
Collaborative runtime verification with

tracematches

Eric Bodden1, Laurie Hendren1, Patrick Lam1,
Ondřej Lhoták2 and Nomair A. Naeem2

1 McGill University, Montréal, Québec, Canada
2 University of Waterloo, Waterloo, Ontario, Canada

Abstract. Perfect pre-deployment test coverage is notoriously difficult to
achieve for large applications. With enough end users, many more test cases
will be encountered during an application’s deployment than during testing.
The use of runtime verification after deployment would enable developers to
detect and report on unexpected situations. Unfortunately, the prohibitive
performance cost of runtime monitors prevents their use in deployed code.

In this work we study the feasibility of collaborative runtime verification,
a verification approach which distributes the burden of runtime verification
onto multiple users. Each user executes a partially instrumented program
and therefore suffers only a fraction of the instrumentation overhead.

We focus on runtime verification using tracematches. Tracematches are a
specification formalism that allows users to specify runtime verification prop-
erties via regular expressions with free variables over the dynamic execution
trace. We propose two techniques for soundly partitioning the instrumen-
tation required for tracematches: spatial partitioning, where different copies
of a program monitor different program points for violations, and temporal
partitioning, where monitoring is switched on and off over time. We evaluate
the relative impact of partitioning on a user’s runtime overhead by apply-
ing each partitioning technique to a collection of benchmarks that would
otherwise incur significant instrumentation overhead.

Our results show that spatial partitioning almost completely eliminates run-
time overhead (for any particular benchmark copy) on many of our test cases,
and that temporal partitioning scales well and provides runtime verification
on a “pay as you go” basis.

1 Introduction

In the verification community it is now widely accepted that, especially for large
programs, verification is often incomplete and hence bugs still arise in deployed code
on the machines of end users. However, verification code is rarely deployed, due
to large performance penalties induced by current runtime verification approaches.
Consequently, when errors do arise in production environments, their causes are
often hard to diagnose: the available debugging information is very limited.

Tracematches [1] are one mechanism for specifying runtime monitors. Trace-
matches enable developers to state sequences of program events and actions to take



if the execution matches the sequence. Events bind objects in the heap; a tracematch
only triggers if all of the events occur on a consistent set of objects.

According to researchers in industry [13], larger industrial companies would likely
be willing to accept runtime verification in deployed code if the overhead is below
5%. In previous work on tracematches, we have shown that, in many cases, static
analysis can enable efficient runtime monitoring by improving both the specifica-
tion [3] and program under test [6]. Most often, our techniques can reduce runtime
overhead to under 10%. However, our evaluation also showed that unreasonably large
overheads—sometimes more than 100%—remained for some classes of specifications
and programs. Other techniques for runtime monitoring also incur similar runtime
overheads; for instance, the Program Query Language [10] causes up to 37% over-
head on its benchmark applications (although it is intended to be a debugging tool
rather than a tool for monitoring deployed programs), and JavaMOP [7] incurs up
to 13% overhead on non-pathological test cases for runtime monitoring.

In this work, we attack the problem of runtime verification-induced overhead by
using methods from remote sampling [9]. Because companies which produce large
pieces of software (which are usually hard to analyze) often have access to a large
user base, one can generate different kinds of partial instrumentation (“probes”) for
each user. A centralized server can then combine runtime verification results from
runs with different probes. Although there are many advantages to a sampling-based
approach, we are interested in using sampling to reduce instrumentation overhead
for individual end users. We have developed two approaches for partitioning the
overhead, spatial partitioning and temporal partitioning.

Spatial partitioning works by partitioning the instrumentation points into differ-
ent subsets. We call each subset of instrumentation points a probe and each user
is given a program instrumented with only one probe. This works very well in
many cases, but in some cases a probe may contain a very hot—that is, expensive—
instrumentation point. In those cases, the unlucky user who gets the hot probe will
experience most of the overhead.

Temporal partitioning works by turning the instrumentation on and off periodi-
cally, reducing the total overhead. This method works even if there are are very hot
probes, because even those probes are only enabled some of the time. However, since
probes are disabled some of the time, any runtime verification properties of interest
may be ignored while the probes are disabled.

