transition from state

i to statej labelled with the symbola, andbounda is the set
of tracematch variables bound bya.

collectable i =
∧

i
a

−→j

(

collectablej ∨
∨

x∈bounda

x

)

Since there may be cycles in a tracematch automaton, the
equation is solved for each state simultaneously by iteration
to find the least-fixpoint.



Note that this analysis detects a strictly larger class of
memory leaks than the previous analysis. Variables cate-
gorised ascollectableWeakRefs by the previous analysis
are exactly those which appear as singleton assertions (i.e.
like x in x ∨ (y ∧ z)) when the collecting constraint is ex-
pressed in disjunctive normal form.

Measurements Let us now examine the effects of these op-
timisations on our set of benchmarks. Note that the following
numbers are taken with standard heap settings (i.e. a maxi-
mum heap of 64M). We can see that we have made substan-
tial performance improvements in some cases: NULLTRACK

runs more than ten times faster now, HASHCODE/WEKA

runs 30% faster, REWEAVE has improved somewhat, and —
most pleasingly — SAFEENUM has become feasible. Some
of the other benchmarks show little change, however.

ID ASPECTJ LEAKELIM NOOPT

1 3.3S 97S >90M

2 0.6S 61.5S 748S

3 478S >90M >90M

4 2.7S 3.9S 5.5S

5 4.4S 9.4S 9.2S

6 2.9S 3.3S 3.3S

7 18.0S 21.4S 21.6S

8 8.0S 11.4S 12.0S

Table 3. Run times in seconds after leak elimination.

It is worth examining SAFEENUM a bit more closely, as
it is the clearest winner of leak elimination. As stated earlier,
the base program is JHotDraw, a Java figure editor. For the
benchmark, its animation routines were modified by remov-
ing all delays, so that the figure elements are moved around
the screen as fast as possible. Animation is implemented by
enumerating the figure elements at each step, and moving
each of them slightly; in total, 100000 animation steps are
performed.

There is a crucial difference between this trace monitor
and the one in our LUINMETH benchmark, which proved
to have very low overheads even without leak elimination:
SAFEENUM checks that thenext () method is never called
on an enumeration after the underlying collection has been
updated; in particular, there is no single event after whichwe
can be sure that a specific partial match will never lead to a
successful match, so the number of potential matches grows
unboundedly with base program execution. In LUINMETH,
we could discard partial matches when returning from the
associated method.

Thus, SAFEENUM is plagued by terrible memory perfor-
mance, since it has to keep a steadily growing number of
objects in memory; also, all of these must be updated after
every relevant event, and this explains the huge slowdown
we described in the previous section.

Consider now the effects of the space leak elimination on
this. The enumeration object will be classified as one of the

collectableWeakRefs; thus, it can still be garbage-collected,
and when it is, all associated partial matches are discarded.
Now, each enumeration expires when the associated anima-
tion step is completed — the following animation step cre-
ates a new one. So whenever we complete an animation step,
we drop all associated matching state, which leads to the
benchmark’s becoming feasible. Moreover, rather than hav-
ing unboundedly increasing memory behaviour, it exhibits
practically constant memory usage very slightly above that
of the uninstrumented program, as described by Allanet al.
— at least if we force periodic garbage collector runs (cf.
Figure 8). The situation with NULLTRACK is similar; here,
too, we have a pattern with no definite “end” event which
would allow us to discard partial matches, and therefore be-
ing able to reduce the amount of work as objects expire is
absolutely crucial.

So, it seems that space leak elimination is indispensable
for many applications. We have observed significant speed-
ups after enabling the optimisation, particularly for “open-
ended” trace monitors (i.e. those for which it is not pos-
sible to rule out a match’s completion before program ter-
mination). Most notably, manylivenessor safetyproperties,
which are popular in the runtime verification community and
assert that some good condition always holds or some bad
sequence of events never occurs, are of this type. Without
observing object garbage collection and invalidating partial
matches based on that, such trace monitors would have to
keep track of ever-growing sets of potential matches.

However, there is something highly unsatisfactory about
the technique presented so far. The fact is that the impact of
this optimisation critically depends on the performance of
the garbage collector. In modern JVMs, garbage collections
tend to happen when the available heap space is running
low; concretely, this means that if we run the program with
a smaller heap, we’ll see more GC runs, and conversely
there will be fewer runs on a larger heap. This leads to
the somewhat paradoxical situation that a particular program
can run more slowly if it is given more heap space.

Figure 2 illustrates precisely this effect, taking SAFEENUM

as an example. With very small heaps, the garbage collector
runs all the time, and this slows the benchmark down. The
optimum heap size in this case seems to be around 10M —
this strikes a good balance between eliminating invalidated
partial matches and not taking up too much computation
time. Beyond that, there is a roughly linear increase in ex-
ecution time with heap size, as the garbage collector runs
less and less frequently, and hence the effect of the optimi-
sation is diminished more and more. Indeed, with a heap
size of 1.7GB, SAFEENUM remains infeasible — it fails to
terminate even after several hours.

It is worth mentioning at this point that all of our bench-
marks that didn’t show great improvements after this opti-
misation perform small enough computations that even with
lots of live matching state in memory, the standard heap



Figure 2. Runtime for SAFEENUM against heap size.

size is big enough. This is the reason why leak elimina-
tion seemed to have a small effect — the garbage collec-
tor isn’t triggered often enough to make a significant dif-
ference. Running the benchmarks with a smaller heap size
does show greater improvements, but of course ideally we
want to have an implementation that doesn’t behaveworse
with more memory.

Still, in our experience, the analysis of Allanet al. suc-
ceeds in eliminating many space leaks (when forcing reg-
ular garbage collector runs), and correctly emits warnings
when there could be a leak. Moreover, the early cleanup of
invalidated matching state leads to substantial performance
gains in many situations. Our extension to the analysis al-
lows us to handle even cases where the original strategy
would have failed, particularly patterns making heavy use
of alternations.

