
Page 1 of 25

Project Report

EVolve: An Extensible Software

Visualization Framework

Student : Wei Wang
ID : 110148252

Page 2 of 25

Table of Content

1. Introduction... 3
1.1 Design .. 3
1.2 Motivation of the project ... 3

2. Architecture ... 3
2.1 Data Representation .. 4
2.2 Visualization... 4
2.3 Core Platform .. 5

2.3.1 Generating the Appropriate UI... 5
2.3.2 Handling Communication... 6

3. New Visualization Library .. 7
3.1 Hierarchy ... 7
3.2 Barchart ... 7
3.3 Hotspot... 8

3.3.1 Ordinary Hotspot .. 8
3.3.2 Stack Hotspot ... 8
3.3.3 Thread Hotspot .. 8
3.3.4 Prediction Hotspot .. 8

3.4 Stack Visualization .. 8
3.5 Dotplot Visualization... 11
3.6 Event Visualization.. 13
3.7 Correlation Visualization .. 13
3.8 Relationship Visualization .. 13

4. New Features .. 14
4.1 Enhanced Bar Chart ... 14
4.2 Multiple Data Sources .. 14
4.3 Predefined Visualization... 15
4.4 Overlapping ... 16
4.5 Generating Visualization Automatically.. 17
4.6 Phase Detector.. 17
4.7 Visualization Cloning .. 19
4.8 Manipulating Selections ... 19
4.9 Zooming ... 20
4.10 Visualization Restoring.. 20
4.11 Source Code Browsing.. 20
4.12 Saving EVolve Settings ... 23

5. Related Work... 23
6. Contribution... 23
7. Conclusion ... 24
8. Future Work .. 24
9. References... 24

Page 3 of 25

Abstract
This report presents EVolve – an extensible
software visualization framework, which is used
to generate visual representation of program
traces. In the report we describe all available
visualizations in EVolve’s built-in visualization
library and explain how to use these
visualizations. We also explain some new
features implemented on EVolve and the
modified infrastructure.

1. Introduction
The objective of developing EVolve is to create a
tool to help us understanding program running
behaviors. The tool should be easy to use and
easy to extend. To serve this purpose, EVolve is
designed to be an open and extensible software
framework. As an extensible framework, it is
easy to implement new data sources and new
types of visualizations and integrate them into
EVolve. As an open framework, EVolve is
publicly-available and defines interfaces for new
data sources and visualization in the forms of
Java APIs.

1.1 Design
In order to achieve extensibility, we define a
data protocol and visualization protocol. The
data protocol provides definitions of data records
(elements). These data records are classified as
either entities (static information) or events
(dynamically occurring events). More specifically,
each field in an element is associated with a
specific property, which allows EVolve to
convey information to the visualizations and to
automatically create appropriate menus and
input fields for visualization creation and
configuration. Although EVolve offers a set of
visualizations in its built-in library, it is always
possible to extend the library and create new
visualizations whenever necessary. To create a
new visualization, a user implements the
interfaces defined in the visualization protocol.
The visualization protocol provides interfaces for
visualizations to implement. These interfaces
enable a visualization to extract appropriate data
from the data stream and to present these data
in a visual representation.

1.2 Motivation of the project
We have been using the old version of EVolve for
quite a long time in our class and research.
Although it is very helpful, we found that there
still exists space for improvement. For example,

• The hierarchy of the visualization library is not
defined well. Legacy codes can only be reused
by copy and paste, which makes code
maintenance error-prone. A more object-
oriented design needs to replace the current
one.

• EVolve is not very user-friendly:
o The user has to remember a lot of settings

in order to reproduce an experiment
exactly

o The visualizations created by EVolve are
coarse grained when trace files are large,
and there is no way in EVolve to help the
user get a fine grained view. This makes
EVolve less useful when it is used on large
trace

o Too may steps are required to complete a
relatively simple operation

• Not enough tools are offered to help the user
analyze traces.

• Only one data trace is allowed at a time,
which is inconvenient for the user to compare
different traces.

This project aims to make EVolve a more useful
tool.