In both spatial and temporal partitioning, the remaining instrumentation must
operate correctly and, in particular, must never report false positives. The key point
is that our transformations must never remove instrumentation points that can re-
move candidate bindings; identifying such instrumentation points can be difficult for
tracematches, which may bind one or more objects and require each event to match
the same objects. We have found a simple mechanism for reducing the number of
these instrumentation points that appears to work well on our benchmarks.

We explored the feasibility of our approach by applying our modified tracematch
compiler to benchmarks whose overheads persisted after the static analysis in [6].
We first experimented with spatial partitioning. We found that some benchmarks
were very suited to spatial partitioning. In these cases, each probe produced lower



overhead than the complete instrumentation, and many probes carried less than 5%
overhead. However, in other cases, some probes were so hot that they accounted for
almost all of the overhead; spatial partitioning did not help much in those cases. We
also experimented with temporal partitioning and examined runtimes when probes
were enabled for 10, 30, 50, 70, 90 and 100 percent of the time. As expected, we
found that the overhead increased steadily with the proportion of time that the
probes were enabled, so that one can gain limited runtime monitoring by running
probes only some of the time.

The remainder of this paper is structured as follows. In Section 2, we give back-
ground information on tracematches and describe the instrumentation for evaluating
tracematches at runtime. In Section 3, we explain the spatial and temporal parti-
tioning schemes. We evaluate our work in Section 4, discuss related work in Section
5 and finally conclude in Section 6.

2 Background

The goal of our research is to monitor executions of programs and ensure that
programs never execute pathological sequences of events. In this project, we monitor
executions using tracematches. A tracematch defines a runtime monitor using a
regular expression over an alphabet of user-defined events in program executions.
The developer is responsible for providing a tracematch to be verified and definitions
for each event, or symbol, used in the tracematch. He provides definitions for symbols
using AspectJ [8] pointcuts. Pointcuts often specify patterns which match names of
currently executing methods or types of currently executing objects. Pointcuts may
also bind parts of the execution context. For instance, at a method-call pointcut, the
developer may bind the method parameters, the caller object, and the callee objects,
and may refer to these objects when the tracematch matches. If a tracematch does
not bind any variables, then it reduces to verifying finite-state properties of the
program as a whole.

1 tracematch(Iterator i) {

2 sym next before:

3 call(* java.util.Iterator+.next()) && target(i);

4 sym hasNext before:

5 call(* java.util.Iterator+.hasNext()) && target(i);

6

7 next next { /* emit error message; may access variable i */ }

8 }

Figure 1. Tracematch checking that hasNext() is always called before next()

Figure 1 presents an example tracematch. The tracematch header, in line 1,
declares a tracematch variable i. Lines 2–5 declare two symbols, next and hasNext,
which establish the alphabet for this tracematch’s regular expression. The next sym-
bol matches calls to an Iterator’s next() method and binds the target object of the
method call to i. The hasNext symbol matches calls to Iterator.hasNext(), on the
same iterator i. Line 7 declares the tracematch’s pattern (regular expression) and



body. The pattern, next next, states that the tracematch body must execute after
two consecutive calls to next(), as long as no hasNext() call intervenes.

A crucial point about the semantics of tracematches’ regular expressions is that
intermediate events matching an explicitly-declared symbol cannot be ignored ; that
is, any occurrence of a non-matching symbol in an execution invalidates related
partial matches. In our example, a sequence next hasNext next (all on the same
iterator, of course) would not match. (Avgustinov et al. discuss the semantics of
tracematches in detail in [2].)

The implementation of tracematches uses finite state machines to track the states
of active partial matches. The compiler tracks variable-to-object bindings with con-

straints ; each state q in the finite state machine has an associated constraint that
stores information about groups of bound heap objects that must or must not be
in state q. Constraints are stored in Disjunctive Normal Form as a set of disjuncts.
Each disjunct maps from tracematch variables to objects. Note that the runtime
cost of this approach comes from the large number of simultaneously-bound heap
objects, and that the number of tracematch variables does not contribute to the
runtime cost.

q0start q1 q2

next next

next, hasNext

Figure 2. Finite state machine for the tracematch of Figure 1

Figure 2 presents the automaton for the HasNext pattern; we can observe that
two calls to next (on the same i) will cause the automaton to hit its final state q2.
Note that state q1 carries a dashed self-loop. We call this loop a skip-loop. Skip loops
remove partial matches that cannot be extended to complete matches: they delete a
partial match whenever an observed event invalidates that partial match.