However, tracematch performance is still rather worse
than that of equivalent AspectJ instrumentation, even in
the best case. For SAFEENUM, the AspectJ version imple-
ments the usual technique for implementing safe iterators by
putting logical time stamps on collections and iterators —
it seems unlikely that this idea can be automatically synthe-
sised from the specification.

The HASHCODE/APROVE (3) benchmark remains in-
feasible. Close examination of its behaviour reveals that
space leaks have been eliminated, but all time is spent iter-
ating over a large set of live partial matches. AProVE makes
heavy use of hash sets, and each object stored in a hash set
is potentially the source of a match completion. We will ad-
dress this in the next section.

5. INDEXING
Recall that the basic implementation of trace monitors (as
explained in Section 2) consists of a finite state machine
where the states have been labelled with constraints; and that
constraints are boolean combinations of variable bindingsto
objects.

The performance numbers shown so far were taken with
a simple implementation that represents such constraints
naı̈vely as sets of disjuncts. As we will see, large numbers
of stored disjuncts will likely be irrelevant to any single
update, but with a simple set representation every single one
must be iterated over for each update. The overheads this
causes make trace-monitoring infeasible for large classesof
programs and monitors. This section details a data-structure
for partitioning disjuncts, and algorithms for updating such
structures, that avoid processing irrelevant disjuncts. The
methods shown preserve matching behaviour and extend the
techniques from Section 4 so that no new memory leaks are
introduced.

To see what it means for a disjunct to beirrelevant we
must summarise parts of the previous work on the semantics
of tracematch matching [2]. A tracematch symbol is mod-
elled as a function from events to constraints.

symbol= event→ constraint

For example, if a symbola does not match the evente then
a(e) = false, but if a does match the evente just in the case
that the tracematch variablex is bound to the objecto, then
a(e) = (x = o).

The set of all symbols declared by a tracematch is written
A. We writej

a
−→ i to mean there is a transition in the trace-

match automaton from statej to statei that is labelled with
the symbola. For each statei, labeli denotes the constraint
labelling it. When an evente occurs, the new label at each
statei, written label′i, is

label′i
def
=





∨

j
a

−→i

(labelj ∧ a(e))





∨

(

labeli ∧
∧

a∈A

¬a(e)

)

(1)

The first line of this equation says that if there is a partial
match in statej, and the variable bindings for that partial
match are compatible witha(e), then that partial match can
transition to statei. These are called positive updates. The
second line states that some transitionmust be taken for
each partial match, unless no symbol can be matched toe

that would result in compatible bindings. These are called
negative updates.

To illustrate, consider the safe-enumeration monitor from
Section 2, together with the variable bindings shown in Fig-
ure 3. Suppose that aNEXT event occured with the variable
binding (e = e2). The calculations that should be performed
to obtain the new constraints, in accordance with Equation 1,
are shown in Figure 4. Indeed, when using a simple-set im-
plementation, these calculations must be performed. How-
ever over half of them are redundant: note that three out of
the five new disjuncts, when simplified, are eitherfalse or



Figure 3. An annotated automaton for safe-enumeration.

Figure 4. The calculations performed when using simple
sets to store disjuncts.

Figure 5. The new constraints after aNEXT event has oc-
cured.

unchanged — that is, a disjunct that is identical to one previ-
ously labelling the same state. These are theirrelevant dis-
juncts. The simplified version of the constraints is shown in
Figure 5.

In general, suppose that the constraint labelling some
statej has a disjunctd, which contains the equality(x =
o1). If an evente occurs, and there is ana transition fromj to
i, we can see from the positive updates in Equation 1 thatd∧
a(e) will be calculated as part of the new constraint labelling
statei. Suppose, however, that the constraint generated by
matching the event to the symbola contains(x = o2) where
o1 6= o2. It is guaranteed thatd ∧ a(e) ≡ false, because it
contains two contradictory constraints onx. The disjunctd
is therefore irrelevant toa at the evente.

A similar situation is found when calculating negative
updates. Suppose that statei is labelled with a disjunctd =
(x = o1) ∧ d′, and the same evente occurs such that
a(e) = (x = o2) ∧ c (for some predicatec). Equation 1
shows that computing the negative updates fori will involve

Figure 6. An example automaton state

calculatingd ∧ ¬a(e):

d ∧ ¬a(e) ≡ d ∧ ¬((x = o2) ∧ c)

≡ d ∧ ((x 6= o2) ∨ ¬c)

≡ (d ∧ (x 6= o2)) ∨ (d ∧ ¬c)

≡ ((x = o1) ∧ d′ ∧ (x 6= o2)) ∨ (d ∧ ¬c)

≡ ((x = o1) ∧ d′) ∨ (d ∧ ¬c)

≡ d ∨ (d ∧ ¬c)

≡ d

In this case,d is also irrelevant for negative updates — not
because it is falsified, but becaused is unchangedafter the
update and continues to label statei.

The goal of indexing is to partition the disjuncts stored at
each state so that as many irrelevant disjuncts are ignored as
possible for each update.

5.1 Choosing a Partition

The tracematch implementation automatically chooses, for
each state, a set of variables with which to partition the
disjuncts stored at that state. For illustration, considerthe
statei, shown in Figure 6. Only the variablesx andy are
guaranteed to be bound and the state has three outgoing
transitions labelleda, b, andc. The symbola bindsx and
y, b bindsx andz, andc binds justz. What variables should
be used to partition disjuncts labellingi?

Firstly, a variable can only be used to partition disjuncts at
a state if it is guaranteed to be bound at that state and is also
bound by an outgoing transition. If this is not the case, then
the definition of irrelevance shown above does not apply.
There are therefore some transitions which cannot benefit
from indexing; thec-transition on statei is such a transition
because it only bindsz, andz is not guaranteed to be bound
at statei.

