
Pure Aspects

Elçin A. Recebli

Wolfson College

University of Oxford

Computing Laboratory

August 2005

Abstract

Aspect-oriented programming (AOP) is a relatively recently proposed program-

ming paradigm that introduces aspects. Conceptually, an aspect is a module that

observes the flow of a program and performs specified actions upon encountering

specified events in the execution. This feature makes aspects a convenient tool for

addressing cross-cutting concerns,—i.e. concerns that systematically affect all or

some other components of the whole system.

However, the power comes at the price of increased responsibility. Ability to

observe the program flow and alter and/or augment other components also implies

the ability to break encapsulation, which is one of the central notions at the heart

of the OOP paradigm. Taking into account that AOP is most commonly built on

top of OOP, this is a potential source of unforeseen problems. How do we decide

when encapsulation violations are to be allowed, and when not? What can be done

to automate making decisions?

In this dissertation one approach to solving the problem—the notion of aspect

purity—is proposed. From a bird’s eye view, a pure aspect is one that promises

not to alter the behaviour of specified set of modules (classes), only possibly adding

something new. For example, if certain program models some physical process, then

the aspect used to build a visualisation of that process, e.g. by creating a graphical

window and constantly updating its content as a response to changes of parameters,

is a good candidate to be pure: it is not supposed to change the way the process

itself is modeled; it is only there to watch certain values and perform corresponding

drawings.

Our design provides a seamless extension to the most popular aspect-oriented

programming language—AspectJ. AspectJ is itself a conservative extension of Java.

We then proceed to describe our implementation of these ideas. Our starting point

for the implementation is abc—an extensible workbench for experimenting with new

features of AspectJ.

In large and complex systems, violations of purity by aspects supposed to be

pure can be accidental and hard-to-spot. We will see examples of such situations,

what harm they can cause, and how automated purity verification could have helped

avoiding arisen problems.

i

Acknowledgments

I would like to express my gratitude to my supervisor, Professor Oege de Moor,

for introducing me to the world of AOP and getting me involved with this innovative

project, for his assiduous guidance and support.

I am also grateful to all members of abc mailing list for their lively participation

in the development of the concept of pure aspects and valuable comments about

this matter. Thank you all!

Last, but not least, I am thankful to my wonderful family for their constant

countenance and sincere concern that I could almost physically feel during the last

year, and that never let me down.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Outline . 3

2 Aspect-Oriented Programming 4

2.1 Introduction to AOP . 4

2.2 AspectJ: AOP & Java . 5

2.2.1 Examples . 6

2.2.2 Join Points . 9

2.2.3 Pointcuts . 9

2.2.4 Advice . 10

3 Harmful Aspects 15

3.1 Classification of Aspects . 15

3.2 When Aspects Do Harm . 18

4 New Safety Features 21

4.1 Limiting Aspects: Previous Proposals 21

4.2 Pure Aspects: an Idealisation . 22

4.3 Towards a Mechanised Approximation 23

4.3.1 Termination . 24

4.3.2 Exceptions . 24

4.3.3 around() Advice . 24

4.3.4 Mutated Locations . 25

4.3.5 Output . 26

iii

CONTENTS

4.3.6 Exclusions . 27

4.3.7 Our Proposal . 27

4.4 Purity Syntax . 28

5 Implementation 31

5.1 abc: an Alternative AspectJ Compiler 31

5.1.1 Front-End with Polyglot . 32

5.1.2 Back-End with Soot . 33

5.2 Extending the Front-End . 35

5.2.1 AST Generation . 35

5.3 Extending the Back-End . 39

5.3.1 Points-To Analysis . 39

5.3.2 Purity Analysis . 40

6 Experiments 43

6.1 A Table and a Glass Revisited . 43

6.2 proceed()-purity . 44

6.3 Exclusions . 45

6.4 TraceAspect . 45

6.5 Compiler Run Times . 46

7 Related Work 47

7.1 Assistants and Spectators . 47

7.2 Classification Systems for Advice . 47

7.3 Harmless Advice . 48

8 Conclusions and Future Work 49

8.1 Summary . 49

8.2 Future Work . 50

A Purity Verifier Source Code 54

iv

Chapter 1

Introduction

1.1 Motivation

Aspect-Oriented programming, or AOP for short, is a paradigm that introduces a

new kind of program modules, namely aspects, specifically designed to address cross-

cutting concerns.

An aspect, like any module, e.g. a class, is a part of a larger system. However,

unlike a class, it is not an entity in itself, but rather a component that cross-cuts

all or some other components, altering the existing design in a systematic way. It

does so by observing a running program and triggering specified actions—pieces of

advice—on encountering specified events in the program flow.

These powerful features make aspects capable of solving many problems in a

more elegant and effortless way than would be possible with plain OOP. Clear sep-

aration of cross-cutting concerns has a positive impact on program maintainability.

However, the ability to alter the behaviour of existing classes conflicts with en-

capsulation—one of the central notions of OOP. Overall AOP nicely builds on top

of the latter, but at the same time the very core of these two paradigms don’t seem

to get on well with each other, at least at first sight.

A potentially troublesome area of AOP, following from the ability to arbitrarily

break encapsulation, is impaired modularity of systems. According to Parnas [1], one

of the benefits of decomposing a system into modules should be enabled modular

reasoning,—i.e. the possibility to understand the whole system one module at a

time. With aspects’ potential to burst into the code of other modules this is often

1

INTRODUCTION 1.2 Contribution

impossible: when studying some module, one would need to consider all aspects

that could possibly interfere and change the module’s logic.

So how can we deal with these unpleasant situations?

1.2 Contribution

We need some foundation to resolve possible collisions of OOP and AOP. Clearly,

not all breaches of encapsulation by aspects are harmful—otherwise AOP would be

useless. Ultimately what we want is a criterion that will let us distinguish between

“good” and “bad” violations of encapsulation.

Such criteria can come in two flavors: either a class can explicitly advertise what

implementation details external aspects are allowed to see, and at what points they

are allowed to intervene; or an aspect can declare what properties of the base system

it is, or is not expected to alter.

Both approaches have their own scope and can be applied to address specific

issues. The universal solution probably has to provide means to formalise require-

ments from either side.

The aim of this dissertation is to propose one method of controlling behaviour

of aspects from their side, and implement that method as an extension to abc—a

compiler for AspectJ, which is an AOP extension to Java programming language.

Special attention is given to considerations leading to introduction of the notion of

aspect purity.

In particular, the contributions of this dissertation are as follows:

• a careful analysis of the ways aspects can break encapsulation

• a proposal for a new language feature of AspectJ, namely purity annotations

that overcome these problems without sacrificing flexibility

• an implementation of purity annotations in abc, using sophisticated analysis

to verify purity

• an evaluation of our design and implementation on a number of non-trivial

examples

2

INTRODUCTION 1.3 Outline

1.3 Outline

Chapter 2 provides an introduction to aspect-oriented programming.

In Chapter 3 a new classification of aspects based on their intended roles in the

system is introduced. After that we will see examples of aspects that render the

system erroneous, because they unintentionally cross the boundaries of classifica-

tion they belong to. This serves as a motivating example for proposal behind this

dissertation.

In Chapter 4 several ways of limiting applications of aspects are discussed, and

a new approach—the concept of pure aspects—is proposed and justified. We will

see how this proposal can help solving problems exposed in Chapter 3, and what

other applications it has.

Chapter 5 gives an account of how these new features have been implemented

in abc, an extensible compiler for AspectJ. Basic principles behind the architecture

of abc are described and how they serve our aims. The design and implementation

of abc extension for support of pure aspects are described in detail.

Chapter 6 shows the results of experimenting with the new extension. Finally,

Chapter 7 gives an account of related work, and Chapter 8 draws conclusions and

outlines possible directions for future development.

3

Chapter 2

Aspect-Oriented Programming

2.1 Introduction to AOP

Aspect-oriented programming [2, 3] is a relatively recently proposed paradigm, which

introduces a new kind of modules—aspects—designed to address cross-cutting con-

cerns.

A concern, generally speaking, is a sub-goal, a specific requirement that con-

stitutes a part of the whole software system, which in turn consists of a set of

concerns. For example, an (oversimplified) electronic shop is a realisation of the

following concerns: customer registration, sales records, warehouse management,

credit card processing, goods shipping, security. The last one is of special interest

for us here, because it is a system-level concern: security must be maintained in

every part of the system, in every module, so corresponding code bits would be

scattered throughout other modules. Thus, it cross-cuts the whole system. In [4]

R. Laddad shows how such security policy can be localised in a single aspect.

In general, the following classification criterion has been been proposed by Gregor

Kiczales et al. in [2]: if a concern cannot be cleanly encapsulated in a procedure/-

function/class (depending on the type of target programming language), but rather

affects a set of procedures/functions/classes in a systematic way, then it should be

represented via an aspect.

Aspects are intended to make implementing such concerns easier and more nat-

ural. Utilising concepts of AOP results in better modularisation, cleaner code, and

hence improved maintainability. Returning to our example of an e-shop, consider

4

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

details of how security concern could be implemented using OOP language like Java:

security-related code, e.g. user name, password, access level verifications, should be

inserted at every method that required such checks, leading to tangled code. In

contrast, AOP would allow to implement this concern in one place in a separate

aspect module, and define rules dictating how the aspect code should be fused into

the base code.

To achieve its goal, in addition to component language—the one used to pro-

gram regular concerns—AOP-based approach requires aspect language, with which

to program aspects. Also required is an aspect weaver—a program that fuses aspect

code into the base code following instructions provided. In practice weaving can

be done either at run-time, or at compile-time. The elements of the component

language semantics that aspects coordinate with are called join points.

2.2 AspectJ: AOP & Java

AspectJ [5, 6] is a simple and practical general-purpose aspect-oriented extension to

Java. It is designed to be compatible with Java, the word compatible embodying 4

things:

Upward compatibility meaning that all legal Java programs should remain legal

AspectJ programs and retain their semantics

Platform compatibility meaning that AspectJ programs must compile into reg-

ular .class files, runnable on a standard JVM

Tool compatibility it must be possible to extend existing Java development tools

to support AspectJ development in a natural way

Programmer compatibility it must be easy for Java programmers to quickly

learn AspectJ-specific features, which must feel as natural as possible in Java

environment

AspectJ was originally developed by G. Kiczales et al. and later became a part

of Eclipse open-source project [7], supported by IBM. Mainstream AspectJ compiler

ajc is built on the basis of Eclipse Java compiler.

5

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

2.2.1 Examples

Before proceeding to describing the language elements more in detail, let us have a

look at what real benefits programming in AspectJ can offer.

Logging

Logging is a prevalent technique used for several purposes. During development

cycle, logging can help to better understand program behaviour and hence simplify

discovering bugs. In security sensitive systems logging can be used for security

reasons.

Logging is about printing or saving messages about performed operations. Stan-

dard Java API includes Logger class specifically designed for implementing logging.

This class provides convenient ways for various logging tasks. Nevertheless, it still

requires appropriate code to be inserted in every method:

Listing 2.1: Logging with Plain Java

1 import java.util.logging .*;

2

3 public c lass AClass {

4 stat ic Logger _logger = Logger.getLogger("trace");

5

6 public void foo() {

7 _logger.logp(Level.INFO ,

8 "AClass", "foo", "Entering");

9 // method code

10 }

11

12 public void bar() {

13 _logger.logp(Level.INFO ,

14 "AClass", "bar", "Entering");

15 // method code

16 }

17 }

Besides being cross-cutting, logging is also invasive: when a new module is

added to the system, all of its methods requiring logging must be augmented with

appropriate code.

6

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

AspectJ allows to get rid of all this tangling and implement logging concern in

a very compact and modular way (copied from [4, pp. 153-154]):

Listing 2.2: TraceAspect performing the same job

1 import java.util.logging .*; import org.aspectj.lang .*;

2

3 public aspect TraceAspect {

4 private Logger _logger = Logger.getLogger("trace");

5

6 pointcut traceMethods ()

7 : execution(* *.*(..)) && !within(TraceAspect);

8

9 before() : traceMethods () {

10 Signature sig = thisJoinPointStaticPart.getSignature ();

11 _logger.logp(Level.INFO , sig.getDeclaringType (). getName(),

12 sig.getName(), "Entering");

13 }

14 }

This aspect removes both tangling and invasiveness: it automatically performs

required actions at proper points without any need for manual code insertion.