As an example, assume that state q1 is associated with the constraint {[i 7→
i1], [i 7→ i2]}; that is, the program has executed next() once, and only once, on
each of the iterators i1 and i2, following the most recent call to hasNext() on each
of i1 and i2. If the program then executes hasNext() on i2, then another call to
next() on i2 can no longer trigger an immediate match. Hence the skip-loop labelled
hasNext will reduce the constraint on the intermediate state q1 to {[i 7→ i1]}; the
implementation discards the disjunct for i2 at q1. (In the tracematch semantics, the
skip-loop implements a conjunction of the constraint at q1 with the binding i 6= i2.)

The tracematch compiler weaves code to monitor tracematches into programs
at appropriate event locations. For every static code location corresponding to a
potential event execution, the compiler therefore includes instrumentation code that
also updates the appropriate disjuncts. This instrumentation code is called a shadow.
In this paper, we use a previously-published static analysis that removes shadows
if they can be shown to never contribute to complete matches [6]; for instance, a
program which calls hasNext() but never next() would never trigger the final state
of the HasNext automaton, so the hasNext shadows can removed.



3 Shadow partitionings

Collaborative runtime verification leverages the fact that many users will execute
the same application many times to reduce the runtime verification overhead for
each user. The two basic options are to (1) reduce the number of active shadows for
any particular run; or (2) reduce the (amortized) amount of work per active shadow.
To explore these options, we devised two partitioning schemes, spatial and temporal

partitioning. Spatial partitioning (Section 3.1) reduces the number of active shadows
per run, while temporal partitioning (Section 3.2) reduces the amortized workload
per active shadow over any particular execution.

Our partitioning schemes are designed to produce false negatives but no false
positives. Our monitoring may miss some pattern matches (which will be caught
eventually given enough executions), but any reported match must actually occur.

3.1 Spatial partitioning

Spatial partitioning reduces the overhead of runtime verification by only leaving in
a subset of a program’s shadows. However, choosing an arbitrary subset of shadows
does not work; in particular, arbitrarily disabling skip shadows may lead to false
positives. Consider the following code with the HasNext pattern.

1 for(Iterator i = c.iterator(); i.hasNext();)

2 Object o = i.next();

In this case, if the iterator i only exists in this loop, one safe spatial partitioning
would be to disable all shadows in the program except for those in the loop. However,
disabling the hasNext skip shadow on line 1 and enabling the next shadow on line
2 on a collection with two or more objects gives a false positive, since the monitor
“sees” two calls to next() and not the call to hasNext() which prevents the match.

Enabling arbitrary subsets of shadows can also lead to wasted work. Disabling the
next shadow in the above example and keeping the hasNext shadow would, of course,
lead to overhead from the hasNext shadow. But, on their own, hasNext shadows can
never lead to a complete match without any next shadows.

We therefore need a more principled way of determining sensible groups of shad-
ows to enable or disable. In previous work, we have described the notion of a shadow

group, which approximates 1) the shadows needed to keep tracematches triggerable
and 2) the skip-shadows which must remain enabled to avoid false positives. We will
now summarize the relevant points; the complete details are given in [6]. We start
by defining the notion of a static joinpoint shadow.

Definition 1 (Shadow). A shadow s of a tracematch tm is a pair (labs, binds),
where labs is the label of a declared symbol of tm and binds is a variable binding,
modelled as a mapping from variables to points-to sets. A points-to set is a set
of object-creation sites in the program. The points-to set pts(v) for a variable v

contains the creation sites of all objects which could possibly be created at runtime
and assigned to v.

In the example code above, the hasNext shadow in line 1 would be denoted by
(hasNext, {i 7→ {i1}}), assuming that we denote the creation site of iterator objects
that might be bound by this shadow by i1.