The strategy for choosing partition variables is to benefit
as many outgoing transitions as possible, whilst ignoring
those those that cannot benefit. More precisely, the set of
partition variables is found by intersecting the variablesthat
are guaranteed to be bound with the variables bound by each
symbol that can benefit from indexing.

In the case of statei, the set is found by intersecting
the set of variables that are guaranteed bound,{x, y}, with
{x, y} and{x, z} (for a andb, respectively —c is not con-
sidered because it cannot benefit from partitioning). There-
fore, the disjuncts at this state would be indexed by their
binding forx.



Figure 7. The safe-enumeration constraints, as stored using
indexing.

It is possible that this method results in no partition at all
because there are two or more mutually exclusive sets that
could be partitioned on. The safe-enumeration monitor we
have been considering is an example of this: theUPDATE

event only binds the vectorv, whilst theNEXT event only
binds the enumeratione. Indeed, in general, there may be
some examples where it is most performant to not partition
the disjuncts at all. However, it is likely that the programmer
will be able to judge which symbols are going to match
the most often. For this reason, symbols may be marked as
‘frequent’ in a tracematch. If no partition can be chosen by
the method described above then the process is repeated for
just the ‘frequent’ symbols.

In the case of safe-enumeration, we marked theNEXT

symbol as frequent, which meant that the variablee was
chosen to index on.

5.2 A Data-Structure for Indexing

Partitions are represented by the tracematch implementation
as trees, by using multiple levels of maps. Each level in the
tree corresponds to a variable, and the map-keys at that level
are objects bound to that variable. For safe-enumeration, the
same constraints that appeared in Figure 3 are stored using
indexing as shown in Figure 7. Writing the implementation
of these maps requires careful effort in order not to break
the optimisations of Section 4, because each map’s keys are
objects in the monitored program and the map must keep
references to them.

The maps are specialised hash-tables that may keep weak
references to the keys and can have extra code that is trig-
gered when a weak reference expires. The behaviour upon a
reference expiring differs, depending on the classification of
the variable being indexed, as described above.

If the key variable is acollectableWeakRef, then ev-
ery disjunct on the sub-tree indexed by that expired weak-
reference also must have a collectable weak-reference to that
garbage-collected object — it is therefore safe to drop the
entire branch when the binding expires. Note that this is a
particularly fast way of discarding invalidated constraints:
rather than having to iterate over and check each one in turn,
all constraints on this state with the same expired binding are
dropped at once.

There is a potential problem, however, in that this could
introduce a race condition. If an event occurs that does not
benefit from the current index variable (as described above),
we have to iterate over all key/value pairs at the current level
in the indexing map. If the garbage collector invalidates one
of the keys during this iteration, it will be removed from the
map, and we have violated the Java API requirement of fail-
fast iteration. The solution is a custom map implementation
that knowingly deviates from the usual iterator contract. We
allow safemodifications to the map during an iteration, and
take care to ensure that dropping a key/value pair due to key
expiry is safe in this sense.

In fact, there is one more pitfall of allowing the map
implementation to discard branches at undefined times: One
cannot rely on an iterator’shasNext()method to give the right
result, since all remaining key/value pairs could conceivably
be dropped before the call tonext () even ifhasNext()returned
true. Thus, another contract modification is necessary: we
allow next () to returnnull if there is no further element to
iterate.

If the index variable is astrongRef, then no further care
needs to be taken; we can use a simple identity hash map.
Note that this is unlike the standardHashMap implemen-
tation, which considers keys to be equal subject to their
equals () method — we really need object identity, due to
the tracematch semantics.

Finally, let us consider the situation where the indexing
variable is aweakRef, i.e. where we cannot invalidate con-
straints due to the variable being garbage-collected, but still
need to keep a weak reference. Recall that this case proved
especially tricky in Section 4. It may seem that indexing
does not make sense for such variables. It is, however, still
the case that constraints may benefit from indexing, at least
while an object is still alive and there are events that bind it.
Once it expires, we will never have to explicitly look it up
in the map, but we need to keep the associated constraints
accessible to iteration.

One approach might be to group together all key/value
pairs with an expired key; as stated above, as long as we can
iterate over them we can perform updates correctly. However
that gives rise to rather unpleasant race conditions. When
do we perform this grouping operation? Since a garbage
collection can occur at any time, suppose one happened
during an iteration of the key/value pairs. By merging the
invalidated set into another, we could end up either not
iterating it or iterating it twice.

The approach we propose, therefore, is to reuse our work
from earlier and use a specialised indexing map that stores
its keys in aPersistentWeakRef(cf. Section 4). Recall that
only one such weak reference is constructed for each runtime
value, and that once that value expires, callingget () returns
the weak reference itself. The result is that the indexing map
is still fully iterable after the key expires, and key lookups
are possible while the key is alive, which is what we aimed to



achieve. It is easy to see that this does not result in additional
space leaks, since after a key expires the memory overhead
for having seen a runtime value is constant and very small,
and will be fully eliminated once associated partial matches
complete or fail.

5.3 Updating Indexed Disjuncts

We follow the code-generation policy previously described
for tracematches [2]. A method is generated for each trace-
match symbol. This method is triggered when an event oc-
curs which matches that symbol, for some variable bindings.
The method uses these bindings to calculate changes to the
constraints labelling the automaton. These changes are tem-
porarily queued. Once a method has been run for each sym-
bol that matches the event, the queued changes are used to
update the main constraints.