2. Architecture
As shown in Figure 1, EVolve consists of three
parts: The leftmost part is the data protocol: all
data sources should use this protocol to translate
the input trace into EVolve’s abstract
representation. The middle part is the core
platform of EVolve: this part is fixed and can not
be extended or modified. The main task of this
part is passing information between the left and
the right part. It serves to de-couple input data
formats from output visualization, enabling new
visualization to use existing data traces and new
data sources to be visualized using existing
visualizations. On the right side of the
architecture is the visualization protocol. All
visualizations obey this protocol to obtain data

Page 4 of 25

records and present these records in visual
representations. This protocol also defines

default behaviors for visualizations.

Figure 1 Architecture

2.1 Data Representation
EVolve allows multiple data sources and defines
an internal abstract data representation. EVolve
can visualize any data source if it is able to
translate its own data into this abstract
representation.

There are two main data elements in the data
representation. The first is entities. Entities are
named, unordered data elements that remain
unchanged in the visualization process. They
are cached in the memory by EVolve. Events
are anonymous, ordered and dynamic data
elements. The program’s behavior is denoted
by these events. Typically 99% percent of
elements in a data trace are events stored on
disk, while entities occupy memory, so using
this abstraction will save EVolve a lot of
memory.

Each element contains a set of fields. These
fields are either entity references (which will be
referred to as a reference) or values.
Additionally, each field (value or reference field)
is associated with a property. There are several
built-in properties:

• time: this property means that a data value
contained in the field is monotonically
increasing, and it is used as a definition of
time

• coordinate: this property means that the
data contained in the field is non-numeric or
not summable.

• amount: this property means that the data
value contained in the field is numeric and
summable.

• reference: this property means that the
data value contained in the field is simply a
reference referring to an element. By default,
all reference fields will have this property.

Besides these properties, EVolve also allows
arbitrary custom properties. We will talk about
properties in 2.3.1 in more detail.

2.2 Visualization
Visualizations are required to provide an
abstract representation of their capabilities in
order to make them as flexible as possible.
Visualization’s capabilities are defined in terms
of dimensions. Each visualization defines its
dimensions that associated with properties.
Dimensions can either be values or references.
For example, the Bar Chart visualization in
Figure 7 declares a reference dimension and a
value dimension, where the value dimension is
used for the length of the bars. In EVolve, an
event is encapsulated as an array of type long.
Each element in the array has a property
associated with it. And for every property,
EVolve will create a data filter, which simply
contains the element index of that property.
According to the user’s configuration on axes
(refer to Figure 5), EVolve will get the
corresponding data filter and plug it into the
dimension. Then by using dimension.dataFilter.

Page 5 of 25

getData(), the visualization can extract correct
field from the event.

2.3 Core Platform
In EVolve, the core platform is fixed and not
modifiable. This part provides functions to
manage the user interface and handles
communication between data sources and
visualizations.

2.3.1 Generating the Appropriate UI
As an extensible frame work, EVolve may have
several visualizations and data sources. Both
data source and visualization could have their
own requirement on the user interface, e.g., a
stack visualization makes no sense on a data
source unless the data source involves method
calls, and we should prevent

Figure 2 Menu Screenshot 1

Figure 3 Menu Screenshot 2

showing these visualizations in the menu. Since
the core platform is the only one who knows
both sides, it is responsible to generate the
appropriate user interface correctly.

A data source translates the data stream of the
trace file into elements and assigns properties
to every field in elements. Remember that
every visualization in EVolve has two or more
dimensions and these dimensions also have
properties. Therefore by matching the
properties provided by the data source with the
properties attached on dimensions, the core
platform is able to decide which visualization is
appropriate for a certain data source.