Definition 2 (Shadow group). A shadow group is a pair of 1) a multi-set of shad-
ows called label-shadows and 2) a set of shadows called skip-shadows . All shadows
in label-shadows are labelled with labels of non-skip edges on some path to a final
state, while all shadows in skip-shadows are labelled with a label of a skip-loop.

We use a multi-set for label-shadows to record the fact that the automaton might
not reach its final state unless two or more shadows with the same label execute.
For instance, the HasNext pattern only triggers after two next shadows execute; the
multiplicities in the multi-set encode the number of times that a particular symbol
needs to execute before the tracematch could possibly trigger.

Definition 3 (Consistent shadow group). A consistent shadow group g is a
shadow group for which all variable bindings of all shadows in the group have points-
to sets with a non-empty intersection for each variable.

For our HasNext example, a consistent shadow group could have this form:

label-shadows = [(next , i 7→ {i1, i2}), (next , i 7→ {i1})],

skip-shadows = {(hasNext , i 7→ {i1}), (hasNext , i 7→ {i1, i3})}

This shadow group is consistent—it may lead to a match at runtime—because the
variable bindings for i could potentially point to the same object, namely an object
created at creation site i1. The shadow group holds two label shadows (labelled
with the non-skip labels next). If the label shadows had disjoint points-to sets, then
no execution would bind the tracematch variables to consistent objects, and the
shadow group would not correspond to a possible runtime match. In addition, the
shadow group holds all skip-shadows that have points-to sets that overlap with the
label-shadows in the shadow group.

Conceptually, a consistent shadow group is the static representation of a possibly
complete match at runtime. Every consistent shadow group may potentially cause
its associated tracematch to match, if the label shadows execute in the proper order.
Furthermore, only the skip shadows in the shadow group can prevent a match based
on the shadow group’s label shadows.

Our definition of a shadow group is quite well-suited to yielding sets of shadows
that can be enabled or disabled in different spatial partitions. We therefore define
a probe to be the union of all label-shadows and skip-shadows of a given consistent
shadow group. (In constructing probes from shadow groups, we discard the multi-set
structure of the label shadows and combine the label-shadows and skip-shadows into
a single set). Probes “make sense” because they contain a set of shadows that can
lead to a complete match and they are sound because they also contain all of the
skip-shadows that can prevent that match. (We will explain why skip-shadows are
crucial for probes in Section 3.2). Note that different probes may overlap; indeed, as
Section 4 shows, many similar probes share the same hot shadows.

We can now present our algorithm for spatial partitioning.

– Compute all probes (based on the flow-insensitive analysis from [6]).
– Generate bytecode with two arrays: one array mapping from probes to shadows

and one array with one entry per shadow.



– When emitting code for shadows, guard each shadow’s execution with appropri-
ate array look-ups.

The arrays, along with some glue code in the AspectJ runtime, allow us to dy-
namically enable and disable probes as desired. In the context of spatial partitioning,
we choose one probe to enable at the start of each execution; however, our infras-
tructure permits experimentation with more sophisticated partitioning schemes.

3.2 Temporal partitioning

We found that spatial partitioning was effective in distributing the workload of
runtime verification in many cases. However, in some cases, we found that a single
probe could still lead to large overheads for some unlucky users. Two potential
reasons for large overheads are: 1) a shadow group may contain a large number of
skip-shadows, if all those shadows have overlapping points-to sets, leading to large
probes; or 2) if shadows belonging to a probe are repeatedly executed within a tight
loop which would otherwise be quite cheap, any overhead due to such shadows would
quickly accumulate. The HasNext pattern is especially prone to case 2), as calls to
next() and hasNext() are cheap operations and almost always contained in loops.

In such situations, one way to further reduce the runtime overhead is by sampling:
instead of monitoring a given probe all the time, we monitor it from time to time and
hope that the program is executed long enough that any violations eventually get
caught. However, it is unsound to disable an entire probe and then naïvely re-enable
it again on the same run: missing a skip shadow can lead to a false positive.

Consider the following code and the HasNext pattern:

for(Iterator i = c.iterator(); i.hasNext();)

Object o = i.next();

If we disabled monitoring during the call to hasNext, we could get a false positive
after seeing two calls to next, since the intermediate call to hasNext went unnoticed.