Without indexing, the pseudo-code for the method which
updates the constraints for a symbola is:

def updatea(eventbindings):
for (j,i) in a-transitions:

label[i].pos = label[i].posor
(label[j].originaland eventbindings)

neg = negand not(eventbindings)

Such a method is run for each symbol that corresponds to an
event. After each applicable update method is run, the results
are combined:

def combine():
for i in states:

label[i].original = label[i].posor
(label[i].originaland neg)

label[i].pos =false
neg =true

Note how the two halves of these methods correspond to the
two lines of Equation 1, respectively. The only difference is
that here the results are imperatively built symbol-by-symbol
using temporary variables. The variables are as follows:

• label[i].original — a set of disjuncts storing the constraint
for statei

• label[i].pos — a temporary set of disjuncts in which the
positive updates for statei are accumulated

• neg — a temporary set of disjuncts in which the negative
updates for all states are accumulated

To refine this approach to use indexed constraints, the
first step is to replace the sets used for the ‘original’ sets
with the multi-level maps discussed above. The ‘pos’ sets are
replaced with linked-lists called ‘qeueue’. Once the relevant
disjuncts for an update are located in the multi-level map, the
results of processing them are stored using the ‘queue’ lists.
We use lists rather than sets, because the queues must be
reset every iteration and this adds large amounts of overhead
with sets.

The pseudo code for the update methods that use index-
ing is as follows, although note that what is shown here is
just pseudo code for clarity; in the actual implementation,
specialised code is generated for each operation shown here
and the loops are statically unrolled.

def updatea(eventbindings):
for (j,i) in a-transitions:

for disjunctin label[j].original.lookup(eventbindings):
label[i].queue.append(disjunctand eventbindings)

neg.andNot(eventbindings)

def combine():
for i in states:

label[i].original.and(alleventbindings)
label[i].original.insertAll(label[i].queue)
label[i].queue = []

neg.reset()

Consider again the safe-enumeration example. In contrast
to the five calculations shown in Figure 4, computing the
sameNEXT update, for(e = e2), now only two disjunct
calculations — one positive and one negative update to(v =
v1∧e = e2) — and four relatively inexpensive map lookups.

5.4 Evaluation

Let us now examine the effect on the benchmark times, as
displayed in Table 4.

ID ASPECTJ FULL OPT LEAKELIM NOOPT

1 3.3S 15.3S 97S >90M

2 0.6S 1.6S 61.5S 748S

3 478S 627S >90M >90M

4 2.7S 3.1S 3.9S 5.5S

5 4.4S 9.8S 9.4S 9.2S

6 2.9S 3.3S 3.3S 3.3S

7 18.0S 21.2S 21.4S 21.6S

8 8.0S 9.5S 11.4S 12.0S

Table 4. Complete benchmark results.

Not surprisingly, in some cases indexingdeterioratesper-
formance, in particular for OBSERVER(5). As we mentioned
earlier, in this application each subject has exactly one ob-
server. It follows that the indexing structure only adds to the
overhead of accessing that one element. This type of slow-
down could be eliminated by introducing indexing in a dy-
namic fashion, only building the index when the number of
disjuncts in a set exceeds a given threshold.

Overall, however, the effect of indexing is hugely bene-
ficial. In the case of NULLTRACK (2), it reduces the execu-
tion time from 61.5s to 1.6s, which is particularly impressive
considering the huge number of instrumentation points. Fur-
thermore, APROVE (3) now becomes feasible to execute,
and we can observe a huge speed-up in SAFEENUM (1).
HASHCODE/WEKA (4) and REWEAVE (8) also benefit.



Perhaps the most pleasing side-effect of indexing, how-
ever, is the elimination of the crucial dependency on garbage
collector performance that we observed in Section 4: It is
now the case that running a benchmark with more memory
will not automatically mean worse performance, since we
only iterate relevant disjuncts. Of course it is theoretically
possible that we update disjuncts that are relevant but would
have expired after a garbage-collector run, but we weren’t
able to measure this in practice.

We conclude that the combination of leak elimination and
indexing is aconditio sine qua nonfor the generation of
efficient trace monitors. Neither of the two techniques would
work as well in isolation: Without indexing, leak elimination
depends on the JVM’s memory measurement, and without
leak elimination, indexing would run out of memory on any
substantial benchmarks.

6. RELATED WORK
In the introduction, we already indicated that while there is
a substantial body of work on trace monitoring, there are not
a lot of systems available. As the focus of this paper is ef-
ficient implementation, we only review such systems here.
Our original intention was to provide a detailed comparative
study of the most mature trace monitoring systems; it turned
out, however, that many of the systems were not available
to the general public, and even with those that were, we fre-
quently ran into basic problems that prevented our experi-
mental evaluation.

Table 5 gives an overview, comparing the salient features.
The first five systems in the table are all publicly available
and allow trace monitors to be applied to Java programs.
They are, therefore, broadly comparable — even though in
AspectJ event sequences must be matched by hand-coding
the monitor. The five systems on the bottom of the table
are either not publicly available, or (in the case of Arachne)
apply to another programming language, namely C.

The table attempts a comparison with respect to a number
of criteria. Firstly, the purpose of the system: Many are
geared solely towards runtime verification, whereas others
(mostly with a background in aspect-oriented programming)
are actually intended to augment the monitored program by
running extra code when a matching trace is found, or maybe
by replacing an event with new code.

Next, we examine the issue of integration with a pro-
gramming language. Several of the systems are deeply in-
tegrated with AspectJ, but some others (for instance PQL)
are stand-alone tools. The advantage of programming lan-
guage integration is enhanced checking of the specifications
at compile-time.

There is considerable variety in the way patterns are spec-
ified. Not all systems allow variables to be bound by the
matching process: without such binding, it is difficult to
write patterns that monitor the behaviour of a specific set
of objects. The ‘exact-match’ column in Table 5 refers to the

matching process. There are two different styles of seman-
tics: One can either demand that every single event be ac-
counted for by the pattern, or one can allow arbitrary events
to occur in between matched statements, as does, for exam-
ple, PQL. We refer to the former as an ‘exact-match seman-
tics’, and to the latter as a ‘skipping semantics’. The precise
implications of this design choice are very interesting, but
beyond the scope of this document; we refer the interested
reader to [6] for an in-depth discussion.