Caching

Consider a simple Java program for computing factorial, taken from [4, pp. 92-93]:

Listing 2.3: TestFactorial.java: factorial computation

1 import java.util .*;

2

3 public c lass TestFactorial {

4 public stat ic void main(String [] args) {

5 System.out.println("Result: " + factorial (5) + "\n");

6 System.out.println("Result: " + factorial (10) + "\n");

7 System.out.println("Result: " + factorial (15) + "\n");

8 System.out.println("Result: " + factorial (15) + "\n");

9 }

10

11 public stat ic long factorial(int n) {

12 i f (n == 0) {

13 return 1;

14 } else {

7

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

15 return n * factorial(n-1);

16 }

17 }

18 }

The implementation of factorial() function is elegant yet inefficient: factorial

of one and the same number is computed time and again. We would prefer the

function to reuse previously computed values. However, caching for efficiency is a

separate concern here: it has its own logic and doesn’t change the essence of the

factorial computation algorithm, rather it cross-cuts the latter. Using AspectJ’s

aspect language, we can implement caching in its own module—aspect:

Listing 2.4: OptimizeFactorialAspect.java: aspect for caching results

1 import java.util .*;

2

3 public aspect OptimizeFactorialAspect {

4 pointcut factorialOperation(int n) :

5 ca l l (long *. factorial(int)) && args(n);

6

7 pointcut topLevelFactorialOperation(int n) :

8 factorialOperation(n)

9 && !cflowbelow(factorialOperation(int));

10

11 private Map _factorialCache = new HashMap ();

12

13 long around(int n) : factorialOperation(n) {

14 Object cachedValue = _factorialCache.get(new Integer(n));

15 i f (cachedValue != null) {

16 // Found cached va lue f o r n

17 return ((Long)cachedValue). longValue ();

18 }

19 return proceed(n);

20 }

21

22 after (int n) returning(long result)

23 : topLevelFactorialOperation(n) {

24 _factorialCache.put(new Integer(n), new Long(result));

25 }

26 }

8

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

The caching strategy is as follows: save all values returned by a non-recursive

call to factorial(), together with the passed argument; intercept all (recursive or

not) calls to factorial() and return saved result if there is one corresponding to

given call argument, otherwise proceed to factorial().

Thus, we have completely separated the caching logic from base computations.

Now we can change this logic without caring about the factorial() method, and vice

versa, should we decide to do so.

2.2.2 Join Points

In AspectJ, a join point is a well-defined identifiable point in the execution of a

program. The join point should be identifiable not only in the source, but also

in the sequence of bytecode instructions executed at run-time: this is due to the

concept that aspects observe program flow, so availability of the base program’s

source code is not a requirement. Examples of join points are method calls, field

sets and gets. However, not all kinds of join points are available in AspectJ. For

example, exception throwing is an easily identifiable point, nevertheless there is no

way in AspectJ specification to refer to them.

All join points expose some context. For example, instance method calls expose

target instance, calling instance and call arguments; exception handling join point

exposes caught exception and current instance.

Available join point categories together with context they expose are listed in

Table 2.1.

2.2.3 Pointcuts

A pointcut is a construct that identifies join points. It can be viewed as a kind of

pattern that matches some set of join points. For example, a pointcut can match

calls to specified method happening within specified class. Besides this, pointcuts

can collect context exposed by join points they match. AspectJ includes pointcut

primitives (listed in Table 2.2), from which complex pointcuts can be built using

logical operations && (and), ‖ (or), and ! (not). For example, a pointcut

call(void *.setTitle(String)) && args(title)

9

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

Table 2.1: Join Point Categories
Join Point Categories Exposed Context

Method execution Target object, arguments, return value

Method call Current and target objects, arguments, return

value

Constructor execution Constructed object, arguments

Constructor call Current object, arguments

Class initialisation none

Field read access Reading object, target object, field value

Field write access Writing object, target object, set value

Exception handler execution Current object, exception object

Object initialisation Instance, constructor arguments

Object pre-initialisation Constructor arguments

Advice execution Aspect instance, advice arguments, return value

matches calls to setTitle(String) method of any class and binds the value of the

single passed argument of type String to title. A pointcut

set(int Point+.x) && target(point) && args(x) && if(x < 0)

matches writes to an integer field x of any object of type Point or any of its (di-

rect or indirect) subtypes, if the value being set is less than 0.

Obvious difference between the two examples is that in the first case the pointcut

matches join points statically, while in the second matching can only be determined

at run-time.

2.2.4 Advice

An advice is a piece of code that is executed at join points selected by a pointcut.

The execution can take place before, after, or instead of the join point. Advice can

also manipulate values collected by its pointcut at the join point.

The following piece of advice is a (näıve) realisation of a concern that frame title

should always reflect the name of the frame’s background color:

10

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

Table 2.2: Pointcut Primitives
Pointcut Primitive Join Point

execution(MethodSignature) Method execution

call(MethodSignature) Method call

execution(ConstructorSignature) Constructor execution

call(ConstructorSignature) Constructor call

staticinitialization(TypeSignature) Class initialisation

get(FieldSignature) Field read access

set(FieldSignature) Field write access

handler(TypeSignature) Exception handler execution

initialization(ConstructorSignature) Object initialisation

preinitialization(ConstructorSignature) Object pre-initialisation

adviceexecution() Advice execution

cflow(Pointcut) All join points in the control flow of the

join points matched by specified pointcut

cflowbelow(Pointcut) Like cflow, but excluding the join points

matched by specified pointcut

within(ClassnamePattern) All join points within specified class

withincode(MethodSignature) All join points within specified method

this(ClassnamePattern) All join points at which current object’s

type matches ClassnamePattern

this(AdviceFormalName) Used to bind current object to advice for-

mal

target(ClassnamePattern) All join points at which target object’s

type matches ClassnamePattern

target(AdviceFormalName) Used to bind target object to advice for-

mal

args(TypenamePattern(s)) All join points with type(s) of call argu-

ment(s) matching TypenamePattern(s)

args(AdviceFormalName(s)) Used to bind call argument(s) to advice

formal(s)

if(condition) All join points at which condition is sat-

isfied

11

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

after(Frame frame, Color bgColor): call(Frame+.setBackground(Color))

&& args(bgColor) && target(frame) {

if (bgColor == Color.BLUE)

frame.setTitle("Blue");

else if (bgColor == Color.RED)

frame.setTitle("Red");

else if (bgColor == Color.GREEN)

frame.setTitle("Green");

...

}

Of special interest are pieces of advice that get executed instead of join points.

In AspectJ these are implemented by around advice. It is possible to call the pre-

defined proceed() function, which indicates that the piece of code replaced by the

around advice must be executed. proceed() expects arguments corresponding to

every element of context collected by the pointcut, which may or may not be equal

to actual collected context. proceed() returns, and the advice must also return, a

value of the same type as the one returned by the join point.

A concern that a point’s coordinates must never be set to values less than 0 can

be expressed via an around advice:

void around(int coord): set(int Point.*) && args(coord)

&& if(coord < 0) {

proceed(-coord);

}

So an aspect is basically a collection of pairs of form (pointcut, advice). Besides,

it can have an internal state by maintaining fields, exactly like classes in Java.

To sum things up, in AspectJ one can view an aspect as a construct that observes

the flow of a program and triggers specified actions upon encountering specified

events. This illustrates how cross-cutting concerns are addressed by aspects: if a

particular concern is a system-level one, in plain object-oriented or procedural style

the code corresponding to its implementation would be scattered throughout the

whole program; aspects can accumulate all such bits of code in pieces of advice and

12

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

automatically execute them when required.

Listing 2.5 accumulates some of the concepts described in this section:

Listing 2.5: Example of an AspectJ Program

1 c lass XmplClass {

2 private int j = 9;

3

4 public stat ic void main(String [] args) {

5 XmplClass xc = new XmplClass ();

6 xc.bar(args);

7 xc.foo(null);

8 }

9

10 public void foo(Object o) {

11 System.out.println("foo ()...");

12 }

13

14 public void bar(Object o) {

15 System.out.println("bar ()...");

16 j = 10;

17 System.out.println(sum (5));

18 }

19

20 public int sum(int i) {

21 return j + i;

22 }

23 }

24

25 public aspect XmplAspect {

26 pointcut stat (): execution(void *.f*(..));

27 /∗ void r e tu rn type , any c l a s s name , methods with names

28 s t a r t i n g with ’ f ’ ∗/
29

30 pointcut dyn(Object o): execution(! stat ic * XmplClass .*(..))

31 && args(o,..) && i f (o instanceof String []);

32 /∗ non−s t a t i c , any r e tu rn type , XmplClass c l a s s , any method ,

33 c o l l e c t f i r s t argument and bind to v a r i a b l e o ∗/
34

35 after (): stat() {

36 System.out.println("static join point matching");

37 }

38

13

ASPECT-ORIENTED PROGRAMMING 2.2 AspectJ: AOP & Java

39 before(Object o): dyn(o) {

40 System.out.println("argument of type String []");

41 }

42

43 pointcut arnd(int i, XmplClass x): ca l l (int XmplClass.sum(int))

44 && args(i) && target(x);

45 /∗ c a l l s to XmplClass . sum(i n t) method , bind passed argument to i

46 and t a r g e t i n s t an c e to x ∗/
47

48 int around(int i, XmplClass x): arnd(i, x) {

49 return proceed(i, new XmplClass ()) + 1;

50 /∗ c a l l proceed () with r ep l a c ed t a r g e t ob j e c t and add 1 to

51 the r e s u l t ∗/
52 }

53 }

Pointcut stat() matches bodies of all methods whose names start with ‘f’, re-

gardless of the run-time context, so this is an example of situation when the advice

body can be inserted straight away at the join point.

Pointcut dyn() shows how run-time context is collected. Moreover, it matches in

those cases when a method is passed an argument of type String[], which can only

be detected at run-time. Hence this pointcut causes a dynamic run-time test to be

inserted, which decides whether or not to execute advice body.

The result of running this program is below:

argument of type String[]

bar()...

15

foo()...

static join point matching

14

Chapter 3

Harmful Aspects

3.1 Classification of Aspects

Aspects can be classified in different ways. One classification based on kinds of

interactions between pieces of advice and methods is given in [8]. In [9] aspects as a

whole are considered and classified. These and similar works present a more or less

low-level perspective dealing explicitly with what individual pieces of advice may or

may not do.

Here we propose a different approach: our classification is based on intended

roles of aspects in software systems from higher-level engineering point of view.

Definition 3.1 Integral, or tightly bound aspects are those that implement integral

concerns of systems they belong to. They provide core functionality; when removed

they cause the system to work improperly and may even render it uncompilable.

Attachable, or loosely bound aspects are those that can be attached to other-

wise fully functional systems in order to provide additional and/or alter existing

functionality.

Integral aspects can be exemplified by an aspect responsible for output of a

graphical editor: the latter would be meaningless without proper GUI. Such aspects

are more like classes designed to address cross-cutting concerns.

Logging and caching aspects, visualisers are usually attachable. This kind of

aspects are like software plug-ins and extensions in generally accepted sense [10].

General-purpose aspect libraries are likely to consist mainly of attachable aspects.

15

HARMFUL ASPECTS 3.1 Classification of Aspects

Listing 3.1 gives a concrete example of an integral aspect (privileged keyword in

aspect declaration means that it may access private fields and methods):

Listing 3.1: Integral Aspect

1 public c lass AClass {

2 int state = 0;

3

4 public stat ic void main(String [] args) {

5 AClass a = new AClass ();

6 a.foo ();

7 a.bar ();

8 }

9

10 private void foo() {

11 System.out.println("foo ()...");

12 }

13

14 public void bar() {

15 i f (state == 0)

16 throw new IllegalStateException ();

17 else

18 bar1 (); // in t roduced by the a spec t

19 }

20

21 }

22

23 public privileged aspect IntegralAspect {

24 public void AClass.bar1() {

25 System.out.println("bar1 ()...");

26 }

27

28 after (AClass a): i n i t i a l i z a t i on (AClass.new (..)) && this (a) {

29 a.state = 1;

30 }

31 }

In the above example the program would not compile without the aspect, since

bar() method calls bar1(), which is introduced by the aspect (this is called static

cross-cutting, as opposed to dynamic cross-cutting via pieces of advice). Further-

more, the aspect performs necessary initialisation, without which the program would

throw an exception.

16

HARMFUL ASPECTS 3.1 Classification of Aspects

Example of an attachable aspect is given in Listing 3.2, taken from R. Laddad’s

“AspectJ in Action” [4, pp. 37-38]:

Listing 3.2: Attachable Aspect

1 public c lass MessageCommunicator {

2 public stat ic void deliver(String message) {

3 System.out.println(message);

4 }

5

6 public stat ic void deliver(String person , String message) {

7 System.out.print(person + ", " + message);

8 }

9 }

10

11 public aspect MannersAspect {

12 pointcut deliverMessage ()

13 : ca l l (* MessageCommunicator.deliver (..));

14

15 before() : deliverMessage () {

16 System.out.print("Hello! ");

17 }

18 }

19

20 public c lass Test {

21 public stat ic void main(String [] args) {

22 MessageCommunicator.deliver("Wanna learn AspectJ?");

23 MessageCommunicator.deliver("Harry", "having fun?");

24 }

25 }

The test program would perfectly run and do its job without MannersAspect; the

aspect only makes it a bit more polite when woven (“attached”).