Because false positives arise from disabling skip-shadows, one sound solution is to
simply not disable skip-shadows at all. Unfortunately, the execution of skip-shadows
can be quite expensive; we found that leaving skip-shadows enabled also leaves a lot
of overhead, defeating the purpose of temporal partitioning.

However, we then observed that if a state s holds an empty constraint (i.e.
no disjuncts), then skip-shadows originating at s no longer need to execute1. We
implemented this optimization for our temporal partitioning and found it to be quite
effective: Section 4 shows that our temporal partitioning, with this optimization,
does not incur much partitioning-related overhead; most of the overhead is due only
to the executing monitors. Intuitively, this optimization works because, while all
non-skip shadows are disabled, no new disjuncts are being generated. Hence, the
associated constraint will become empty after few—often, just one—iterations of
the skip-shadow, practically degenerating the skip-shadow to a no-op.

1 This optimization is only safe if all variables are known to be bound at s. However, for
all patterns we used in this work, and for almost all patterns we know, this is the case
for all states. Our implementation statically checks this property and only applies the
optimization if it holds.



We implemented the temporal partitioning as follows.

– Generate a Boolean flag per tracematch.
– When emitting code for shadows, guard each non-skip shadow with the appro-

priate flag.
– Change the runtime to start up an additional instrumentation control thread.

The control thread switches the instrumentation on and off at various time in-
tervals. Figure 3 presents the parameters that the instrumentation control thread
accepts; non-skip edges are enabled and then disabled after ton milliseconds. Next,
after another toff milliseconds, the non-skip edges are enabled again.

Note that the Boolean flag we generate is independent of the Boolean array we
use for spatial partitioning. If both spatial and temporal partitioning are used, a non-
skip shadow is only enabled if both the Boolean array flag (from spatial partitioning)
for this particular shadow and the Boolean flag (from temporal partitioning) for its
tracematch are enabled. A skip shadow will be enabled if the Boolean array flag for
its tracematch is enabled.

on

off

t
off

t
on

t
off

t
on

t
on

i
on

· t
off

i
off

·

Figure 3. Parameters for temporal partitioning, with increase period of n = 2

The thread can also scale the activation periods: every n periods, it can scale
ton by a factor ion and toff by ioff. This technique—a well-known technique from
adaptive systems such as just-in-time compilers—allows us to keep non-skip edges
enabled for longer as the program runs longer, which gives our temporal partitioning
a better chance of catching tracematches that require a long execution time to match.
Because we increase the monitoring periods over time, the cost of monitoring scales
with the total execution time of the program.

4 Benchmarks

To demonstrate the feasibility of our approach, we applied our modified tracematch
compiler to five of the hardest benchmark/tracematch combinations from previ-
ous evaluations [6]. These benchmarks continue to exhibit more than 10% of run-
time overhead, even after we applied all available static optimizations. They all
consist of tracematches that verify properties of frequently used data structures,
such as iterators and streams, in the applications of version 2006-10 of the Da-
Capo benchmark suite [5]. As usual, all our benchmarks are available on http:

//www.aspectbench.org/, along with a version of abc implementing our optimiza-
tion. In the near future we also plan to integrate this implementation into the main
abc build stream. Table 1 explains the tracematches that we used.



pattern name description

FailSafeIter do not update a collection while iterating over it
HasNextElem always call hasNextElem before calling nextElement on an Enumeration

HasNext always call hasNext before calling next on an Iterator
Reader don’t use a Reader after its InputStream was closed

Table 1. Tracematches applied to the DaCapo benchmarks

benchmark classes methods complete overhead # probes

antlr-Reader 307 3517 471.45% 4

chart-FailSafeIter 706 8972 25.08% 742

lucene-HasNextElem 309 3118 12.53% 6

pmd-FailSafeIter 619 6163 44.36% 426

pmd-HasNext 619 6163 66.53% 32

Table 2. Number of classes and methods per benchmark (taken from [5]), plus overhead
of the fully instrumented benchmark, and number of probes generated for each benchmark

4.1 Spatial partitioning

We evaluated spatial partitioning by applying the algorithm from Section 3.1 to our
five benchmark/tracematch combinations, after running the flow-insensitive static
analysis described in [6]. Table 2 shows the runtime overheads with full instrumen-
tation. All of these overheads exceed 10%, and the overhead for antlr-Reader is almost
500%. Table 2 also presents the number of probes generated for each benchmark.