Furthermore, the core platform also uses
dimensions’ properties to generate correct
configuration user interface. For example,
imagine we have two different data sources and
following properties are defined in these data
sources:
Data source 1 : PMCPentiumSource

Properties : “bytecode”, “eventvalue”

Data source 2 : DemoSource

Properties : “time”, “count”, “amount”,
“coordinate”, “thread”, “reference”

Page 6 of 25

And in our visualization library we have two
visualizations:

Visualization 1: Hardware Counter Metric

Dimension Attached Property

X Axis : “bytecode”

Y Axis : “eventvalue”

Visualization 2: Hotspot

Dimension Attached Property

X Axis : “time”

Y Axis : “reference”

In Figure 2 and Figure 3 we load a
PMCPentiumSource trace and a DemoSource
trace accordingly. As we can see, the Hardware
Counter Metric Visualization only appears in
Figure 2, because the core platform can not
find the “bytecode” and “eventvalue” property
(attached on the dimensions of visualization 1)
in data source 2’s property definition. Thus the
core platform prevents “Hardware Counter
Metric” from appearing in the menu of Figure 3.
Similar thing happens for visualization 2 in
Figure 2.

Figure 4 Configuration Screenshot 1

Figure 4 and Figure 5 are configuration boxes
corresponding to visualization one and two. The
subject of the visualization is simply the type of
event that is visualized. Whenever the type of
event is decided, the core platform matches the

properties attached on dimensions with the
properties of fields of the element and creates
the drop-down lists. Again, since dimensions of
visualization one and two have different
properties, the core platform automatically
generate correct configuration boxes.

Figure 5 Configuration Screenshot 2

2.3.2 Handling Communication
Besides creating a correct user interface, the
core platform also handles communication
between the data source and the visualization.
As we know, in order to prompt extensibility,
EVolve does not allow a visualization to talk
with a data source directly. When a
visualization wants to communicate with its
data source, it must depend on the core
platform. A good example of this mechanism is
filtering (as shown in Figure 1). Imagine the
following scenario: The end user makes a
selection in the visualization in order to
concentrate on a certain part of data. The
visualization accepts this request and passes it
to the core platform with necessary data. As a
response, the core platform will create a filter
based on the information sent by the
visualization and re-connect the data source
with the visualization through the filter. And
next time when the visualization is re-
visualized, only filtered events will be passed to
it.

Page 7 of 25

3. New Visualization Library
An end-user can use EVolve as a stand-alone
tool and interactively create or modify multiple
visualizations from an existing library. The
ability to view a particular data source in a
variety of ways greatly adds to the benefit of
visualization. In this section, we will introduce
all built-in visualizations.

3.1 Hierarchy
Before we start, let’s first take a look at the
hierarchy of the visualization library. The old
version of EVolve did not define its hierarchy
very well and code reuse is not efficient. In this
project, we re-defined the hierarchy. According
to dimensions of visualizations, the new
hierarchy looks like this:

Figure 6 Hierarchy

Abstract classes are shown in rounded boxes,
concrete classes in plain boxes. Overridden
methods are shown in italics, concrete methods
in plain text. Abstract classes provide
functionality that all visualizations in the sub-
tree have in common.

Visualization declares two methods which all
visualizations share: sort (allows data to be
sorted) and makeSelection (allows the user to
select a subset of data to be re-colored or re-
visualized)

XYVisualization declares two methods:
installPainter (defines the color scheme used in
the visualization) and mouseMove (determines
the text that appears when the user moves
mouse over a particular part of the
visualization). Depending on the way that

coordinates on x- and y-axis are treated,
XYVisualization has three variations:

• Value-Reference visualizations contain a
reference on one axis. They share
mouseMove and sort

• Reference-Reference visualizations
contain a reference on both x and y axes.
They share mouseMove, sort and
makeSelection

• Value-Value visualizations contain a value
on both x and y axes. This variation is more
open-ended, only sort is shared and all other
methods are overridden.

3.2 Barchart
A bar chart (Figure 7) is a Value-Reference
visualization. The reference axis (y-axis) shows
882 method invocation locations, each location
has its own unique color. The x-axis shows the

Page 8 of 25

total number of invocations occurring at each
location. You may notice that some bars are
“broken” and with number labels on them, this
is a new feature offered in this project, we will
talk about it in 4.1 in more detail. The user can
find out the name of a particular invocation
location by pointing the mouse on it (the name
is displayed on the status bar).