There are also mixed cases possible: an aspect can be integral part of one set

of classes, yet only use another set classes to gather information without actively

interfering with them.

Integral aspects are usually written as parts of specific systems, hence they are

unlikely to be ever applied to others causing unexpected consequences. From now

onwards we will be focusing our attention on attachable aspects.

17

HARMFUL ASPECTS 3.2 When Aspects Do Harm

3.2 When Aspects Do Harm

Attachable aspects, being more general in nature, can in some situations have un-

expected and undesirable side-effects.

Assume that we have a 3D modeling application. Modeled objects are a table

and a smaller object, say, a glass, on the table. When the table is moved, the glass

also moves; the latter can move autonomously.

This concept can be captured in the following piece of code:

Listing 3.3: A Table and a Glass Example

1 public c lass Table {

2 private Glass glass;

3 public int x, y;

4

5 public Table(Glass glass) {

6 this .glass = glass;

7 x = 50;

8 y = 50;

9 glass.x = 50;

10 glass.y = 50;

11 }

12

13 public void move(int dx , int dy) {

14 x += dx;

15 y += dy;

16 glass.move(dx , dy);

17 }

18

19 public Glass getGlass () {

20 return glass;

21 }

22 }

23

24

25 public c lass Glass {

26 public int x, y;

27

28 public void move(int dx , int dy) {

29 x += dx;

30 y += dy;

31 }

18

HARMFUL ASPECTS 3.2 When Aspects Do Harm

32 }

33

34

35 public c lass Model {

36 public stat ic void main(String [] args) {

37 Glass glass = new Glass ();

38 Table table = new Table(glass);

39 glass.move(10, 10);

40 }

41 }

The table “knows” the glass, because when moved it must also move the latter.

The glass, however, can move independently, so it doesn’t maintain a reference to

the table object.

Suppose now that the task is to stick the glass to the table, i.e. make the table

move when the glass is moved. A careless or hasty programmer may be quick to

write an aspect like this:

Listing 3.4: GlassAspect

1 public aspect GlassAspect {

2 Table table;

3

4 after (Table t): i n i t i a l i z a t i on (Table.new(Glass))

5 && target(t) {

6 table = t;

7 }

8

9 after (Glass g, int dx, int dy):

10 execution(void Glass.move(int , int))

11 && args(dx, dy) && this (g) {

12 i f (table.getGlass () == g)

13 table.move(dx , dy);

14 }

15 }

This aspect collects the reference to the table immediately after construction

and saves it locally. Then it advises the move() method of the glass to also move the

table.

Although the code compiles without any warnings, any attempt to run the aug-

mented program will result in StackOverflowError being thrown. This is quite natural,

19

HARMFUL ASPECTS 3.2 When Aspects Do Harm

since we now effectively have two methods infinitely calling one another.

The issue in the above example is that the aspect changes internal state of the

instance of the class Glass: while moved by a given displacement, the glass in effect

attempts to move infinitely and carry the table away. We did not want to change

the existing behaviour of the glass, we only wanted to change the behaviour of the

table to make it follow the glass. The glass should move exactly the way it used to;

it is the table that should be amended.

In large projects similar things can happen quite often and can be buried deeper

into the source code thus becoming harder to spot. This kind of behaviour is not

necessarily harmful: it’s a common practice to use pieces of advice in ways that

actually provide for significant alteration of behaviour of classes, and situations like

the one in Listing 3.4 can be avoided.

Nevertheless, there’s currently no way for a developer to state that a particular

aspect is not expected to change any of existing functionality of a module, but rather

to add something to it non-destructively.

20

Chapter 4

New Safety Features

4.1 Limiting Aspects: Previous Proposals

We need some foundation to prevent harmful breaches of encapsulation by aspects.

This problem can be tackled from two sides.

First, classes may explicitly advertise what parts of them can be advised by

what aspects. This approach limits obliviousness of aspects, which is a proposition

that aspects should not make any suggestions about, or prepare any hooks for, the

aspects that are applied to them. Obliviousness [11] has been traditionally viewed

as a desirable property of modules in AOP.

Katz [12] has proposed that some kind of specification be attached to every mod-

ule to which aspects can apply, describing all properties that are essential to that

module and must not be changed by any aspect. These can be formally specified

in a programming language like Eiffel [13], or in JML [14]—a behavioural interface

specification language for Java. While this seems to be a reasonable limitation of

obliviousness, it will require a good amount of work for formalising all the specifi-

cations.

Another perspective is proposed by Jonathan Aldrich in the form of open modules

concept [15]. This approach suggests combining classes and aspects in modules (the

word “module” here bearing a meaning distinct from common usage), which export

functions and pointcuts. Afterwards third-party aspects are only allowed to advise

external calls to the exported functions, or on the exported pointcuts, but not on

calls that are internal to the module. Thus, obliviousness is limited by a third entity

21

NEW SAFETY FEATURES 4.2 Pure Aspects: an Idealisation

specifically intended for this reason, so better modularisation is achieved.

Clifton and Leavens [9] have proposed that classes explicitly accept assistance

from aspects. According to their definition, assistance is any change in the behaviour

of a system introduced by an aspect. For better modularisation they suggest that

all acceptances be combined in aspect maps.

Second, an aspect may explicitly limit its own role in the system. The most

näıve and straightforward way to achieve this is to include name patterns matching

those classes inside which an advice is or is not supposed to apply, as a part of

every pointcut using within() and/or withincode() constructs. This approach is

suitable when we know exactly what classes are to be advised, and are aware of

their implementation, but in other cases it is not applicable.

Several authors [16, 17, 18] advocated attaching specifications to aspects indi-

cating what is assumed about join points at which some advice applies, and what

that advice guarantees after being executed. However, as also recognised by Katz

[12], since many aspects implement non-functional concerns like security, or fault-

tolerance, building their formal specification is quite difficult.

In above cited [9] Clifton and Leavens propose that certain aspects explicitly

declare their intention to only view the systems they get applied to without actively

interfering with the logic of the latter. The authors call such aspects spectators.

A good example of such aspect is a visualiser that simply provides a graphical

representation of undergoing calculations.

In [19] Walker and Dantas discuss the notion of harmless advice—an aspect-

oriented advice that is constrained to prevent it from interfering with the under-

lying computations. In that paper, they develop a simple object calculus for the

formalisation of the proposed concept.

Harmless advice would be, according to classification proposed by Rinard, Săl-

cianu, and Bugrara in [8], an augmentation, at most observing one. However, in

languages like AspectJ aspects are more than just a collection of pieces of advice, so

their ability to maintain an internal state also needs to be given consideration to.

4.2 Pure Aspects: an Idealisation

We would like to be able to distinguish aspects that either don’t change the logic

of the modules they get applied to, or at most add some new functionality without

22

NEW SAFETY FEATURES 4.3 Towards a Mechanised Approximation

altering the old one.

For example, the caching aspect from Listing 2.4 does not change any existing

logic. Normally, it has no visible side-effects except decreased execution time of the

advised system.

The logging aspect from Listing 2.2 also does not alter any existing behaviour;

it just non-destructively adds logging capabilities to the advised classes.

Recapitulating the example from Section 3.2, we wanted to make the table follow

the glass,—i.e. the intention was to only change the behaviour of one module—the

table; we didn’t intend to change the existing behaviour of the glass by turning its

finite movements into infinite ones.

Let us now summarise all these in the definition:

Definition 4.1 We shall call an aspect whose only possible visible effect is added

new functionality, but not altered old one, pure.

In the light of Definition 3.1 we can see that pure aspects are a special case of

attachable aspects. They can be correlated to plug-ins, rather than extensions [10].

This is an ideal definition, because it leaves important questions open: what is

“behaviour” exactly, and, more important, what does it formally mean to add new

functionality to a module, or a whole program? Though in most situations we can

answer these questions intuitively, we still need a more solid foundation.

There’s little use in this definition on its own. We would prefer to be able to

define a mechanised procedure for compile-time purity checking: it could automat-

ically verify purity and report possible violations to avert troubles like the one in

Section 3.2.

4.3 Towards a Mechanised Approximation

The need for a mechanised purity verification brings us to the question, what pro-

gram functionality formally is, and what exactly does it mean for an aspect—or

another module for that matter—to add new functions without changing any of

existing ones. In general this is quite complicated problem which doesn’t have com-

monly accepted solution yet—it would require formal specification of all parts of

the program. Furthermore, even in the presence of such specification, there’s little

hope of a mechanised check.

23

NEW SAFETY FEATURES 4.3 Towards a Mechanised Approximation

However, some prior considerations may ease our case.

4.3.1 Termination

A non-terminating advice applying at otherwise terminating join point will prevent

subsequent code from executing. Hence, if some part of system’s functionality de-

pends on that code it will be impaired, so the aspect declaring such advice is not

pure.

Whatever the case, the halting problem is in general undecidable (first proven by

Alan Turing in 1936). This means that we will not always be able to mechanically

detect impure behaviour resulting from non-terminating advice application. Static

analyses for proving termination are the subject of current research, and there are

no obvious candidate algorithms for the task in hand.

4.3.2 Exceptions

An uncaught exception thrown during the execution of an advice impairs all func-

tionality dependent on the code not executed because of the exception. So, theoreti-

cally, any statement capable of producing a run-time exception or error is potentially

impure. Moreover, even if we disallow all such statements (a draconian measure by

itself), any aspect will still have at least some memory overhead, which may result in

OutOfMemoryMemoryError, whereas no such error would be thrown without the aspect.

Thus, our decision is to only disallow explicit throws. One could argue that

all checked exceptions must be forbidden, but we feel such a restriction is not very

useful in practice, as the advice has to declare (in its throws clause) all the checked

exceptions anyway.

4.3.3 around() Advice

around() advice gets executed instead of a join point, so it suppresses functionality

dependent on the join point code. To restore it in the original form, the advice

must call proceed() exactly once and pass it the same values that were collected

at the join point (refer to Section 2.2.4). Besides, the value returned by proceed()

must be passed on unmodified by the advice in order not to affect the functionality

depending on that value.

24

NEW SAFETY FEATURES 4.3 Towards a Mechanised Approximation

Hereafter we shall call around() advice obeying these rules proceed()-pure, and

aspects all of whose pieces of around() advice, if any, are proceed()-pure proceed()-

pure aspects.

proceed()-purity can be reasonably approximated automatically by analysing

the control flow graph.

It is worth noting that proceed()-purity is not a necessary condition for overall

purity: the aspect may include code that fully replaces suppressed join point. This

is the case with the caching aspect from Listing 2.4, which is not proceed()-pure.

However, its internal logic is too complicated for it to be automatically recognised

as having no visible side-effects at all. Although the aspect fits Definition 4.1, it

cannot be classified as pure by a mechanised procedure.

4.3.4 Mutated Locations

We continue by discussing in what other ways existing behaviour can be changed

by an aspect.

Let us think of programs as collections of modules in general sense (classes,

packages etc.), and of purity with respect to individual modules. The behaviour of

a module depends on values, references to, or copies of which exist within, or can

be obtained by, that module. These include intra-program values (such as module’s

local variables, global variables, method formals and actuals) and extra-program

values maintained elsewhere but obtainable by the module (such as current time).

An aspect can change any of these. In fact, even dummy advice “changes” current

time, since it has some time overhead. On the other hand, a logging aspect, which

intuitively is definitely pure (since it merely watches and records) creates a log file,

and the module it is woven into can somehow depend on directory listing, which

would include that log file. So in order not to be distractively restrictive, we will

ignore changes to extra-program values.

Further, if module M1 is known to use (and hence depend on) global value v

defined in module M2, and aspect A alters v, does this mean that A changes the

behaviour of M1? What if A has nothing to do with M1 and only applies within M2?

Intuitively, it feels unjustified to classify A as being not pure with respect to M1. It

is definitely impure with respect to M2, so knowing this one can easily deduce that

after augmenting the latter with A the behaviour of all dependent modules can also

change.

25

NEW SAFETY FEATURES 4.3 Towards a Mechanised Approximation

Same reasoning applies to the case when private value p is created in M1 and

later on a reference to p is passed to M2: even though aspect A never applies within

M1, its impurity with respect to M2 may still indirectly affect M1, since the two

modules interact.

In general we propose the following criterion: if aspect A mutates a location,

reference to which was collected during advice application within certain module M ,

or through direct call to any public member of M , then A is impure with respect to

M .

The exact number of heap locations dynamically allocated by each module is,

generally speaking, unbounded and cannot be predicted at compile-time. To make

an approximation, some kind of abstract heap representation is required; for exam-

ple, each field of object instances of the same type can be represented by a single

abstract field, or all instances allocated at a single source code line can be combined

in one abstract location.

So, if an aspect mutates an abstract location shared between several modules, it

can affect behaviour of all of them, but is classified as impure only with respect to

those that provided access to that location.