0

20

40

60

80

100

ru
nt

im
e 

ov
er

he
ad

54

 686 5

5

4
415

5
26

antlr/Reader
chart/FailSafeIter

lucene/HasNextElem
pmd/FailSafeIter

pmd/HasNext 

Figure 4. Runtime overheads per probe in spatial partitioning (in percent; bars indicate
clumps of probes, labelled by size of clump)

Under the spatial partitioning approach, our compiler emits instrumented bench-
marks which can enable or disable each probe dynamically. We tested the effect of



each probe individually by executing each benchmark with one probe enabled at a
time; this gave us 1210 benchmark configurations to test. For our experiments, we
used the Sun Hotspot JVM version 1.4.2_12 with 2GB RAM on a machine with an
AMD Athlon 64 X2 Dual Core Processor 3800+. We used the s large option of
the DaCapo suite to provide extra-large inputs, which made it easier for us to mea-
sure changes in runtimes. Figure 4 shows runtime overheads for the probes in our
benchmarks. Dots indicate overheads for individual probes. For some benchmarks,
many probes were almost identical, sharing the same hot shadows. These probes
therefore also had almost identical overheads. We grouped these probes into clumps
and present them as a bar, labelled with the number of probes in the clump.

Our results demonstrate that, in some cases, the different probes manage to
spatially distribute the overhead quite well. However, spatial partitioning does not
always suffice. For pmd-FailSafeIter, 9 probes out of 426 have overheads exceeding
5%, while for chart-FailSafeIter, 56 such cases exist, out of 742 probes in total. On
the other hand, the lucene-HasNextElem and pmd-HasNext benchmarks contain only
one hot probe each; spatial partitioning is unlikely to help in these cases.

Finally, antlr-Reader still shows high overheads, but these overheads are much
lower than the original overhead of 471.45%. Interestingly, the four different over-
heads do not add up to 471.45%. Upon further investigation, we found that two
probes generate many more disjuncts than others. In the fully instrumented pro-
gram, each shadow in each probe has to look up all the disjuncts, even if they are
generated by other probes, which might lead to overheads larger than the sum of
the overheads for each individual probe. We are currently thinking about whether
this observation could lead to an optimization of the tracematch implementation in
general. (Disjunct lookup is described in greater detail in [4].)

We conclude that spatial partitioning can sometimes be effective in spreading
the overhead among different probes. However, in some cases, a small number of
probes can account for a large fraction of the original total overhead. In those cases,
spatial partitioning does not suffice for reducing overhead, and we next explore our
temporal partitioning technique for improving runtime performance.

4.2 Temporal partitioning

To evaluate the effectiveness of temporal partitioning, we measured ten different
configurations for each of the five benchmark/tracematch combinations. Figure 5
presents runtimes for each of these configurations. The DaCapo framework collects
these runtimes by repeatedly running each benchmark until the normalized standard
deviation of the most recent runs is suitably small.

Diamond-shaped data points depict measurements of runtimes with no tempo-
ral partitioning; the left data point includes all probes (maximal overhead), while
the right data point includes no probes (no overhead). The gap between the right
diamond data point and the gray baseline, which denotes the runtime of the com-
pletely un-instrumented program, shows the cost of runtime checks. Note that spatial
partitioning will always cost at least as much as the right diamond.