3.3 Hotspot
Figure 8 illustrates four different hotspot
visualizations. Hotspot visualizations are value-
reference visualizations. The reference axis (y-
axis) is same as the reference axis of bar chart
in Figure 7, showing all different invocation
locations in lexical order. The only difference is
that hotspot visualizations use x-axis to show
the passing of time. Here we use bytecode
executed as time (Totally there are 69,735
bytecodes executed, they are grouped in
samples of 5000 each).

3.3.1 Ordinary Hotspot
The top left window of Figure 8 is an ordinary
hotspot visualization. This visualization is the
super type of all hotspot visualizations. Hotspot
visualization illustrates when and for how long
certain parts of a program become active.
There are two painters available for this
visualization: Default Painter and Random
Color Painter. The first one is offered by the
core platform. It outputs blue color if there is
no filter available in the core platform and
outputs user selected colors if filters are
colored. The Random Color Painter gives
every entity a unique color and overrides the
Default Painter, in another word, even if the
end user generates some colored filters, the
Random Color Painter will still generate its
own color.

3.3.2 Stack Hotspot
The top right window in Figure 8 is stack
hotspot. This visualization extends the original
visualization and all it does is just creating a
new painter and install it through installPainter.

The new painter uses three different colors to
show within a given time sample all methods
that are called, on the stack but inactive, on the
stack and active.

3.3.3 Thread Hotspot
This is another variation of hotspot
visualization, showed in the bottom left window
of Figure 8. Similar to Stack Hotspot, this
visualization also create a new painter and
applies it using installPainter. This painter colors
entities according to the thread they belong to,
e.g., entities of the same thread will have same
color.

3.3.4 Prediction Hotspot
The final hotspot variation, Prediction
Hotspot, is displayed in the bottom left
window. In this visualization we generate colors
by “predicting” the next entity using a simple
last-value predictor: a blue color indicates
perfect prediction accuracy, a red color appears
when the predictor guesses the wrong target
entity at least once in the time sample. By sub
classing Predictor the end user can import a
more sophisticated and accurate predictor to
generate different prediction hotspots.

3.4 Stack Visualization
Stack visualization (Figure 9) is a new
visualization added into our library. This
visualization is a value-value visualization. The
y-axis shows the runtime stack and the x-axis
measures time as method invocations. The
color scheme used in stack visualization assigns
each method a unique color. Stack visualization
is very memory consuming, so normally we only
select a segment of data in the configuration
box (as shown in the figure).

Page 9 of 25

Figure 7 Barchart

Figure 8 Hotspot

Page 10 of 25

Figure 9 Stack Visualization

Figure 10 Dotplot Visualization

Page 11 of 25

Figure 11 Weaker Equality

Figure 12 Dotplot Visualization with Weaker Equalizer

3.5 Dotplot Visualization
Dotplot visualization is also a value-value
visualization. The purpose of this new
visualization is to highlight the repetition in any
sequence of values. X-axis and y-axis here is
identical. If a value in the sequence at index x
is identical to a value at index y (the value
repeats at time x and time y), a dot will be put
at position (x, y) and (y, x).

Figure 10 illustrates a dotplot for method
invocation. The solid purple block indicates
method
sun.io.CharToByteDoubleByte.convSingleByte(c
har, byte[]) is invoked repeatedly. Striped
blocks in the graph also represent repetitive
behavior, but of a sequence of methods instead
of a single method (see zoomed view).

Page 12 of 25

In Figure 10 we used a perfect matching
strategy, which means we match invoked
methods one by one. This matching scheme is
very precise but has a big limitation: it is very
memory consuming and can not be applied to
the whole trace file. To avoid this problem, we
also defined two weaker definitions of equality.

Figure 11 illustrates two configuration boxes for
dotplot visualization. In these two configuration
boxes, we used interval and match threshold.
Interval is used to group certain number of
events together and compare set with set
instead of event with event. Since 100 percent
matching of two groups will be less possible
when interval grows ever larger, we hence
introduce a matching threshold. Furthermore,
we also have two equalizers available:

• Unordered equalizer (the right one).