How mutated abstract locations relate to those, references to which were col-

lected from join points can be approximated. This task requires interprocedural

points-to analysis: since in Java all objects are manipulated via implicit pointers,

for every mutation in the form p.field = newValue happening in the control flow of

a certain advice we need to approximate whether p can point to a location also

pointed to by any pointer collected by the aspect from a join point within a class

with respect to which the aspect is declared pure.

4.3.5 Output

Finally, behaviour can be changed at the output stage. If a module prints to stdout,

stderr, or in some other way transmits the results of its work to a client, from the

client’s point of view an aspect messing with the output will be no different from

an aspect messing with the module itself.

In practice it is rarely possible to tell at compile-time whether the aspect will

use the same output channel as the module. Besides, even if it does so, it can

clearly mark its own output in some way, so that the client is not confused. For

example, consider a module whose output is Java source code, and an aspect that

26

NEW SAFETY FEATURES 4.3 Towards a Mechanised Approximation

adds comments to code. This is pure behaviour according to Definition 4.1, but a

general-purpose automatic purity verifier can hardly distinguish (in terms of purity)

the aspect from the one that adds real code instead of comments.

The decision was to disallow I/O operations.

4.3.6 Exclusions

It is possible that certain formal purity violations are in fact not essential. For

example, a translator aspect used to localise GUI should be pure with respect to

classes it localises, except that it should be allowed to mutate locations correspond-

ing to strings being translated (we know in advance that this will not affect the

functionality); or the programmer might want to allow I/O operations knowing that

the particular aspect uses I/O “purely”.

As a solution, we propose optionally declaring exceptions to purity by specifying

the set of join points that should not be checked by a mechanised purity verifier.

4.3.7 Our Proposal

Now let us generalise all these considerations. Recall from Section 2.2.3 that point-

cuts can collect context at matching join points. We’ll call all context collected by

an aspect within certain module M values collected within M , and values assigned

to by the same aspect changed values. For this particular case of determining advice

purity we propose the following test:

If a proceed()-pure aspect does not explicitly throw exceptions and does not mu-

tate any abstract locations references to which were collected within M , then it is

pure with respect to M .

Purity of aspects can be compared to humans’ interpersonal relations. If Alice

entrusts her mailbox password to Bob and he deletes or replaces some messages,

then he is dishonest to Alice (not “pure”). If Alice entrusts her mailbox password to

Jane, Jane transfers the trust to Bob bona fide, who subsequently corrupts mailbox

content, then he is dishonest to Jane, but not to Alice. However, Alice should be

aware that Bob can fool Jane, and be cautious when transmitting anything to her.

The notion of purity has an important implication. Write S for the original

system, A for the aspect, A(S) for the augmented system, and AS to denote purity

of A with respect to all classes of S. In this case, if we limit our observations to events

27

NEW SAFETY FEATURES 4.4 Purity Syntax

in a run of AS(S) happening within S, then at moments immediately preceding and

succeeding every such event E the states of instances of all classes constituting S

will be exactly the same as if we were running S, disregarding time delays happening

as inevitable consequences of executing pieces of advice. Such property can simplify

reasoning about the behaviour of augmented systems. Also, if an aspect is pure only

with respect to a set of classes, one can be sure that augmented classes can be used

in place of originals providing all the functionality of the latter, minding possible

impurity of the same aspect with respect to communicating classes.

Purity of aspects can help us dealing with situations like the one in Section 3.2:

if we define aspect GlassAspect as pure with respect to class Glass, we can be sure

that described situation will not go unnoticed in compile-time, provided that the

compiler used is capable of performing relevant checks and reporting violations.

Also, as noted in Section 1.1, aspects with their uncontrolled ability to change the

code of other modules worsen the situation with modular reasoning about the overall

system. With pure aspects this is somewhat remedied: when studying particular

module, we can disregard aspects that are declared pure to it. Especially helpful in

this sense is total purity (i.e. purity with respect to all modules.)

4.4 Purity Syntax

AspectJ standard currently doesn’t provide any syntax for declaring purity of as-

pects. To some extent this can be simulated by writing yet another controller aspect,

which would check that aspects supposed to be pure behave themselves. Neverthe-

less, such workaround would not do in all cases. For example, it would not be

possible to check that proceed() is called properly within around advice.

We propose a small extension to standard AspectJ syntax allowing declaration

of purity. For the purpose of declaring an aspect pure with respect to certain classes,

we suggest that

pure on ClassnamePatternExpr

be added before main aspect declaration, including all modifiers, begins. Here Class-

namePatternExpr is a standard AspectJ construct that represents all classes and

interfaces whose names match specified pattern.

28

NEW SAFETY FEATURES 4.4 Purity Syntax

For example, a logger aspect could be declared as in the following listing:

Listing 4.1: Pure Logger Aspect Declaration

1 pure on *

2 public aspect Logger {

3 ...

4 }

So, Logger is declared pure with respect to all classes it may be applied to. Thus,

the developer would know that no exiting functionality suffers from this aspect,

so it’s possible to reason about system components without worrying about Logger

altering any existing logic.

Another example is a visualisation aspect that views instances of certain class

(say, Subject) and reflects changes in a graphical window, which is an instance of

another class. This aspect is likely to be pure with respect to the former, but not

so with respect to the latter, hence it would be declared

pure on Subject+

indicating purity with respect to Subject and all its direct or indirect subtypes.

When needed, the join points to be excluded from purity verification can be

specified using except keyword:

pure on ClassnamePatternExpr

except Pointcut

where Pointcut represents all join points, violations at which should be tolerated.

Listing 4.2: Exception to Purity

1 pure on *

2 except ca l l (void *. setTitle(String))

3 public aspect Translator {

4 ...

5 }

Here Translator is declared pure on all classes, except that it is allowed to alter

collected context via calls to methods called setTitle(). So the following would not

29

NEW SAFETY FEATURES 4.4 Purity Syntax

Figure 4.1: Purity Declaration Syntax in BNF

〈pure-aspect-declaration〉 ::= pure on 〈classname-pattern-expression〉
〈aspect-declaration〉

| pure on 〈classname-pattern-expression〉
except 〈pointcut-expr〉
〈aspect-declaration〉

count as a violation:

Listing 4.3: Exception at Work

1 after (GUIWindow w): i n i t i a l i z a t i on (GUIWindow.new (..)) && target(w) {

2 w.setTitle("Translated by the aspect");

3 }

Revisiting the example from Listing 3.4, we could rewrite the declaration of

aspect GlassAspect as follows:

Listing 4.4: Harmful Aspect A

1 pure on Glass

2 public aspect GlassAspect {

3 ...

4 }

This declaration would allow to avoid the problem described in Section 3.2:

proper compiler would report the violation at compile-time, so the situation could

be remedied on time.

30

Chapter 5

Implementation

5.1 abc: an Alternative AspectJ Compiler

In this section we give an account of implementing a compiler extension for the

support of purity in AspectJ. Our implementation is based on the AspectBench

Compiler [20]—an extensible workbench for AspectJ.

The AspectBench Compiler (abc for short) is an alternative compiler for AspectJ

developed by a joint team from Oxford, McGill, and BRICS universities. Besides

providing full support for AspectJ 1.2, abc has been specifically designed to be easily

extensible. Main design goals behind abc’s architecture are [20]:

Simplicity developing new extensions should be a relatively easy task

Modularity both the compiler and the extensions should be modular; developing

a new extension should not require changes to the base code

Proportionality the amount of work required to write an extension should be

proportional to the amplitude of the extension

Analysis capability the compiler workbench should include comprehensive pro-

gram analysis framework

All these make abc an very good choice for implementing our purity verifier. Of

special interest is the analysis capability: it is the main thing required to implement

purity checking.

31

IMPLEMENTATION 5.1 abc: an Alternative AspectJ Compiler

abc itself is built on two established frameworks. The front-end is based on

Polyglot—an extensible compiler framework, and the back-end is built on Soot—

Java bytecode analysis and transformation framework. Polyglot offers convenient

ways for customisation of language grammar and semantic analysis; Soot provides

appropriate Java intermediate representation, highly suited for aspect weaving and

program analysis tasks.

Support for pure aspects is implemented in purity abc extension. The imple-

mentation required extending both the front-end (for accepting introduced syntax

elements) and the back-end (for purity analysis and violation reporting).

5.1.1 Front-End with Polyglot

Polyglot [21, 22] is an extensible compiler front-end toolkit for Java. It can also

be viewed as a source-to-source compiler, which parses Java source files, builds

the abstract syntax tree (AST), performs core semantic checks required by the

language and outputs Java source code. This base functionality is provided by

jlc (“Java language compiler”) and is implemented as an ordered list of passes that

are performed upon AST.

The base compiler can be extended in a number of ways. First, Polyglot frame-

work includes PPG [23]—an extension to CUP parser generator [24] that allows

grammars to be selectively extended to create parsers for extension languages by

providing operations on a CUP grammar, such as adding, dropping, and renaming

of productions. Second, Polyglot allows adding new AST nodes, which extend ex-

isting nodes and define specific entry points for relevant compiler passes. There are

also other powerful means by which extensibility is achieved, such as adding new

passes, but they are not essential to this dissertation.

Polyglot achieves high level of modularisation by heavily using interfaces and

factories. This extensive use makes it easy to extend or replace various parts of

Polyglot.

abc’s front-end groups its passes into 12 sets. The final result of running all

the passes is a plain Java AST obtained from AspectJ one, and a separate aspect

specific information structure called AspectInfo. All Java code from aspects is placed

in placeholder elements of Java AST; for instance, aspects are converted to classes,

and pieces of advice to methods. AspectInfo accumulates the information concerning

weaving.

32

IMPLEMENTATION 5.1 abc: an Alternative AspectJ Compiler

Table 5.1: Jimple Statements
Statement Description

Core Statements

NopStmt no operation

IdentityStmt used to assign parameter values and this reference to locals

AssignStmt assignment

Intraprocedural Control Flow

IfStmt conditional jump

GotoStmt unconditional jump

TableSwitchStmt table-based jump

LookupSwitchStmt list-based jump

Interprocedural Control Flow

InvokeStmt method invocation

ReturnStmt return statement for non-void return types

ReturnVoidStmt return statement for void return types

ThrowStmt throws an exception

RetStmt not used;

EnterMonitorStmt
mutual exclusion

ExitMonitorStmt

Since AspectJ standard prescribes that aspects should also be weavable into

.class files, for which the AST is not accessible, weaving is committed to the back-

end.

5.1.2 Back-End with Soot

Soot [25, 26] is an extensible Java bytecode analysis and transformation toolkit

based around a number of intermediate representations (IR). For the purpose of

this dissertation, we are only interested in Jimple—a typed, three-address, stackless

high-level IR. In fact it’s quite close to Java source code and even can be thought of

as a kind of canonical form of the latter. Jimple is relatively simple, is it has only

14 kinds of statements instead of over 200 kinds of instructions in Java bytecode.

Available statements are listed in Table 5.1

Textual representation of Jimple for “Hello World” is given in the following

33

IMPLEMENTATION 5.1 abc: an Alternative AspectJ Compiler

listing:

Listing 5.1: Jimple “Hello World”

1 public c lass Hello extends java.lang.Object {

2

3 public void <init >()

4 {

5 Hello r0;

6

7 r0 := @this: Hello;

8 specialinvoke r0.<java.lang.Object: void <init >() >();

9 return;

10 }

11

12 public stat ic void main(java.lang.String [])

13 {

14 java.lang.String [] r0;

15 java.io.PrintStream $r1;

16

17 r0 := @parameter0: java.lang.String [];

18 $r1 = <java.lang.System: java.io.PrintStream out >;

19 virtualinvoke $r1.<java.io.PrintStream:

20 void println(java.lang.String)>("Hello world!");

21 return;

22 }

23 }

Similar to how Polyglot does its job in passes, Soot’s execution consists of a

number of phases that themselves consist of sub-phases. Sub-phases are either in-

traprocedural (i.e. act on individual methods) or interprocedural (act on the whole

set of available classes). Intraprocedural sub-phases extend BodyTransformer abstract

class, while interprocedural implement SceneTransformer

Within Soot, every phase is implemented by a pack, so that every pack is a collec-

tion of sub-phases represented by one transformer each. A pack may contain either

only BodyTransformers, or only SceneTransformers. The behaviour of packs, as well as

individual sub-phases, can be controlled through phase options that corresponding

phases are programmed to accept.

Soot is extensible via adding new phases that perform required transformation

or program analysis.

34

IMPLEMENTATION 5.2 Extending the Front-End

All IRs, including Jimple, can be produced by Soot either from Java bytecode,

or source code. For the latter Soot makes use of Polyglot. After creation an IR can

be manipulated programmatically using appropriate API and output back into Java

bytecode or plain text. Bytecode generation process includes several optimisation

procedures.

Final passes of abc’s front-end instructs the Soot-based back-end to “jimplify”

the produced AST. .class files passed as compiler parameters that have no AST

representation are also handled by Soot.