The circle-shaped data points present the effect of temporal partitioning. We
measured the runtimes resulting from enabling non-skip edges 10, 30, 50, 70, 90



0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

20

40

60

80
ru

nt
im

e 
(s

)
temporal partitioning
no partitioning
base execution time

(a) antlr-Reader

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

40

42

44

46

48

50

ru
nt

im
e 

(s
)

temporal partitioning
no partitioning
base execution time

(b) chart-FailSafeIter

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

48

50

52

54

ru
nt

im
e 

(s
)

temporal partitioning
no partitioning
base execution time

(c) lucene-HasNextElem

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

50

55

60

65

70

75

ru
nt

im
e 

(s
)

temporal partitioning
no partitioning
base execution time

(d) pmd-FailSafeIter

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

50

60

70

80

ru
nt

im
e 

(s
)

temporal partitioning
no partitioning
base execution time

(e) pmd-HasNext

0 20 40 60 80 100

% of execution time that non-skip shadows are disabled

1

2

4

sl
ow

do
w

n

antlr
chart
lucene
pmd/FailSafeIter
pmd/HasNext

(f) temporal partitioning for all
benchmarks, log scale

Figure 5. Results of temporal partitioning for five benchmark/tracematch combinations



and 100 percent of the time. Our first experiment sought to determine the effect of
changing the swapping interval for temporal partitioning.

At first, we executed four different runs for each of those seven configurations,
with four different increase periods n. We doubled the duration of the on/off intervals
every n = 10, 40, 160 and 640 periods. As expected, n has no measurable effect on
runtime performance. We therefore plotted the arithmetic mean of the results over
the different increase periods. The full set of numbers is available on our website.

Figure 5 (f) overlays the results from all of our benchmark/tracematch combi-
nations. Note that the shape of the overhead curve is quite similar in all of the
configurations. In all cases, temporal partitioning can properly scale down from
100% overhead, when all non-skip edges are always enabled, to just above 0%, when
non-skip edges are never enabled. We were surprised to find that the decrease in
runtime overhead did not scale linearly with a decrease in monitoring intervals. This
data suggest that there might exist a “sweet spot” where the overhead is consistently
lowest compared to the employed monitoring time.

The relationship between “no temporal partitioning” with all probes enabled and
the 100% measurement with temporal partitioning enabled might seem surprising
at first: we added additional runtime checks for temporal partitioning, and yet, in
the cases of chart-FailSafeIter, lucene-HasNextElem and pmd-FailSafeIter, the code ex-
ecutes significantly faster. We believe that this speedup is due to the skip-loop opti-
mization that we implemented for temporal partitioning: this optimization is applied
even when non-skip edges are enabled, thereby improving overall performance.

The far right end of the graphs shows that the overhead of the runtime checks
for spatial and temporal partitioning are virtually negligible. They are not zero but
close enough to the baseline to not hinder the applicability of the approach.

5 Related work

Our work on collaborative runtime verification is most closely related to the work of
Liblit et al. for automatic bug isolation. The key insight in automatic bug isolation
is that a large user community can help isolate bugs in deployed software using
statistical methods. The key idea behind Cooperative Bug Isolation is to use sparse
random sampling of a large number of program executions to gather information.
Hence, one can amortize the cost of executing assertion-dense code by distributing
it to many users, each user only executing a small randomly selected number of
assertions. This minimizes the overhead experienced by each user. Although each
execution report in isolation gives only very limited information, the aggregate of
all such reports provides a wealth of debugging information for analysis and a high
chance of finding violations of an assertion, if they exist.

Pavlopoulou et al. [12] describe a residual test coverage monitoring tool which
starts off by instrumenting all the code. As different parts of the program are ex-
ecuted, the code is periodically re-instrumented, with probes added only in places
which have not been covered by the testing criteria. Probes from frequently executed
regions are therefore removed in the first few re-instrumentation cycles, reducing the
overhead in the long term since the program spends more and more time in code
regions without any probes. Such an adaptive instrumentation should be applicable



to our setting, too. To avoid false positives, one would have to disable entire shadow
groups at a time.

Patil et al. [11] propose two different approaches to minimize overhead due to
runtime checking of pointer and array accesses in C programs. Customization uses
program slicing to decouple the runtime checking from the original program execu-
tion. The second approach, shadow processing, uses idle processors in multiprocessor
workstations to perform runtime checking in the background. The shadow process-
ing approach uses two processes: a main process, which executes the original user
program, i.e. without any run-time checking, and a shadow process which follows
the main process and performs the intended dynamic analysis. The main process
has minimal overhead (5%-10%), mostly arising from the need for synchronization
and sharing of values between the two processes. Such an approach would not work
for arbitrary tracematches, which might arbitrarily modify the program state, but
could work for the verification-oriented tracematches we are investigating.