Finally, a number of systems allow context-free patterns
as opposed to merely finite state machines. While we have
not considered the implementation of such rich patterns in
this paper, it is clear that the same techniques apply there to
avoid space leaks, and to index partial solution sets.

The next section of Table 5 examines the characteristics
of the implementation. Only very few systems have based
their implementation on a semantics. For tracematches, a
proof of the correspondence between its declarative and op-
erational semantics is presented in [2]. Tracematches pio-
neered the use of leak prevention and indexing as described
in this paper, though these techniques have been picked up
by JavaMOP to some extent — see the relevant discussion
below. Other systems are not concerned with space leaks,
and pay the associated performance penalty. The authors of
HAWK kindly agreed to run our SAFEENUM benchmark for
us (HAWK is not available for download), but memory leaks
proved prohibitive. Our experience with PQL is described
below.

Tracematches are also the only system that automatically
specialises the generated code to the pattern — again, of
course, without using interprocedural analysis. Further dras-
tic improvements in efficiency are possible in some applica-
tions when interprocedural analysisis employed. The most
sophisticated system of this kind is PQL, employing a BDD-
based static analysis to rule out instrumentation points at
compile-time. Unfortunately, we were not able to get the
static analysis to work. A similar optimisation has been
tried in the context of tracematches [9]: The findings were
not very encouraging, showing that often the static analysis
made only a very small difference in runtime.

The final column indicates whether a system can be freely
downloaded. Where this was the case and the system could
process Java, we tried to express our benchmarks. The per-
formance of J-LO on SAFEENUM was such that we gave up
on attempting further experiments (with its author’s bless-
ing). Our experience with AspectJ has been presented in this
paper as the hand-optimised gold standard against which
other systems should be measured. The time spent coming
up with implementations in each case was substantial. The
findings with the remaining two systems were more interest-
ing.

PQL The Program Query Language (PQL [25]) was pro-
posed as a stand-alone tool to find bugs in Java programs
by writing queries over execution traces. A PQL query can
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tracematches [2] ± + + + + - + + + + + [9] +
PQL [25] + - - + - + - - - - + +
J-LO [26] + - + + - - + - - - - +
JavaMOP [11] + + - ± - - - ∓ ∓ - - +
AspectJ [4] - + + - - - - - - - - +

tracecuts [30] ± + + - + + - - - - - -
PTQL [21] + - - + - + - - - - + -
HAWK [14] + - - + - + - - - - - -
Alpha [8] ± + - + + + - - - - - +
Arachne [19] ± + + - + - - - - - - +

Table 5. Systems for trace monitoring.

be named, can make use of free variables, and picks out
events by writing fragments of concrete Java syntax. It em-
ploys askipping semantics, that is, it allows any event to
occur between matched statements. Due to the fact that the
named queries can be (mutually) recursive, PQL can express
context-free properties of the trace quite naturally.

PQL does not include any optimisations to avoid space
leaks, and indeed when we encoded SAFEENUM, we ob-
served a steep linear growth of memory usage over time:
it was impossible to complete the benchmark without pro-
viding the JVM with more memory (cf. Figure 8 for a com-
parison with MOP and tracematches). Still, PQL completed
the benchmark in 580 seconds, significantly faster than the
naı̈ve tracematch — but also rather slower than tracematches
with leak elimination (97s) or full optimisations (15.3s).

Unfortunately, we ran into significant problems when try-
ing our other benchmarks. Several of them (both HASH-
CODE benchmarks, for example) cannot be expressed due to
limitations of the PQL language; the problem with HASH-
CODE is that PQL cannot bind primitive types likeint (we
confirmed this with the authors of PQL). Also, it is impos-
sible to intercept and bind assignments to fields, and so we
couldn’t express NULLTRACK or REWEAVE. DBPOOLING

and LUINMETH are both expressible, but do not work with
the PQL 0.1 or 0.2 implementations for technical reasons.

JavaMOP JavaMOP is an implementation of the paradigm
of monitor-oriented programming [11]. It provides a frame-
work for so-called logic plugins to generate a trace monitor
from their own domain-specific trace pattern language; such
a plugin for regular expressions is predefined, making it nat-
ural to compare our work on tracematches with JavaMOP
and to investigate to what extent our findings carry over.
However, several different plugins (e.g. for LTL) are also
available, and many of the design decisions in the system are

influenced by the need to keep the core plugin-independent.
Indeed, one of the main design goals of JavaMOP is to stay
as general as possible with respect to the MOP framework. It
supports three kinds of monitors (inline, outline and offline),
and can trigger extra code both when patterns are validated
and violated.

In what follows, when we say “JavaMOP”, we shall mean
“JavaMOP with the regular expressions plugin, inline moni-
tors and validation handlers”, as this configuration is closest
in spirit to tracematches.

The system generates AspectJ source code, which then
needs to be compiled with an AspectJ compiler to produce
the instrumented program. Our discussion of JavaMOP will
be structured as follows. First, we discuss some subtle dif-
ferences with tracematches at the level of language design,
as they have some impact on the implementation. Next, we
zoom in on the implementation of JavaMOP, comparing it
to tracematches both in terms of space usage and time effi-
ciency. To be precise, we shall compare against the so-called
‘centralised indexing’ implementation of JavaMOP — the
alternative, ‘decentralised indexing’ is briefly reviewedin
our Future Work section. Finally, we draw some conclu-
sions from this detailed comparison between tracematches
and JavaMOP.
Language design.Broadly speaking, JavaMOP is very sim-
ilar to tracematches. However, there are four significant dif-
ferences:

• First, all variables must be bound by the first symbol
in a pattern. This condition is not satisfied by two of
our benchmarks. In NULLTRACK, the pattern is ‘setnull
anyget npe’, and theanygetsymbol binds information
about the field read, reporting it when a match occurs.
The condition that all variables be bound by the first
symbol also fails in the LUINMETH benchmark.