Weaving is performed on the Jimple level. The compiler iterates through all

weavable classes and in each of them every pointcut associated with a piece of

advice is matched against join points where matching can potentially occur. Each

such (pointcut, joinpoint) pair generates a residue, which is one of AlwaysMatch,

indicating that pointcut matches statically and the corresponding advice should be

woven unconditionally, NeverMatch, indicating that pointcut doesn’t match and the

advice should not be woven, and dynamic residue, indicating that whether pointcut

matches or not can only be decided at run-time, so woven advice is preceded by a

check to make the decision about executing it at run-time.

Utilisation of such high-level representation as Jimple, purposefully designed for

the task of optimising Java programs, is exactly the point that gives abc significant

advantage over ajc, which manipulates the bytecode directly. However, this comes

at a price of noticeably slower compilation.

5.2 Extending the Front-End

The front-end of abc is built on top of Polyglot, so it completely inherits the exten-

sion mechanism of the latter. Hence extending the abc frontend is like extending

Polyglot’s jlc.

We need to extend existing AspectJ syntax, and get the compiler to properly

parse source files with purity annotations and save purity-related information in the

generated AST.

5.2.1 AST Generation

Now that new syntax has been defined, we can start writing the extension itself.

35

IMPLEMENTATION 5.2 Extending the Front-End

The entry point of every abc extension is an AbcExtension class that extends

abc.main.AbcExtension. To keep source code clean, we’ll create it in a separate

abc.purity package.

First step is extending the lexer. abc’s lexer is based on states, having four

states, which reflects that it’s intended to deal with four sub-languages. The states

are Java, AspectJ, Pointcut, and PointcutIfExpr.

Implementing purity extension requires adding three new keywords in various

states. Also aspect keyword needs to be added to Pointcut state, because purity

declaration comes before the word aspect, and if it contains an exclusion pointcut,

then aspect will be encountered in Pointcut state.

This is captured by initLexerKeywords of AbcExtension:

Listing 5.2: Adding New Keywords

1 public void initLexerKeywords(AbcLexer lexer) {

2 super.initLexerKeywords(lexer);

3 lexer.addJavaKeyword("pure",

4 new LexerAction_c(new Integer

5 (abc.purity.parse.sym.PURE)));

6

7 lexer.addJavaKeyword("on",

8 new LexerAction_c(new Integer

9 (abc.purity.parse.sym.ON),

10 new Integer(lexer.pointcut_state ())));

11

12 lexer.addPointcutKeyword("except",

13 new LexerAction_c(new Integer

14 (abc.purity.parse.sym.EXCEPT)));

15

16 lexer.addPointcutKeyword("aspect",

17 new LexerAction_c(new Integer

18 (abc.purity.parse.sym.ASPECT),

19 new Integer(lexer.aspectj_state ())));

20 }

Next step involves extending the parser. The grammar for our extension just

adds purity declaration, so we need to extend the base AspectJ grammar with a

rule for producing pure aspect declarations. This is handled by PPG. We augment

the rule for aspect declaration with a new element for production of pure aspects

according to purity annotation from Figure 4.1.

36

IMPLEMENTATION 5.2 Extending the Front-End

Finally, we need to add new kind of AST node—one corresponding to pure

aspect declaration. As mentioned earlier, abc inherits the entire front-end extension

mechanism from Polyglot, so writing a clean abc extension also requires adherence

to rigorous use of factories and interfaces, as it is the case with Polyglot. Therefore,

the first step is to define an interface for the new AST node:

Listing 5.3: PureAspectDecl interface

1 public interface PureAspectDecl extends AspectDecl {

2 }

This is an empty interface, because a pure aspect doesn’t need to provide any new

functionality in addition to that provided by regular aspects. What this new AST

node has to do is to keep information about purity features—class name pattern

matching the classes with respect to which concrete aspect being declared should be

pure, and pointcut matching exclusion join points,—i.e. those at which purity vio-

lations should be excused. The following concrete implementation of PureAspectDecl

captures these:

Listing 5.4: PureAspectDecl class

1 public c lass PureAspectDecl_c extends AspectDecl_c

2 implements PureAspectDecl

3 {

4 ClassnamePatternExpr pureOn;

5 Pointcut except;

6

7 public PureAspectDecl_c(Position pos , boolean is_privileged ,

8 Flags flags , String name ,

9 TypeNode superClass , List interfaces ,

10 PerClause per , AspectBody body ,

11 ClassnamePatternExpr pureOn ,

12 Pointcut except)

13 {

14 super(pos , is_privileged , flags , name , superClass ,

15 interfaces , per , body);

16 this .pureOn = pureOn;

17 this .except = except;

18 }

19 ...

20 }

37

IMPLEMENTATION 5.2 Extending the Front-End

Recall that Polyglot’s work is organised in passes. The passes are implemented

using Visitor design pattern, hence each node needs an entry point for welcoming

visitors. The new node has two additional child nodes, so the method used by

visitors must provide access to them for node visitors, otherwise they will not be

checked for semantic correctness:

Listing 5.5: PureAspectDecl class

1

2 public Node visitChildren(NodeVisitor v) {

3 ClassnamePatternExpr pureOn =

4 (ClassnamePatternExpr) visitChild(this .pureOn , v);

5 Pointcut except = (Pointcut) visitChild(this .except , v);

6

7 ...

8 }

9 ...

10 }

In order to be able to actually use this new node type, we need to subclass abc’s

default node factory and add a method for creating instances of PurityAspectDecl.

This is captured in the following piece of code:

Listing 5.6: Extending the node factory

1 public interface PurityNodeFactory extends AJNodeFactory {

2 public PureAspectDecl PureAspectDecl(Position pos ,

3 boolean is_privileged ,

4 Flags flags , String name ,

5 TypeNode superClass ,

6 List interfaces ,

7 PerClause per ,

8 AspectBody body ,

9 ClassnamePatternExpr pureOn ,

10 Pointcut except);

11 }

12

13 public c lass PurityNodeFactory_c extends AJNodeFactory_c implements

14 PurityNodeFactory {

15

16 public PureAspectDecl PureAspectDecl(Position pos ,

17 boolean is_privileged ,

38

IMPLEMENTATION 5.3 Extending the Back-End

18 Flags flags , String name ,

19 TypeNode superClass ,

20 List interfaces ,

21 PerClause per ,

22 AspectBody body ,

23 ClassnamePatternExpr pureOn ,

24 Pointcut except)

25 {

26 return new PureAspectDecl_c(pos , is_privileged , flags , name ,

27 superClass , interfaces , per , body , pureOn , except);

28 }

29 }

The node factory is used by the parser (automatically generated by PPG and

CUP from supplied grammar file) to build object-oriented AST representation. This

way we ensure that all purity-related information finds its place in the tree.

These steps complete the front-end update. When run, our extension accepts

declaration of pure aspects and performs required semantic checks. However, they

are still treated as regular ones: no special action is taken and no purity checks are

performed. In order to implement the latter we need to extend the back-end.

5.3 Extending the Back-End

As described earlier, abc’s back-end is based on the Soot framework and uses Jimple

intermediate representation.

We need to extend Soot to perform purity verification on aspects declared pure.

Each such aspect must be checked for proceed()-purity, explicitly thrown exceptions,

performed I/O operations, and collected context alteration. The first three are

intraprocedural analysis of advice, while the fourth requires interprocedural points-

to analysis.

5.3.1 Points-To Analysis

Points-to analysis is a static program analysis intended to estimate the sets of

locations to which pointers could point during program execution. For the purpose

of the analysis, memory is divided into concrete locations, and for each variable

defined in the program the set of such locations to which it may point is computed.

39

IMPLEMENTATION 5.3 Extending the Back-End

The term points-to was coined by Emami, Ghiya and Hendren in [27]. There

were several implementations of the analysis. Emami, Ghiya and Hendren pro-

posed context-sensitive, flow-sensitive approach [27], while Andersen [28] imple-

mented both context- and flow-insensitive version. Another principal question is

that of dividing the memory: since number of allocated heap locations is potentially

unbounded and generally cannot be computed statically, we need some estimation.

One approach is to view all objects of the same type sharing one common “location”.

Another, more precise one, is to identify locations by their dynamic allocation site.

Soot contains Spark [29, 30]—a component intended for points-to analysis. The

current version performs a context-insensitive, flow-insensitive analysis. The result

is available as points-to sets for every pointer in the program. In fact, the points-to

information does not depend specifically on Spark. Soot contains default absolutely

näıve implementation of analysis engine which yields the result that every pointer

may point to every location; Spark suppresses that implementation and provides its

own results.

5.3.2 Purity Analysis

As described in Section 5.1.2, Soot’s work is organised in phases, represented by

sub-phase pack. Phases are either method-level, acting on individual methods, or

global-level, acting on entire program. Soot contains two packs relevant to our

analysis: cg and wjtp.

cg stands for Call Graph and its job is to construct a call graph required for

whole program analysis. When it finishes its run, a call graph becomes available

for use by subsequent phases. Different sub-phases of cg provide different ways to

construct the call graph, so they are mutually exclusive and only one of them may

be enabled at a time. Spark is a sub-phase of cg; besides constructing the call graph,

it also generates points-to information for all the pointers in the program

wjtp stands for Whole Jimple Transformation Pack ; it is empty by default and

custom phases for whole program analysis should be added to it.

We need co add a new global-level phase for the purpose of analysing loca-

tions mutated by an aspect. Although remaining parts of purity verification are

intraprocedural, we will not define additional method-level phases, as this work can

be handled by the same global phase.

All whole program phases in Soot, including cg and wjtp are disabled by default.

40

IMPLEMENTATION 5.3 Extending the Back-End

purity extension requires new analysis sub-phase to be added to wjtp, and this sub-

phase in turn needs valid points-to information provided by Spark. Actually, any

other phase capable of performing points-to analysis could be used instead; currently

alternative analyser called Paddle is being developed by Soot group, but it is still

unfinished so the decision was to use Spark.

To enable all required phases, addJimplePacks() method needed to be overridden

in AbcExtension class of purity extension:

Listing 5.7: addJimplePacks() method

1 public void addJimplePacks () {

2 super.addJimplePacks ();

3 PackManager.v(). getPack("wjtp").add(

4 new Transform("wjtp.purity", PurityVerifier.v()));

5 PhaseOptions.v(). setPhaseOption("cg", "enabled:true");

6 PhaseOptions.v(). setPhaseOption("cg.spark", "enabled:true");

7 PhaseOptions.v(). setPhaseOption("wjtp", "enabled:true");

8 PhaseOptions.v(). setPhaseOption("wjtp.purity", "enabled:true");

9 soot.options.Options.v(). set_whole_program(true);

10 }

According to Soot’s (and abc’s) coding conventions, PurityVerifier.v() returns

singleton instance of PurityVerifier class, which is used to perform actual purity

analysis based on points-to information made available by Spark (or any other

analyser).

As required by Soot, PurityVerifier extends SceneTransformer—base abstract class

for all whole program analysis and transformation phases. Entry point to every

SceneTransformer is its void internalTransform(String phaseName, Map options) method.

This method has access to all information available within Soot, including points-

to information, since cg pack runs before wjtp. All AspectJ specific information

accumulated in AspectInfo structure is also accessible.

In abc, after weaving every aspect becomes represented by a regular class, pieces

of advice become regular methods, and advice applications become calls to those

methods. Thus, the analysis of aspects comes to analysis of regular Java classes and

methods.

The overall sketch of the algorithm is as follows. We iterate through all pieces of

advice of an aspect declared pure; for around() advice we perform proceed()-purity

verification; all pieces of advice are checked for explicit exception throws; abstract

41

IMPLEMENTATION 5.3 Extending the Back-End

Figure 5.1: Purity Checking in Pseudo-Code

procedure check purity()

forall advice in pure aspects do

if is around(advice) then

check proceed purity(advice)

end if

check exception throws(advice)

modified loc.add all(modified by(advice))

forall class matching advice.pure on

forall advice application in applications within(advice, class)

collected loc.add all(collected by(advice application))

end forall

end forall

check intersection(modified loc, collected loc)

report warnings()

end forall

end procedure

locations modified by any advice are collected in modified values set. Next, we iterate

through all classes with respect to which the aspect is declared pure in a search

for advice applications, and gather all context collected by advice applications in

collected values set. Finally, we check to see if any of modified values has a points-to

set intersecting with that of any of collected values.

We felt that it would be annoying if the compiler rejected aspects that are judged

to be impure, so we have decided to issue only a compiler warning (so compilation

can still be completed when a violation is found) rather than a compiler error. All

warnings come with indication of code fragment where the violation has taken place.

At conceptual level, the algorithm is presented in Figure 5.1.

42

Chapter 6

Experiments

Readers may be wondering whether the approximate purity test that we have pro-

posed is too crude. Does it flag warnings too often, classifying aspects as impure

while there are no purity violations in reality? In this chapter, we shall demonstrate

through a number of examples that in practice, our purity test is quite accurate.