This equalizer compares two sets and finds out
the number of elements shared between these
two sets. The number is divided by the total
number of elements in two sets in order to get
the matching percent. EVolve decides whether
two sets are matched by comparing the
matching percent with the threshold.

• Strict ordered equalizer (the left one)
This equalizer compares elements in two sets
according to the order they were added into.
Then the number of identical elements is
divided by the size of set. EVolve decides
whether two sets is matched by comparing the
matching percent with the threshold.

Figure 12 shows the result of a dotplot
visualization using an unordered equalizer. Its
configuration is shown in right configuration
box of Figure 11.

Figure 13 Event Visualization

Page 13 of 25

3.6 Event Visualization
Figure 13 is a demonstration of an event
visualization. In an event visualization, each
event is displayed as a block. If a random
painter is used, it is easy to find out patterns
with this visualization. This visualization has
three painters available: RandomPainter,
DefaultPainter and Predictor Painter. The top
window uses PredictorPainter and the bottom
one uses RandomPainter. All these three
painters are shared by this visualization and
other visualizations. This visualization is also a
value-value visualization.

3.7 Correlation Visualization
The correlation visualization, which is shown in
Figure 14, is a reference-reference visualization.
A correlation visualization shows a dot on

coordinate (x, y) when a reference x occurs in
the same event as reference y. Figure 14
illustrates the correlation between methods and
invocation locations. Horizontal rows of dots
indicate that several methods are invoked at
the same location, i.e., the location is a
polymorphic location.

3.8 Relationship Visualization
The relationship visualization (Figure 15) is a
variation of the correlation visualization. There
is no axis in this visualization, two references
are placed in a circle and connected if they
occur in the same event. The number of
occurrence is also printed above the line. In this
example we only displayed pairs of entities
which have more than 100 correlations.

Figure 14 Correlation Visualization

Page 14 of 25

Figure 15 Relationship Visualization

4. New Features
In this project, we put lots of efforts in making
EVolve more user-friendly. This section will
introduce all new features implemented and
explain how they work.

4.1 Enhanced Bar Chart
The old version of bar chart draws a pixel every
time an entity occurs. The bar is actually a line
of pixels. For a large trace this is very memory
consuming. To release pressure on memory, we
revised the bar chart visualization. In the new
scheme, each entity has a real bar and the bar
will be “broken” if it is too long. Number labels
will be put on these broken bars (Figure 16).
During the process of parsing the data trace,
EVolve keeps modifying the length of bars
without actually drawing them on the canvas.

4.2 Multiple Data Sources
One important usage of EVolve is comparing a
program’s behaviors when it is executed with
different parameters. The old version of EVolve
can only load one data trace at a time, although
the user can launch two instances of EVolve, it

is still not very convenient to compare two data
traces. In this project, we added a new feature
that allows EVolve to manipulate not only
multiple traces but also multiple types of data
source.

Figure 17 shows how to manipulate multiple
data sources. There are two menu items under
File menu (left part in Figure 17): Add Data
Source… and Remove Data Source…. The
first menu command allows the user to add a
new data source (without loading trace file) into
EVolve; the second one allows the user to
remove a data source (with or without loaded
trace file) from EVolve. If a new data source is
added successfully, EVolve will automatically
create a Load a xxx Trace menu item (e.g.,
Load a EVolve.DemoSource Trace), which
allows the user add a new xxx data source and
attach a trace file with it. Also, if a new data
source is added correctly, an entry will be
created in the drop-down list on the toolbar
(see right part of Figure 17). This drop-down
list allows the user to switch from one data
source to another.

Page 15 of 25

Figure 16 Revised Bar Chart

Figure 17 Multiple Data Sources

4.3 Predefined Visualization
When we finish analyzing a data trace with a
set of visualizations, we may also want to use
these visualizations to analyze other data
traces. It is very painful to do this with the old
version of EVolve: you have to remember
configurations for every visualization you
created and set them back when a new trace
file is loaded. Now the new feature,
Predefined Visualization, helps the user to

remember and restore these configurations.
With this feature, the user can save everything
on the screen (configurations, window size,
window title etc.) into a XML file. Figure 18
illustrates a sample configuration file segment.