• Second, at most one state in the automaton corresponding
to the pattern can be associated with each set of variable
bindings. In tracematches, no such restriction exists. This
can be a problem, since typically the automata generated
for trace properties are non-deterministic, and so only
keeping one of all the different states such an NFA might
be in will miss some matches. (One could, of course,
determinise the pattern at the cost of an exponential blow-
up, but JavaMOP does not do this.)

• Third, symbols (or “events”, as they are called in Java-
MOP) are considered atomic, and so there is no provi-
sion for overlap — if multiple different symbols match
the same runtime event, the monitor state is updated once
for each such symbol. This is a conscious design deci-
sion, but one which significantly simplifies the required
monitor update code.

In tracematches, the symbols in the pattern are simply
logical properties, and so it is natural that they can over-
lap; the implementation takes special care to preserve the
semantics in this case. Updating matching state several
times for a single event and potentially triggering the
tracematch multiple times with the same bindings after
just one event would clearly run contrary to our seman-
tics [2].

• Fourth, in JavaMOP, variable bindings from the pattern
cannot be directly used in the code that is triggered when
the pattern matches. This is in part a consequence of
the logic-plugin-independent design of the system. If we
wished to use the bindings, they must be explicitly main-
tained by hand within the plugin. By contrast, trace-
matches do not impose such a restriction, freeing the user
from the need to maintain bindings manually.

The designers of JavaMOP have thus made a number of
pragmatic decisions, balancing expressiveness against ease
of implementation and their overarching goal of preserv-
ing plugin-independence. As described in [2], the design of
tracematches takes a formal semantics as its starting point,
and then implements exactly that semantics, without making
any concessions to facilitate more efficient implementation.
It is interesting, therefore, to examine the price one pays for
such generality, and the benefits that derive from JavaMOPs
design choices.
Implementation.Some of the optimisations and benchmarks
proposed in this paper were first disseminated in a technical
report, and pleasingly the developers of JavaMOP incorpo-
rated parts of our work into their system. At the time of writ-
ing, several of our benchmark trace monitors had been ex-
pressed in their formalism and made available on their web
page [17]; also, a weak form of leak elimination and index-
ing is supported by JavaMOP in a plugin-independent way.

The main difference between our approach and that of
JavaMOP is in the representation of partial matches: While
tracematches conceptually store an automaton labelled with

Figure 8. Memory usage for SAFEENUM (top to bottom
line): JavaMOP using bindings, PQL, JavaMOP not using
bindings, tracematches using bindings.

constraints, JavaMOP uses a dedicated monitor instance for
each distinct set of variable bindings, and updates a state
counter on that. As mentioned above, this entails several
problems, particularly the fact that it is impossible to use
different space leak elimination strategies on different au-
tomaton states. Indeed, the approach taken by JavaMOP is
almost disarming in its simplicity: Store each monitor in-
stance in a set of indexing trees, one such tree for each tuple
of variables bound by some monitor event, in such a way
that keys are allowed to expire, and when they do associ-
ated sub-trees are discarded. In this way, monitor instances
are kept alive for just as long as some event enabling them
might occur (note, however, that this is not as effective as our
collectable-binding-sets, or even justcollectableWeakRefs,
because if there is some event that binds no monitor variable,
all monitor instances would be stored in a set without ever
being removed).

Unfortunately, this scheme breaks down as soon as the
user needs to inspect the acquired variable bindings and use
them upon a successful match. According to the JavaMOP
developers, the proper procedure there is to instrument the
events with additional code that stores the binding in fields
of the monitor instance, and then use those fields. Unfor-
tunately, this implies keeping strong references to bindings,
which will prevent them from ever being cleared.

Moreover, it is not possible for the user to avoid space
leaks by manually using weak references when storing the
bindings in fields, since that wouldn’t guarantee their avail-
ability at the time of match completion. The only way around
this seems to be an automaton-state specific handling of
bindings, as implemented in tracematches. However, such an
advanced strategy seems infeasible without in-depth knowl-
edge of the underlying formalism, and so this cannot be
implemented in JavaMOP without sacrificing some of the
plugin-independence.



Figure 8 illustrates the effectiveness of space leak elimi-
nation on the SAFEENUM benchmark for tracematches and
MOP. We can see that the sophisticated leak elimination
strategy described in Section 4 is successful, and the memory
usage for tracematches is essentially constant, even though
all bindings are used in the body (the line is almost su-
perimposed on the X axis, at an average memory usage of
1.1MB). The second line from the bottom corresponds to
JavaMOP with a validation handler that doesn’t use the bind-
ings. Memory usage is reasonable, but there is still a clear
upwards trend. The next line corresponds to PQL, and the
top line corresponds to storing bindings in fields of the mon-
itor instance and using them in the validation handler, as
advised by the developers of JavaMOP. Essentially, this re-
sults in no heap object that was bound ever being released
for garbage collection, and memory usage explodes.

It is also interesting to compare the performance of the
two systems, since typically JavaMOP’s approach of stor-
ing an automaton instance for each set of bindings seems
more natural than the alternative of annotating states with
constraints. As we observed above, it forces the restriction
that any free variable of the monitor must be bound in the
first observed event, and we wanted to determine if the price
that tracematches pay for their generality is prohibitive.

Therefore, we tried to express all of our benchmarks in
JavaMOP, guided by the examples on its website [17]. As
we have already observed, NULLTRACK and LUINMETH

violate JavaMOP’s assumption that all variables be bound
upfront, so these cannot be expressed directly.

Still, it is sometimes possible to manually tweak such
cases into the form expected by JavaMOP, by rephrasing
events or the entire pattern, or perhaps by using so-called
event actions— these are blocks of Java code that run
when an event matches, and while they somewhat undermine
the declarative nature of the specification, they certainly
increase expressiveness. We were able to express NULL -
TRACK using such event actions — the location and line
number to be reported is stored on fields of the monitor in-
stance and destructively updated with each new event match.
Note that this technique wouldnot work in cases which re-
quire different monitor instances for different values of the
binding that is being handled in this way, but NULLTRACK

happens to fit the bill. It is important to realise that this ac-
tually significantly simplifies the pattern from JavaMOP’s
point of view, since it reduces the number of variable bind-
ings it needs to keep track of and index on. No such assump-
tion is available to the tracematch.