6.1 A Table and a Glass Revisited

We start with testing how the new compiler extension could have solved the problem

introduced in Section 3.2. We annotate the GlassAspect aspect to declare it pure with

respect to the Glass class:

Listing 6.1: GlassAspect with Purity Annotation

1 pure on Glass

2 public aspect GlassAspect {

3 ...

4 }

This way we state that GlassAspect must not be destructive towards the Glass class.

Note that in fact this is not so: moving the glass triggers the aspect that tries to

move the table on which the glass resides, and the table, in turn, attempts to move

the glass and so on. So the purity of Glass is violated indirectly through a chain of

calls.

We now run abc with purity extension enabled:

43

EXPERIMENTS 6.2 proceed()-purity

java -Xmx512M abc.main.Main -ext abc.purity Glass.java Table.java

Model.java GlassAspect.java

The compiler issues a warning:

GlassAspect.java:14: Warning -- Aspect purity violated

table.move(dx, dy);

^----------------^

The source code line, which started started the chain of calls resulting in impurity

is shown together with the warning.

6.2 proceed()-purity

Now we shall test an aspect that violates proceed purity. Let us change GlassAspect

a bit:

Listing 6.2: proceed()-purity

1 pure on Glass

2 public aspect GlassAspect {

3 ...

4 void around(Glass glass , int dx, int dy):

5 ca l l (void Glass.move(int , int))

6 && args(dx, dy) && target(glass) {

7 i f (glass == table.getGlass ()) {

8 table.move(dx , dy);

9 proceed(glass , dx, dy);

10 }

11 }

12 ...

13 }

This around() advice does not always call proceed(), and this situation is reported

by the compiler:

GlassAspect.java:11-17: Warning -- Possibly proceed()-purity violated

in around() advice

void around(Glass glass, int dx, int dy):

^--

44

EXPERIMENTS 6.3 Exclusions

...

}

^

6.3 Exclusions

To check how exclusions from purity work, we’ll instruct the compiler not to count

violations happening as a result of a call to any move() method:

Listing 6.3: GlassAspect with Purity Annotation

1 pure on Glass

2 except ca l l (* *.move (..))

3 public aspect GlassAspect {

4 ...

5 }

When run, the compiler accepts the aspect as pure and no warnings are reported.

6.4 TraceAspect

The logging aspect discussed in Chapter 2.2 is pure. We added pure on * to the

aspect declaration and tested our extension by running it on the whole set of classes

from Section 5.1.3 of [4]. Indeed, no violations were reported.

(Possible indirect purity violation can result from the logger performing I/O

operations later on. This is discussed in Future Work section.)

45

EXPERIMENTS 6.5 Compiler Run Times

6.5 Compiler Run Times

Turning whole program mode (WPM) in Soot slows down the execution significantly.

The table below illustrates this (all estimate times in milliseconds, obtained on

1.60GHz laptop with 512 MB of RAM running Windows XP SP2, JVM 1.4.2):

Table 6.1: Compiler Run Times
Example Plain abc abc in WPM, no purity abc with purity

GlassAspect 4076 64088 65600

TraceAspect 4446 65022 65198

The time overhead of running purity check itself is almost negligible compared

to the time overhead of putting Soot in whole program mode to obtain points-to

information.

46

Chapter 7

Related Work

7.1 Assistants and Spectators

Curtis Clifton and Gary Leavens [9] propose dividing aspects into two categories,

assistants and spectators, for the purpose of enabling modular reasoning in AOP.

Assistants are the aspects that change the behaviour of modules, while spectators

are the ones that don’t. To facilitate modular reasoning, they suggest that assistance

should be explicitly accepted by a module. Once assistance of an aspect is accepted

by a module, the aspect is allowed to advice the module in question and any other

module used by it. There’s no such requirement for spectators, since they are only

supposed to view modules rather than actively advise them.

Spectators are quite close to our concept of pure aspects. However, “spectator-

ness” is always absolute,—i.e. mixed cases when an aspect passively views module

A and actively advises module B are not given consideration.

7.2 Classification Systems for Advice

Martin Rinard, Alexandru Sălcianu, and Suhabe Bugrara [8] present classification

systems for kinds of interactions between pieces of advice and advised methods.

According to them, an advice is classified as augmentation, if the entire body of a

method always executes after advice application; as narrowing, if the method body

either executes in its entirety, or doesn’t execute at all; as replacement, if the advice

replaces the method body; or as combination, if the advice and the method body

combine in some other way.

47

RELATED WORK 7.3 Harmless Advice

They define scopes as sets of locations accessed by a method or an advice. Scopes

of a method and an advice are said to be orthogonal, if the advice and method access

disjoint locations; independent, if neither the advice nor the method may write a

field that the other may read or write; the advice scope is said to observe the method

scope, if the advice may read one or more fields that the method may write; the

advice scope is said to actuate the method scope, if the advice may write one or

more fields that the method may read; scopes are said to interfere, otherwise.

Concept of aspect purity defined in this dissertation fits these classification sys-

tems to some extent. In particular, a pure aspect would consist solely of pieces of

augmentation advice, whose scopes at most observe scopes of advised methods. The

inverse, however, is not true: pointer to certain memory location can be obtained

by an advice application in one method, and the location be mutated by another

advice application in completely different module; thus, the pieces of advice could

both be augmentation observational ones, but the aspect as a whole would not be

pure.

7.3 Harmless Advice

Walker and Dantas [19] introduce the notion of harmless advice—an aspect-oriented

advice constrained to prevent it from interfering with the underlying computations.

They say that

computation A does not interfere with computation B if A does not

influence the final value produced by B.

A harmless advice is supposed to obey a weak non-interference property,—i.e. it

may change the termination behaviour of advised computations and use I/O, but it

doesn’t otherwise interfere with the mainline code. They proceed to define a simple

calculus for the formalisation of the notion.

48

Chapter 8

Conclusions and Future Work

8.1 Summary

Modular reasoning about aspect-oriented programs is restrained by aspects’ poten-

tial to break encapsulation. This potential also enables aspects to uncontrollably

alter existing behaviour of other components of the system. In this dissertation

we have discussed possible harm resulting from application of unfriendly aspects

and reviewed various proposals of a number of researchers that could help enabling

modular reasoning in AOP and preventing harm from aspects. Following that we

presented our own perspective on the matter and proposed purity annotations—one

possible way of preventing unforseen misbehaviour of aspects.

Ideally, a pure aspect is the one that acts non-destructively with respect to other

modules and does not impair any of existing functionality. We have also shown how

our idealised vision can be made approximable by a mechanised purity verification

routine and of what benefit such a routine can be to a programmer.

We have implemented our ideas as a seamless extension to AspectJ—the most

popular realisation of AOP concept for Java. The implementation is based on the

AspectBench Compiler—an extensible workbench for experimenting with new lan-

guage features.

Finally, we have tested our implementation on a number of non-trivial examples

to illustrate the use of a purity-enabled compiler.

49

CONCLUSIONS AND FUTURE WORK 8.2 Future Work

8.2 Future Work

Besides dynamic cross-cutting, AspectJ also provides means for static cross-cutting

like introductions. The impact of having them in the aspect was out of scope of this

work, but it may prove useful to investigate how they could affect aspect purity.

Purity verification algorithm presented in the dissertation is approximate. In

particular, though sometimes possible, no termination analysis for pieces of advice

is ever performed. Another source of inexactness is the fact that used points-to

analysis engine is flow-insensitive, leading to possibility of false impurity detections.

The overall accuracy can be improved by adding termination analysis and using

more precise points-to information.

As mentioned in the corresponding chapter, proceed()-purity is not a necessary

property of a pure aspect, if the around() advice replaces suppressed code with

its exact equivalent. Though equivalence of two pieces of code cannot be always

established, sometimes this is possible, and appropriate analysis could decrease the

number of false impurity alerts due to proceed()-impurity.

An aspect declared as pure with respect to a certain module can, instead of

directly modifying some value defined within that module, pass the reference to a

third module. If the latter mutates the value sometime in the future, such purity

violation will not be detected by our verifier, since the value in question is not

modified in the control flow of any of the aspect’s pieces of advice. Though this kind

of thing does not happen in the most common usages of aspects, and such aspect

would not be totally pure anyway (at the least, it would be detected as impure with

respect to the module it had passed the reference to), nevertheless developing an

algorithm for detection of such violations would make the analysis more sensitive.

A flow-sensitive points-to information will be required for this algorithm.

Also a more extensive imperative study of benefits offered by purity annotations

needs to be conducted. Such a study can discover possible new uses and shortcom-

ings of the purity concept.

50

Bibliography

[1] D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Commun. ACM, 15(12):1053–1058, 1972.

[2] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In

Mehmet Akşit and Satoshi Matsuoka, editors, Proceedings European Confer-

ence on Object-Oriented Programming, volume 1241, pages 220–242. Springer-

Verlag, Berlin, Heidelberg, and New York, 1997.

[3] Aspect-oriented software developement. http://www.aosd.net/.

[4] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.

Manning, 2003.

[5] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An overview of aspectj. In Jørgen Lindskov Knudsen,

editor, ECOOP, volume 2072 of Lecture Notes in Computer Science, pages

327–353. Springer, 2001.

[6] Aspectj home page. http://www.aspectj.org/.

[7] Eclipse project home page. http://www.eclipse.org/.

[8] Martin Rinard, Alexandru Sălcianu, and Suhabe Bugrara. A classification sys-

tem and analysis for aspect-oriented programs. In SIGSOFT ’04/FSE-12: Pro-

ceedings of the 12th ACM SIGSOFT twelfth international symposium on Foun-

dations of software engineering, pages 147–158, New York, NY, USA, 2004.

ACM Press.

51

BIBLIOGRAPHY

[9] Curtis Clifton and Gary T. Leavens. Spectators and assistants: Enabling mod-

ular aspect-oriented reasoning. Technical Report 02-10, Iowa State University,

Department of Computer Science, October 2002.

[10] Definition of plug-in in wikipedia. http://en.wikipedia.org/wiki/Plugin.

[11] R. Filman and D. Friedman. Aspect-oriented programming is quantification

and obliviousness, 2000.

[12] Shmuel Katz. Diagnosis of harmful aspects using regression verification. In

Curtis Clifton, Ralf Lämmel, and Gary T. Leavens, editors, FOAL: Foundations

Of Aspect-Oriented Languages, pages 1–6, March 2004.

[13] Eiffel software home page. http://www.eiffel.com/.

[14] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of

JML: A behavioral interface specification language for Java. Technical Report

98-06i, Iowa State University, 2000.

[15] J. Aldrich. Open modules: Reconciling extensibility and information hiding,

2004.

[16] Marcelo Sihman and Shmuel Katz. Superimpositions and aspect-oriented pro-

gramming. The Computer Journal, 46(5):529–541, September 2003.

[17] Benet Devereux. Compositional reasoning about aspects using alternating-time

logic. In Leavens and Clifton [31].

[18] Henny B. Sipma. A formal model for cross-cutting modular transition systems.

In Leavens and Clifton [31].

[19] Daniel S. Dantas and David Walker. Harmless advice. In Workshop on Foun-

dations of Object-Oriented Languages, January 2005.

[20] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,

Jennifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sit-

tampalam, and Julian Tibble. abc: an extensible aspectj compiler. In AOSD

’05: Proceedings of the 4th International Conference on Aspect-Oriented Soft-

ware Development, pages 87–98. ACM Press, 2005.

52

BIBLIOGRAPHY

[21] N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An extensible compiler

framework for java, 2003.

[22] Polyglot extensible compiler framework. http://www.cs.cornell.edu/

Projects/polyglot/.

[23] Ppg: Polyglot parser generator. http://www.cs.cornell.edu/Projects/

polyglot/ppg.html.

[24] Cup lalr parser generator. http://www2.cs.tum.edu/projects/cup/.

[25] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne

Gagnon, and Phong Co. Soot - a java optimization framework. In Proceed-

ings of CASCON 1999, pages 125–135, 1999.

[26] Soot: a java optimization framework. http://www.sable.mcgill.ca/soot/.

[27] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive inter-

procedural points-to analysis in the presence of function pointers. In SIGPLAN

Conference on Programming Language Design and Implementation, pages 242–

256, 1994.

[28] L.O. Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, 1994. DIKU Research Report 94/19.

[29] Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java. Mas-

ter’s thesis, McGill University, December 2002.

[30] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using

Spark. In G. Hedin, editor, Compiler Construction, 12th International Con-

ference, volume 2622 of LNCS, pages 153–169, Warsaw, Poland, April 2003.

Springer.

[31] Gary T. Leavens and Curtis Clifton, editors. FOAL: Foundations of Aspect-

Oriented Languages, March 2003.