Recently, Microsoft, Mozilla, GNOME, KDE and others have all developed opt-in
services for reporting crash data. When a program crashes, recovery code generates
and transmits a report summarizing the state of the program. Recently, Microsoft’s
system has been extended to gather data about abnormal program behaviour in
the background; reports are then automatically sent every few days (subject to
user permission). Reports from all users can then be aggregated and analyzed for
information about causes of crashes.

We briefly mention a number of alternative approaches for specifying proper-
ties for runtime verification. The Program Query Language [10] is similar to trace-
matches in that it enables developers to specify properties of Java programs, where
each property may bind free variables to runtime heap objects. PQL supports a
richer specification language than tracematches, since it is based on stack automata
rather than finite state machines. Monitoring-Oriented Programming [7] is a generic
framework for specifying properties for runtime monitoring; developers use MOP
logic plugins to state properties of interest. PQL, MOP, and related approaches, can
all benefit from collaborative runtime verification techniques.

6 Conclusion and future work

In this paper we have presented two techniques for implementing collaborative run-
time verification with tracematches. The main idea is to share the instrumentation
over many users, so that any one user pays only part of the cost of the runtime ver-
ification. Our paper has described the spatial and temporal partitioning techniques
and demonstrated their applicability to a collection of benchmarks which exhibit
high instrumentation overheads.

Spatial partitioning allocates different probes—consistent subsets of instrumen-
tation points—to different users; probes generally have lower overheads than the
entire instrumentation. Our experimental evaluation showed that spatial partition-
ing works well when there are no particularly hot probes.

Temporal partitioning works by periodically enabling and disabling instrumenta-
tion. We demonstrated a good correspondence between the proportion of time that
probes were enabled and the runtime overhead.



We are continuing our work on making tracematches more efficient on many
fronts, including further static analyses. We are also continuing to build up our
benchmark library of base programs and interesting tracematches.

References

1. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Ju-
lian Tibble. Adding Trace Matching with Free Variables to AspectJ. In Object-Oriented
Programming, Systems, Languages and Applications, pages 345–364. ACM Press, 2005.

2. Pavel Avgustinov, Oege de Moor, and Julian Tibble. On the semantics of matching
trace monitoring patterns. In Seventh Workshop on Runtime Verification, Vancouver,
Canada, March 2007. To appear in Lecture Notes on Computer Science.

3. Pavel Avgustinov, Julian Tibble, Eric Bodden, Ondřej Lhoták, Laurie Hendren, Oege
de Moor, Neil Ongkingco, and Ganesh Sittampalam. Efficient trace monitoring. Tech-
nical Report abc-2006-1, http://www.aspectbench.org/, March 2006.

4. Pavel Avgustinov, Julian Tibble, and Oege de Moor. Making trace monitors feasi-
ble. In ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2007. To appear.

5. S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications, pages 169–190,
New York, NY, USA, October 2006. ACM Press.

6. Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged static program analysis
to improve the performance of runtime monitoring. In 21st European Conference on
Object-Oriented Programming, July 30th-August 3rd 2007, Berlin, Germany, volume
4609 of Lecture Notes in Computer Science, pages 525–549. Springer, 2007.

7. Feng Chen and Grigore Rosu. MOP: An efficient and generic runtime verification
framework. In ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), 2007. To appear.

8. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In J. Lindskov Knudsen, editor, Eu-
ropean Conference on Object-oriented Programming, volume 2072 of Lecture Notes in
Computer Science, pages 327–353. Springer, 2001.

9. Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via
remote program sampling. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, pages 141–154, San Diego,
California, June 2003.

10. Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors
using PQL: a program query language. In Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages and Appli-
cations, pages 365–383, 2005.

11. Harish Patil and Charles Fischer. Low-cost, concurrent checking of pointer and array
accesses in C programs. Softw. Pract. Exper., 27(1):87–110, 1997.

12. Christina Pavlopoulou and Michal Young. Residual test coverage monitoring. In ICSE
’99: Proceedings of the 21st International Conference on Software Engineering, pages
277–284, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

13. Wolfgang Grieskamp (Microsoft Research), January 2007. Personal communication.