The above technique doesn’t work for LUINMETH, as
different monitor instances for each bindingare needed.
One might think it possible to emulate it manually in event
actions, but there is currently no way in JavaMOP to inspect
the call stack, and so this benchmark is not expressible at
this time (we have confirmed this with the designers of
JavaMOP).

Finally, DBPooling requiresaround symbols (i.e. sym-
bols that intercept and replace the last matching event),
which MOP does not support. In summary, six of our eight
benchmarks are expressible in JavaMOP.

The overall results are shown in Table 6. The MOP num-
ber for SAFEENUM shown is for the monitor that doesn’t
use the bindings in the validation handler (and hence al-
most succeeds in eliminating memory leaks), as that was
significantly faster. As we can see, JavaMOP outperforms
tracematches on HASHCODE/APROVE, OBSERVER and
REWEAVE, typically by a margin of 20% or less, while
tracematches hold the upper hand on the SAFEENUM (due
to the superior leak elimination) and HASHCODE/WEKA.
The NULLTRACK numbers in the table are not directly com-
parable, as the tracematch does more work: JavaMOP avoids
the need to index on the source location and line number by
use of event actions, as described above.
Conclusions.In conclusion, JavaMOP highlights some inter-
esting restrictions to the language design that enable simpler
code generation than that for tracematches. For some bench-
marks, the savings can be as high as 20%, but the price paid
is that many patterns are not expressible. It is natural, there-
fore, to wonder whether those same restrictions could be im-
plemented as optimisations for tracematches.

The primary reason for the efficiency savings is Java-
MOP’s built-in requirement that all monitor variables be
bound by the first observed event, which allows for more
straightforward update code (in the terms used in Section 5,
the negative updates never modify partial matches, they ei-
ther leave them unchanged or discard them). We intend to
implement a similar optimisation in the tracematches sys-
tem on an on-demand basis — because we generate specific
update code for each automaton state, it would be easy to use
the above optimisation atanystate that guarantees all vari-
ables bound, which, in the special case that the first event
binds all variables, would give us the same result as intro-
ducing the restriction from JavaMOP.

Another opportunity is to exploit non-overlapping sym-
bols. As said, in JavaMOP events are always unique, and no
two symbols can match the same event simultaneously —
some arbitrary order is imposed. In tracematches, we could
implement an analysis thatprovesdisjointness of symbols.
Using such disjointness information, it is possible to make
destructive updates to the constraints that label states, and
that in turn would lead to the generation of simpler (and
hence more efficient) code.

Static analyses In the introduction we already alluded to
techniques that have been devised for static type-state verifi-
cation (e.g.[18]). These analyses can be employed to show
that certain program points can never contribute to the suc-
cessful match of a particular trace pattern, thus avoiding the
need for instrumentation — indeed, a staged analysis follow-
ing this approach and extending it to the context of trace-
matches was recently proposed in [9,10].



ID MONITOR BASE KSLOC TM MOP
1 SAFEENUM JHOTDRAW 9.5 15.3S 19.3S

2 NULLTRACK CERTREVSIM 1.4 1.6S 0.8S

3 HASHCODE APROVE 438.7 627S 590S

4 HASHCODE WEKA 9.9 3.1S 3.6S

5 OBSERVER AJHOTDRAW 21.1 9.8S 10.3S

8 REWEAVE ABC 51.2 9.5S 8.3S

Table 6. Comparison of benchmark runtimes between tracematches andJavaMOP

The analyses of [9, 10] are particularly effective when
tracematches are blindly applied to a large number of pro-
grams, because then tracematches fail to apply for easy-to-
check reasons (say, no locks are acquired or released at all,
so LUINMETH fails to apply overall). Indeed the numbers
reported in [9,10] are very encouraging for that type of trace-
match usage.

The situation is somewhat different, however, when
benchmarks actually exercise all events in a tracematch, as
is the case in our benchmark suite. For instance, one cannot
hope to completely eliminate the instrumentation costs in
examples like SAFEENUM, since it catches actual violations
of the property in question. Moreover, such analyses suffer
from the usual problems for whole-program and callgraph
analysis: It is very hard to make sure the result is sound in
the presence of multi-threading, dynamic class loading and
reflection, which are quite common in real-world Java pro-
grams. Indeed, technical problems connected with these is-
sues prevent us from reporting numbers for our benchmarks
with the analysis from [10] applied.

However, it is important to realise when such static anal-
yses will help. Typically, they are concerned with remov-
ing provably unnecessary instrumentation. When writing
trace monitors for runtime verification concerns, a success-
ful match indicates that the program misbehaved, and so in
an ideal case one might hope that a static analysis could re-
move all instrumentation, proving the program correct with
respect to the given property.

However, when viewing trace monitors as an extension
of pointcuts in an aspect-oriented setting, they typicallycon-
tribute an essential part of the system’s functionality —
our OBSERVERexample is just such a case. Such monitors
by definition cannot be optimised away, because they will
match. Particularly in this context, it is therefore important
to do the best possible code generation for the given pattern,
as there is no hope that a sufficiently sophisticated analy-
sis might remove all overheads. The techniques presented in
this paper are indispensable for that.

7. FUTURE WORK
It is natural to ask whether further improvements are pos-
sible, beyond the optimisations presented here. We are cur-
rently investigating several possibilities:

Reducing redundancy One obvious way to carry our in-
dexing scheme further would be to note that it is redundant
to store binding information both labelling the edges of an
indexing tree, and on the partial matches at the leaves. We
could then further specialise the partial match representation
by discarding the redundant information. In the extreme case
where every variable appears as an index, we would only
have to store a simple counter recording the current automa-
ton state.