53

Appendix A

Purity Verifier Source Code

1 package abc.purity;

2

3 import java.util .*;

4

5 import polyglot.types.SemanticException;

6 import polyglot.util.ErrorInfo;

7 import polyglot.util.InternalCompilerError;

8 import polyglot.util.Position;

9

10 import abc.purity.weaving.aspectinfo.PureAspect;

11 import abc.weaving.aspectinfo .*;

12 import abc.weaving.matching .*;

13 import abc.weaving.residues .*;

14

15 import soot .*;

16 import soot.jimple .*;

17 import soot.tagkit.SourceFileTag;

18 import soot.tagkit.SourceLnPosTag;

19 import soot.util.Chain;

20

21 public c lass PurityVerifier extends SceneTransformer {

22

23 // hooks needed by Framwork :

24 private stat ic PurityVerifier instance = new PurityVerifier ();

25 private PurityVerifier () {}

26

27 public stat ic PurityVerifier v() {

54

PURITY VERIFIER SOURCE CODE

28 return instance;

29 }

30

31

32 private Map stmtShadowMatchLists = new HashMap ();

33 private Map bodyShadowMatchLists = new HashMap ();

34 private Map classesToPureAspects = new HashMap ();

35

36 private Map modifiedByMethod = new HashMap ();

37

38 protected void internalTransform(String phaseName , Map options) {

39 PointsToAnalysis p2a = Scene.v(). getPointsToAnalysis ();

40 Set methodsTakingParams /∗<SootMethod>∗/ = new HashSet ();

41 Map paramLocals = new HashMap ();

42 Map modifiedLocals = new HashMap ();

43

44 // c o l l e c t c l a s s e s that r e p r e s e n t pure a sp e c t s

45 Iterator aspectIt = GlobalAspectInfo.v(). getAspects (). iterator ();

46 while (aspectIt.hasNext ()) {

47 Aspect aspect = (Aspect)aspectIt.next ();

48 i f (aspect instanceof PureAspect)

49 classesToPureAspects.put(

50 aspect.getInstanceClass (). getSootClass (), aspect);

51 }

52

53 // c o l l e c t a spec t methods tak ing params

54 Iterator classIt = Scene.v(). getClasses (). iterator ();

55 while (classIt.hasNext ()) {

56 SootClass sc = (SootClass)classIt.next ();

57 i f (sc.isApplicationClass ()) {

58 Iterator mIt = sc.getMethods (). iterator ();

59 while (mIt.hasNext ()) {

60 SootMethod sm = (SootMethod)mIt.next ();

61 i f (sm.hasActiveBody ()) {

62 i f (isAround(sm.getName ()))

63 checkAround(sm);

64 findMethodShadows(sm);

65 Iterator unitIt =

66 sm.getActiveBody (). getUnits (). iterator ();

67 while (unitIt.hasNext ()) {

68 Stmt stmt = (Stmt)unitIt.next ();

69 i f (stmt.containsInvokeExpr ()) {

55

PURITY VERIFIER SOURCE CODE

70 SootClass invokedClass =

71 stmt.getInvokeExpr (). getMethod (). getDeclaringClass ();

72 i f (invokedClass != sc &&

73 classesToPureAspects.keySet (). contains(invokedClass)) {

74 PureAspect invokedPureAspect =

75 (PureAspect)classesToPureAspects.get(invokedClass);

76 i f (invokedPureAspect.getPureOn (). matchesClass(sc) &&

77 !excludeMethod(sm , invokedPureAspect))

78 methodsTakingParams.add(stmt.getInvokeExpr (). getMethod ());

79 }

80 }

81 }

82 }

83 }

84 }

85 }

86

87 // c o l l e c t va lu e s c o l l e c t e d by pure a sp e c t s

88 // c o l l e c t va lu e s mod i f i ed by pure a sp e c t s

89 aspectIt = GlobalAspectInfo.v(). getAspects (). iterator ();

90 while (aspectIt.hasNext ()) {

91 Aspect aspect = (Aspect)aspectIt.next ();

92 i f (aspect instanceof PureAspect) {

93 SootClass sc = aspect.getInstanceClass (). getSootClass ();

94 Iterator mIt = sc.getMethods (). iterator ();

95 while (mIt.hasNext ()) {

96 SootMethod sm = (SootMethod)mIt.next ();

97 i f (methodsTakingParams.contains(sm))

98 collectParams(sm, paramLocals);

99 exploreMethod(sm, sc);

100 flattenSet ((Set)modifiedByMethod.get(sm));

101 Set modifiedLocalsSet = (Set)modifiedLocals.get(sc);

102 i f (modifiedLocalsSet == null) {

103 modifiedLocalsSet = new HashSet ();

104 modifiedLocals.put(sc, modifiedLocalsSet);

105 }

106 modifiedLocalsSet.addAll(

107 getModificationsByMethod(sm, (PureAspect)aspect));

108 }

109 }

110 }

111

56

PURITY VERIFIER SOURCE CODE

112 // s ea r ch f o r pu r i t y v i o l a t i o n s

113 Map purityViolations /∗<SootClass , Set<Stmt>>∗/ = new HashMap ();

114

115 Iterator pureAspectClassesIt =

116 classesToPureAspects.keySet (). iterator ();

117 while (pureAspectClassesIt.hasNext ()) {

118 SootClass pureAspectClass =

119 (SootClass)pureAspectClassesIt.next ();

120 Set paramLocalsSet = (Set)paramLocals.get(pureAspectClass);

121 Set modifiedLocalsSet = (Set)modifiedLocals.get(pureAspectClass);

122 i f ((paramLocalsSet != null) && (modifiedLocalsSet != null)) {

123 Iterator modifiedLocalsIt = modifiedLocalsSet.iterator ();

124 while (modifiedLocalsIt.hasNext ()) {

125 Modification mod = (Modification)modifiedLocalsIt.next ();

126 Value v = mod.getValue ();

127 i f (v instanceof StaticFieldRef) {

128 PureAspect pureAspect =

129 (PureAspect)classesToPureAspects.get(pureAspectClass);

130 StaticFieldRef sfr = (StaticFieldRef)v;

131 i f (

132 pureAspectClass != sfr.getField (). getDeclaringClass ()

133 && pureAspect.getPureOn (). matchesClass(

134 sfr.getField (). getDeclaringClass ())) {

135 Set violations = (Set)purityViolations.get(pureAspectClass);

136 i f (violations == null) {

137 violations = new HashSet ();

138 purityViolations.put(pureAspectClass , violations);

139 }

140 violations.add(mod.getModifyingStmt ());

141 }

142 continue;

143 } else i f (v instanceof Local) {

144 Local ml = (Local)v;

145 Iterator paramLocalsIt = paramLocalsSet.iterator ();

146 while (paramLocalsIt.hasNext ()) {

147 Local pl = (Local)paramLocalsIt.next ();

148 i f (p2a.reachingObjects(ml). hasNonEmptyIntersection(p2a.reachingObjects(pl))) {

149 Set violations = (Set)purityViolations.get(pureAspectClass);

150 i f (violations == null) {

151 violations = new HashSet ();

152 purityViolations.put(pureAspectClass , violations);

153 }

57

PURITY VERIFIER SOURCE CODE

154 violations.add(mod.getModifyingStmt ());

155 }

156 }

157 }

158 }

159 }

160 }

161

162 // r epo r t v i o l a t i o n s

163 Iterator violatingAspectsIt = purityViolations.keySet (). iterator ();

164 while (violatingAspectsIt.hasNext ()) {

165 SootClass violatingAspect = (SootClass)violatingAspectsIt.next ();

166 String fileName =

167 ((SourceFileTag)violatingAspect.getTag("SourceFileTag")). getSourceFile ();

168 Set violations = (Set)purityViolations.get(violatingAspect);

169 Iterator violatingStmtsIt = violations.iterator ();

170 while (violatingStmtsIt.hasNext ()) {

171 Stmt violatingStmt = (Stmt)violatingStmtsIt.next ();

172 SourceLnPosTag slpTag =

173 (SourceLnPosTag)violatingStmt.getTag("SourceLnPosTag");

174 Position pos;

175 i f (slpTag != null)

176 pos = new Position(fileName ,

177 slpTag.startLn(), slpTag.startPos(), slpTag.endLn(), slpTag.endPos ());

178 else {

179 pos = new Position(fileName);

180 }

181 abc.main.Main.v(). error_queue.enqueue(

182 ErrorInfo.WARNING , "Aspect purity violated", pos);

183 }

184 }

185 }

186

187 private stat ic void collectParams(SootMethod sm, Map paramLocals) {

188 Body body = sm.getActiveBody ();

189 int paramCount = sm.getParameterCount ();

190 Set locals = (Set)paramLocals.get(sm.getDeclaringClass ());

191 i f (locals == null) {

192 locals = new HashSet ();

193 paramLocals.put(sm.getDeclaringClass (), locals);

194 }

195 for (int i = 0; i < paramCount; i++)

58

PURITY VERIFIER SOURCE CODE

196 locals.add(body.getParameterLocal(i));

197 }

198

199 private void exploreMethod(SootMethod method , SootClass pureAspectClass) {

200 i f (! method.getDeclaringClass (). isApplicationClass ())

201 // i f (! method . hasActiveBody ())

202 return;

203 i f (modifiedByMethod.keySet (). contains(method))

204 return;

205 modifiedByMethod.put(method , new HashSet ());

206 Body body = method.getActiveBody ();

207 Iterator unitIt = body.getUnits (). iterator ();

208 while (unitIt.hasNext ()) {

209 Stmt stmt = (Stmt)unitIt.next ();

210 i f (! excludeStmt(method , stmt ,

211 (PureAspect)classesToPureAspects.get(pureAspectClass)))

212 exploreStatement(method , stmt , pureAspectClass);

213 }

214 }

215

216 private void exploreStatement(SootMethod method , Stmt stmt ,

217 SootClass pureAspectClass) {

218 Set modified = (Set)modifiedByMethod.get(method);

219 i f (stmt instanceof AssignStmt) {

220 AssignStmt assignStmt = (AssignStmt)stmt;

221 Value v = ((ValueBox)assignStmt.getDefBoxes ().get (0)). getValue ();

222 i f (v instanceof InstanceFieldRef)

223 while (v instanceof InstanceFieldRef) {

224 v = ((InstanceFieldRef)v). getBase ();

225 modified.add(v);

226 }

227 else i f (v instanceof StaticFieldRef)

228 modified.add(v);

229 }

230 i f (stmt.containsInvokeExpr ()) {

231 i f (! excludeMethod(stmt.getInvokeExpr (). getMethod(),

232 (PureAspect)classesToPureAspects.get(pureAspectClass)))

233 i f (modifiedByMethod.containsKey(

234 stmt.getInvokeExpr (). getMethod ()))

235 modified.add(

236 modifiedByMethod.get(

237 stmt.getInvokeExpr (). getMethod ()));

59

PURITY VERIFIER SOURCE CODE

238 else {

239 exploreMethod(

240 stmt.getInvokeExpr (). getMethod(), pureAspectClass);

241 Object o = modifiedByMethod.get(

242 stmt.getInvokeExpr (). getMethod ());

243 i f (o != null) {

244 Set md = (Set)o;

245 i f (!md.isEmpty ()) {

246 flattenSetBut(md, md);

247 modified.addAll(md);

248 modified.remove(modified);

249 }

250 }

251 }

252 }

253 }

254

255 private void flattenSet(Set set) {

256 Iterator sIt = set .iterator ();

257 Set toRemove = new HashSet ();

258 Set toAdd = new HashSet ();

259 while (sIt.hasNext ()) {

260 Object v = sIt.next ();

261 i f (v instanceof Set) {

262 flattenSet ((Set)v);

263 toRemove.add(v);

264 toAdd.addAll ((Set)v);

265 }

266 }

267 set .removeAll(toRemove);

268 set .addAll(toAdd);

269 }

270

271 private void flattenSetBut(Set set , Set but) {

272 Iterator sIt = set .iterator ();

273 Set toRemove = new HashSet ();

274 Set toAdd = new HashSet ();

275 while (sIt.hasNext ()) {

276 Object v = sIt.next ();

277 i f (v instanceof Set && v != but) {

278 flattenSetBut ((Set)v, but);

279 toRemove.add(v);

60

PURITY VERIFIER SOURCE CODE

280 toAdd.addAll ((Set)v);

281 }

282 }

283 set .removeAll(toRemove);

284 set .addAll(toAdd);

285 }

286

287 private void flattenRemove(Set set , Set remove) {

288 set .remove(remove);

289 Iterator sIt = set .iterator ();

290 Set rm = new HashSet ();

291 while (sIt.hasNext ()) {

292 Object v = sIt.next ();

293 i f (v instanceof Set)

294 flattenRemove ((Set)v, remove);

