
AspectJ as a Polyglot extension

- the frontend of abc -

Roadmap

● What is Polyglot?

● Brief overview of the AspectJ extension

● Sketch of disambiguation of “this” in ITDs

● Summary

What is Polyglot?

● Jif : Java information flow and program partitioning

● PolyJ 2.0 : Java with parameterized types

● JMatch : Abstract iterable pattern matching for Java

● Jx: Nested inheritance in Java

● Jedd: BDD-based analyses

● JPred : Practical predicate dispatch

An extensible Java compiler

Sample extensions:

Produced by Andrew Myers, Nate Nystrom et al. at Cornell

How does Polyglot do it?
● Structured as a series of visitors

● Each visitor pass rewrites AST; about 15 such visitors

● Rigorous use of interfaces and factories makes it easy to
change type system, environment, ...

● Delegates for overriding members of non-final AST
classes (cf. intertype decls)

The AspectJ extension
Like any other Polyglot extension, five new packages:

● AST: new ast nodes (89 classes)

● Extension: overrides of existing Java AST nodes (13 classes)

● Parse: new lexer and grammar (2 files)

● Types: new types and type system (8 classes)

● Visit: new passes (35 classes)

● Includes Java/AspectInfo separator

● Many AST classes in pointcut language are light-weight

● The tricky bits are the type rules for ITDs, and the
separator into Java & AspectInfo

Example: intertype scope rules
public class A {

int x;

class B { int x; }

}

aspect Aspect {

static int x;

static int y;

int A.B.foo() {

class C {

int x = 3;

int bar() {return x + A.this.x;}

}

return this.x + (new C()).bar() + y;

}

}

Example: intertype scope rules
need to disambiguate field references:

 - may be a reference to aspect fields,

 - local class fields,

 - or host (=target) of intertype declaration

Rules:
● no explicit receiver? if it was introduced

 into environment by the host, give it “this” from host.
● explicit “this” or “super”? if there is no

 qualifier and we're not inside a local class,

 it refers to the host. If there is a qualifier Q, and

 there is no enclosing instance of type Q nested

 inside the ITD, it refers to the host if the host has an

 enclosing instance of type Q.

public class A {

int x;

class B { int x; }

}

aspect Aspect {

static int x;

static int y;

int A.B.foo() {

class C {

int x = 3;

int bar() {return x + A.this.x;}

}

return this.x + (new C()).bar() + y;

}

}

How to disambiguate “this”

● Extend context type in Polyglot

● Test to determine whether this refers to host

● Override disambiguate for Polyglot this.

New context type
public interface AJContext extends Context {

Context pushHost(ClassType ct, boolean declaredStatic);

// called when entering itd

ClassType hostClass(); // return target of current itds

boolean inInterType(); // are we inside an intertype declaration?

boolean nested(); // are we inside a local class in an intertype declaration?

// other itd-related members...

boolean varInHost(String name);

boolean methodInHost(String name);

ClassType findFieldScopeInHost(String name);

ClassType findMethodScopeInHost(String name) throws SemanticException;

// ... more for advice and declare decls ...

}

types.Context:

Does “this” refer to host of ITD?

public boolean refHostOfITD(AJContext c, Typed qualifier) {
if (!c.inInterType()) // if not inside an ITD, cannot refer to a host

return false;
if (qualifier == null) // if there is no qualifier

return !c.nested(); // it refers to the host if we're not in a local class
else // otherwise look for enclosing instance in host

return c.hostClass().hasEnclosingInstance(qualifier.type().toClass());
}

types.AJTypeSystem_c

Override disambiguate
public Node disambiguate(AmbiguityRemover ar) throws SemanticException {

AJContext c = (AJContext) ar.context();
AJTypeSystem ts = (AJTypeSystem) ar.typeSystem();
if (!(ts.refHostOfITD(c,qualifier()))) {

// this is an ordinary special, it does not refer to the host
return super.disambiguate(ar);

} else {
// this is a host special
AJNodeFactory nf = (AJNodeFactory) ar.nodeFactory();
HostSpecial_c hs = (HostSpecial_c) nf.hostSpecial(position,kind,

qualifier,((AJContext)c).hostClass());
return hs.type(type()).disambiguate(ar);

}
}

extension.AJSpecial_c (Special is the Polyglot class to represent “this”):

Frontend summary
✔ Extensible in all dimensions:

– syntax, type system, visitors

✔ Potential merge problems with pure Java compiler only
occur in extension dir and type system

✔ Extensions to abc have same structure as abc itself