Some care has to be taken, however — this is only well-
defined if any symbol that can occur at the start of a matched
trace binds all tracematch variables. In fact, this occurs fre-
quently, and so such an optimisation seems promising: we
already discussed this under JavaMOP in the Related Work
section. Indeed, since tracematches already generate spe-
cialised code for each automaton state, one could take this
further by using this technique for all variables for which it
makes sense, for each state.

Disjoint pattern symbols Also, in our earlier discussion of
JavaMOP, we noted that JavaMOP’s simple code generation
is partly due to its decision not to consider overlapping
symbols in trace specifications.

Because tracematches are embedded in the AspectJ lan-
guage, and there pointcuts can overlap, it is not possible to
follow that design here. However, it is easy to envisage an
analysis that proves disjointness of particular symbols. Us-
ing the result of such an analysis, we can simplify the code
that updates constraint labels on automaton states for the dis-
joint symbols, making most operations destructive.

Bound variable correlation In many examples, there ex-
ists a many-to-one relationship between the objects bound
in a trace monitor. For example, every enumeration corre-
sponds to one collection, every observer has one subject, and
so on. We can thus improve the implementation of index-
ing by moving the first level of the indexing tree into fields
on objects. For example, in the OBSERVER tracematch, we
might store all observers as a field on the subject. Note that
this has the added benefit that when the subject is garbage
collected, so are its observers.

Implementing this automatically requires some annota-
tions on the specification, as well as a fairly complex anal-
ysis of the base program, however, going well beyond the
cheap techniques we have introduced here. In particular,



such analysis is necessary when it is not deemed acceptable
to modify library code, to check that certain objects are con-
structed only in the compiled code, and not elsewhere. In the
presence of such an analysis, we could generate code that is
much closer to our hand-coded AspectJ gold standard for
benchmarks like SAFEENUM, as described above.

A related optimisation was introduced by the designers of
MOP in [11] for the special case of single-variable specifica-
tions only. In that context, the above would take the form of
simply storing the monitor instance on a field of the bound
object. We first sketched an extended technique incorporat-
ing handling of multiple variables in [2], and a limited ver-
sion is implemented in JavaMOP [12, 17]. That implemen-
tation, called ‘decentralised indexing’, avoids the need for
an expensive analysis by assuming it is permissible to trans-
form the code of the Java standard libraries, and in many
applications that assumption is not satisfied.

Dynamic indexing We noted that for some benchmarks,
indexing aversely affects performance because the indexed
sets are too small; in particular, this is the case for OB-
SERVERapplied to AJHOTDRAW. The obvious solution is
to set a threshold: sets below the threshold are not indexed,
and those above it are.

A lot remains to be done to optimise trace monitor perfor-
mance. It is clear, however, that we have identified the two
essential techniques that make trace monitoring feasible in
the first place.

8. CONCLUSIONS
This paper demonstrates, for the first time, how feasible
trace monitors can be generated from specifications. It thus
complements the substantial body of work that argued the
desirability of trace monitors as a language feature.

This result was obtained through two techniques: the
elimination of space leaks, and a sophisticated data struc-
ture for organising sets of partial matches. Neither of these
techniques requires interprocedural analysis, and they can
thus be employed without excessive compile-time costs.
Our techniques approach the speed of hand-coded, hand-
optimised monitors to within a factor of 3 at worst.

The leak elimination analysis was suggested in [2], but
the strategy proposed there contained a crucial flaw that
made it unsound. We have shown how to rectify this by in-
troducing the novel notion ofpersistentweak references, and
how to extend the results to effectively optimise a wider class
of specifications. Furthermore, we presented a thorough ex-
perimental evaluation of the effectiveness of the new solu-
tion. The fact that the original flaw went undetected for so
long is cause for some concern. At present there are no for-
mal verification techniques available for data structures that
make use of weak references. We are currently investigating
the development of such verification techniques, using the
data structure presented here as a motivating example.

All results of this paper, ranging from our benchmark
suite to the optimisations, are applicable to most other trace
monitoring systems, and we have thus opened the way for
many comparative experiments in future. These are already
starting to happen, as witnessed by the recent adoption of
some of the techniques presented here by the JavaMOP
system.
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and Jean-Marc Menaud. An application of dynamic AOP
to medical image generation. In2nd Dynamic Aspects
Workshop (DAW05), Technical Report 05.01, pages 5–12.
Research Institute for Advanced Computer Science, 2005.

[20] Erich Gamma. JHotDraw. Available fromhttp://
sourceforge.net/projects/jhotdraw, 2004.

[21] Simon Goldsmith, Robert O’Callahan, and Alex Aiken.
Relational queries over program traces. InProceedings of the
20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages
385–402. ACM Press, 2005.

[22] Peter Hui and James Riely. Temporal aspects as security
automata. InFoundations of Aspect-Oriented Languages
(FOAL 2006), Workshop at AOSD 2006, Technical Report
#06-01, pages 19–28. Iowa State University, 2006.

[23] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An overview
of AspectJ. In J. Lindskov Knudsen, editor,European
Conference on Object-oriented Programming, volume 2072
of Lecture Notes in Computer Science, pages 327–353.
Springer, 2001.

[24] Ramnivas Laddad.AspectJ in Action. Manning, 2003.

[25] Michael Martin, Benjamin Livshits, and Monica S. Lam.
Finding application errors using PQL: a program query
language. InProceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 365–383. ACM Press,
2005.

[26] Volker Stolz and Eric Bodden. Temporal Assertions using
AspectJ. InElectronic Notes in Theoretical Computer
Science, volume 144, pages 109–124, 2006.

[27] Arie van Deursen, Leon Moonen, and Marius Marin.
AJHotDraw. http://sourceforge.net/projects/

ajhotdraw/, 2006.

[28] Wim Vanderperren, Davy Suvé, Marı́a Augustina Cibrán,
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