295 }

296 }

297

298 private Set getModificationsByMethod(SootMethod sm , PureAspect aspect) {

299 Set result = new HashSet ();

300 Body body = sm.getActiveBody ();

301 Iterator unitIt = body.getUnits (). iterator ();

302 while (unitIt.hasNext ()) {

303 Stmt stmt = (Stmt)unitIt.next ();

304 i f (! excludeStmt(sm , stmt , aspect)) {

305 i f (stmt instanceof AssignStmt) {

306 AssignStmt assignStmt = (AssignStmt)stmt;

307 Value v =

308 ((ValueBox)assignStmt.getDefBoxes (). get (0)). getValue ();

309 i f (v instanceof InstanceFieldRef)

310 while (v instanceof InstanceFieldRef) {

311 v = ((InstanceFieldRef)v). getBase ();

312 result.add(new Modification(v, stmt));

313 }

314 else i f (v instanceof StaticFieldRef)

315 result.add(new Modification(v, stmt));

316 }

317 }

318 i f (stmt.containsInvokeExpr ()

319 && modifiedByMethod.keySet (). contains(stmt.getInvokeExpr (). getMethod ())) {

320 Iterator it =

321 ((Set)modifiedByMethod.get(stmt.getInvokeExpr (). getMethod ())). iterator ();

61

PURITY VERIFIER SOURCE CODE

322 while (it.hasNext ())

323 result.add(new Modification ((Value)it.next(), stmt));

324 }

325 }

326 return result;

327 }

328

329 private void findMethodShadows(SootMethod sm) {

330 // whole body shadows

331 i f (MethodCategory.weaveExecution(sm))

332 doShadows(sm , new WholeMethodPosition(sm));

333 // statement shadows

334 i f (MethodCategory.weaveInside(sm)) {

335 Chain stmtsChain = sm.getActiveBody (). getUnits ();

336 Stmt current , next;

337

338 i f (! stmtsChain.isEmpty ()) {

339 for (current =

340 (Stmt)stmtsChain.getFirst (); current != null ; current = next) {

341 next = (Stmt)stmtsChain.getSuccOf(current);

342 doShadows(sm , new StmtMethodPosition(sm, current));

343 doShadows(sm , new NewStmtMethodPosition(sm, current , next));

344 }

345 }

346 }

347

348 // exc ep t i on hand le r shadows

349 Chain trapsChain = sm.getActiveBody (). getTraps ();

350 Trap currentTrap;

351

352 i f (! trapsChain.isEmpty ()) {

353 for (currentTrap = (Trap)trapsChain.getFirst ();

354 currentTrap != null ;

355 currentTrap =(Trap) trapsChain.getSuccOf(currentTrap))

356 doShadows(sm , new TrapMethodPosition(sm, currentTrap));

357 }

358 }

359

360 private void doShadows(SootMethod method , MethodPosition pos) {

361 Iterator shadowTypeIt = abc.main.Main.v(). getAbcExtension (). shadowTypes ();

362 while (shadowTypeIt.hasNext ()) {

363 ShadowType st = (ShadowType)shadowTypeIt.next ();

62

PURITY VERIFIER SOURCE CODE

364 ShadowMatch sm;

365 try {

366 sm = st.matchesAt(pos);

367 } catch(InternalCompilerError e) {

368 throw new InternalCompilerError(e.message(),

369 e.position () == null ?

370 abc.polyglot.util.ErrorInfoFactory.getPosition(

371 pos.getContainer (),pos.getHost ()) : e.position(), e.getCause ());

372 } catch(Throwable e) {

373 throw new InternalCompilerError

374 ("Error while looking for join point shadow",

375 abc.polyglot.util.ErrorInfoFactory.getPosition(

376 pos.getContainer (),pos.getHost ()), e);

377 }

378 i f (sm instanceof StmtShadowMatch) {

379 List list;

380 list = (List)stmtShadowMatchLists.get(method);

381 i f (list == null) {

382 list = new LinkedList ();

383 stmtShadowMatchLists.put(method , list);

384 }

385 list.add(sm);

386 } else i f (sm instanceof BodyShadowMatch) {

387 List list;

388 list = (List)bodyShadowMatchLists.get(method);

389 i f (list == null) {

390 list = new LinkedList ();

391 bodyShadowMatchLists.put(method , list);

392 }

393 list.add(sm);

394 }

395

396 }

397 }

398

399 private List getStmtShadowMatchList(SootMethod method) {

400 i f (stmtShadowMatchLists.containsKey(method)) {

401 return (List)stmtShadowMatchLists.get(method);

402 } else {

403 return new LinkedList ();

404 }

405 }

63

PURITY VERIFIER SOURCE CODE

406

407 private List getBodyShadowMatchList(SootMethod method) {

408 i f (bodyShadowMatchLists.containsKey(method)) {

409 return (List)bodyShadowMatchLists.get(method);

410 } else {

411 return new LinkedList ();

412 }

413 }

414

415 public List getShadowMatchList(SootMethod method) {

416 LinkedList result = new LinkedList ();

417 result.addAll(getStmtShadowMatchList(method));

418 result.addAll(getBodyShadowMatchList(method));

419 return result;

420 }

421

422 private boolean excludeStmt(SootMethod method , Stmt stmt , PureAspect aspect)

423 {

424 boolean result = f a l se ;

425 Pointcut pc = Pointcut.normalize(aspect.getExcept(),

426 new LinkedList (), aspect);

427 Iterator stmtShadowMatchIt = getStmtShadowMatchList(method). iterator ();

428 while (stmtShadowMatchIt.hasNext ()) {

429 StmtShadowMatch sm = (StmtShadowMatch)stmtShadowMatchIt.next ();

430 Residue res = null ;

431 try {

432 res = pc.matchesAt(new EmptyFormals (),

433 method.getDeclaringClass (), method , sm);

434 } catch (SemanticException se) {

435 }

436 i f ((res instanceof AlwaysMatch) && (sm.getStmt () == stmt)) {

437 result = true;

438 break;

439 }

440 }

441 return result;

442 }

443

444 private boolean excludeMethod(SootMethod method , PureAspect aspect) {

445 boolean result = f a l se ;

446 Pointcut pc = Pointcut.normalize(aspect.getExcept(),

447 new LinkedList (), aspect);

64

PURITY VERIFIER SOURCE CODE

448 Iterator bodyShadowMatchIt = getBodyShadowMatchList(method). iterator ();

449 while (bodyShadowMatchIt.hasNext ()) {

450 BodyShadowMatch sm = (BodyShadowMatch)bodyShadowMatchIt.next ();

451 Residue res = null ;

452 try {

453 res = pc.matchesAt(new EmptyFormals (),

454 method.getDeclaringClass (), method , sm);

455 } catch (SemanticException se) {

456 }

457 i f (res instanceof AlwaysMatch) {

458 result = true;

459 break;

460 }

461 }

462 return result;

463 }

464

465 private boolean isAround(String methodName) {

466 boolean result = f a l se ;

467 i f (methodName.startsWith("around$"))

468 result = true;

469 return result;

470 }

471

472 private boolean isProceed(String methodName) {

473 boolean result = f a l se ;

474 i f (methodName.startsWith("abc$static$proceed$"))

475 result = true;

476 return result;

477 }

478

479 private void checkAround(SootMethod method) {

480 Chain units = method.getActiveBody (). getUnits ();

481 Local[] locals = new Local[method.getParameterCount ()];

482 for (int i = 0; i < locals.length; i++)

483 locals[i] = method.getActiveBody (). getParameterLocal(i);

484 Stmt first = (Stmt)units.getFirst ();

485 i f (checkNumProceeds(units , first , new HashMap(), locals)[1] != 1) {

486 String fileName =

487 ((SourceFileTag)method.getDeclaringClass (). getTag(

488 "SourceFileTag")). getSourceFile ();

489 SourceLnPosTag slpTag =

65

PURITY VERIFIER SOURCE CODE

490 (SourceLnPosTag)method.getTag("SourceLnPosTag");

491 Position pos = new

492 Position(fileName , slpTag.startLn(),

493 slpTag.startPos(),

494 slpTag.endLn(),

495 slpTag.endPos ());

496 abc.main.Main.v(). error_queue.enqueue(ErrorInfo.WARNING ,

497 "Possibly proceed()-purity violated in around () advice", pos);

498 }

499 }

500

501 private int [] checkNumProceeds(Chain units , Stmt start ,

502 Map ifsAlreadySeen , Local[] locals) {

503 boolean finished = f a l se ;

504 int [] numProceeds = {0, 0};

505 Stmt current = start;

506 while (numProceeds [0] < 2 && numProceeds [0] == numProceeds [1]

507 && !finished && current != null) {

508 i f (current.containsInvokeExpr ()) {

509 i f (isProceed(current.getInvokeExpr (). getMethod (). getName ())) {

510 numProceeds [0]++;

511 boolean ok = true;

512 List args = current.getInvokeExpr (). getArgs ();

513 for (int i = 0; i < args.size (); i++)

514 i f (args.get(i) != locals[i]) {

515 ok = f a l se ;

516 break;

517 }

518 i f (ok)

519 numProceeds [1]++;

520 }

521 current = (Stmt)units.getSuccOf(current);

522 } else i f (current instanceof TableSwitchStmt) {

523 TableSwitchStmt tsStmt = (TableSwitchStmt)current;

524 List targets = tsStmt.getTargets ();

525 int maxBranchProceeds [] = {0, 0};

526 for (int i = 0; i < targets.size (); i++) {

527 int [] branchProceeds = checkNumProceeds(units ,

528 (Stmt)targets.get(i), ifsAlreadySeen , locals);

529 i f (branchProceeds [0] > maxBranchProceeds [0])

530 maxBranchProceeds [0] = branchProceeds [0];

531 i f (branchProceeds [1] > maxBranchProceeds [1])

66

PURITY VERIFIER SOURCE CODE

532 maxBranchProceeds [1] = branchProceeds [1];

533 }

534 numProceeds [0] += maxBranchProceeds [0];

535 numProceeds [1] += maxBranchProceeds [1];

536 finished = true;

537 } else i f (current instanceof LookupSwitchStmt) {

538 LookupSwitchStmt lsStmt = (LookupSwitchStmt)current;

539 List targets = lsStmt.getTargets ();

540 int [] maxBranchProceeds = {0, 0};

541 for (int i = 0; i < targets.size (); i++) {

542 int [] branchProceeds = checkNumProceeds(units ,

543 (Stmt)targets.get(i), ifsAlreadySeen , locals);

544 i f (branchProceeds [0] > maxBranchProceeds [0])

545 maxBranchProceeds [0] = branchProceeds [0];

546 i f (branchProceeds [1] > maxBranchProceeds [1])

547 maxBranchProceeds [1] = branchProceeds [1];

548 }

549 numProceeds [0] += maxBranchProceeds [0];

550 numProceeds [1] += maxBranchProceeds [1];

551 finished = true;

552 } else i f (current instanceof GotoStmt) {

553 int [] nextProceeds = checkNumProceeds(units ,

554 ((Stmt)((GotoStmt)current). getTarget ()), ifsAlreadySeen , locals);

555 numProceeds [0] += nextProceeds [0];

556 numProceeds [1] += nextProceeds [1];

557 finished = true;

558 } else i f (current instanceof IfStmt) {

559 i f (! ifsAlreadySeen.keySet (). contains(current)) {

560 ifsAlreadySeen.put(current , new Integer (1));

561 int [] nextProceeds1 =

562 checkNumProceeds(units ,

563 (Stmt)units.getSuccOf(current),

564 ifsAlreadySeen , locals);

565 int [] nextProceeds2 = checkNumProceeds(units ,

566 ((IfStmt)current). getTarget (),

567 ifsAlreadySeen , locals);

568 numProceeds [0] += Math.max(nextProceeds1 [0], nextProceeds2 [0]);

569 numProceeds [1] += Math.max(nextProceeds1 [1], nextProceeds2 [1]);

570 } else {

571 int n = ((Integer)ifsAlreadySeen.get(current)). intValue ();

572 i f (n < 2) {

573 ifsAlreadySeen.put(current , new Integer (++n));

67

PURITY VERIFIER SOURCE CODE

574 int [] nextProceeds = checkNumProceeds(units ,

575 ((IfStmt)current). getTarget (),

576 ifsAlreadySeen , locals);

577 numProceeds [0] += nextProceeds [0];

578 numProceeds [1] += nextProceeds [1];

579 }

580 }

581 finished = true;

582 } else i f (current instanceof ReturnStmt

583 || current instanceof ReturnVoidStmt) {

584 finished = true;

585 } else

586 current = (Stmt)units.getSuccOf(current);

587

588 }

589 return numProceeds;

590 }

591

592 private stat ic c lass Modification {

593 private Value value;

594 private Stmt modifyingStmt;

595

596 public Modification(Value value , Stmt modifyingStmt) {

597 this .value = value;

598 this .modifyingStmt = modifyingStmt;

599 }

600

601 public Value getValue () {

602 return value;

603 }

604

605 public Stmt getModifyingStmt () {

606 return modifyingStmt;

607 }

608 }

609 }

68