Besides saving visualization configurations, the
user can also choose whether or not to save
filters (refer to 4.8) created, as shown in Figure
19. There is one thing to be noted: if filters are
saved, the configuration file can only be applied

Page 16 of 25

on the current trace file. This is because a filter
is only valid in the data source on which it is
created. A configuration file can be divided into
two categories: self-loadable or not self-
loadable. A self-loadable configuration file
records a trace file name in it. If EVolve loads a
self-loadable file, it will also try to load the trace
file.

When EVolve starts up, it will look in to the
Default Viz Config Path (refer to section 4.12),
parse all configuration files in that path and
create menu items for each configuration under
Visualization menu. All menu items
corresponding to not self-loadable
configurations will be disabled. Clicking a self-
loadable menu will append a new data source
and load a trace on that data source.

Figure 18 Configuration File Segment

Figure 19 Configuration Saving

4.4 Overlapping
It is always a difficult task to find out the
similarity shared by two visualizations.
Correlations between two visualizations are
most obvious when visualizations are
overlapped. Common information then appears
in the same physical location, and distinct

information appears in different locations; this
can be quite informative for quick comparisons.
It, for example, allows for rather easy
identification of related “phases” in execution –
the startup phase common to each program is
certainly quite obvious.

Page 17 of 25

EVolve provides a tool to help the user overlap
visualizations. In order to make overlapping to
be meaningful, x-axis and y-axis of both
visualizations must be unified. Two references
axes are unified by building a new reference
axis that contains the union of the two
overlapping visualizations. Figure 20 is a sample
overlapped visualization.

The top left window is created from the
HelloWorld trace, the top right one is created

from the javac trace. The bottom left window
shows the overlapped result. The color scheme
of an overlap is determined by each
participating visualization: HelloWorld in red,
javac in blue, with overlap in predefined purple.
All Value-Reference visualizations can be
overlapped. Note that the reference axis is
sorted in lexical order, since the temporal
ordering of a union from two different programs
is ill-defined.

Figure 20 Overlapping Visualization

Figure 21 Phase Detector Toolbar

4.5 Generating Visualization Automatically
Generating visualizations for a set of data
traces is very time consuming, EVolve has a
tool for the user to create visualizations in
batch. To use this tool, a configuration file must
be prepared and field PathForResult (refer to
4.12) must be set.

4.6 Phase Detector
The Phase detector is a new tool we added to
EVolve in this project. With this tool we can
detect phases in all value-reference
visualizations. Three different phase detectors
are available (shown in Figure 21):

Page 18 of 25

• Hotspot Detector. This detector has
three parameters: noise tolerance,
threshold and sample. The detector
compares two succeeding n intervals, if the
matching percent is higher than the
threshold then the detector considers we
are in a steady phase, otherwise in a
changing phase. If the detecting result
changes from a steady phase into a
changing phase, or vice versa, a phase line
is created. Noise tolerance is used to
remove noise in the detecting process. For
example, if the detector finds the following
sequence: steady phase – changing phase –
steady phase, and the noise tolerance is
set to 2, then no phase line will be drawn.

• Phase Entity Trigger. To use this
detector, the user must first make a
selection on the visualization and then
define a phase trigger entity, for example, a
call to the method main(). The detector
then checks every interval, if the trigger
entity ever happens, a phase line is created.

• Phase Entity Set. Similar to Phase
Entity Trigger, the user must make a
selection first to create an entity set. The
detector compares every interval with the
entity set, for example, any calls to methods
for unzipping class files, to designate class
loading phases. If matching percent is

higher than the threshold, a phase line is
created.

Besides the phase detector, EVolve also has a
phase clipboard. With the clipboard, the user
can copy a phase detection result from one
visualization and paste it to another, even if two
visualizations have a different time
measurement unit (as long as they apply to the
same data source). Figure 22 shows an
example of the phase clipboard. Numbers
above phase lines are interval indices. This is
useful, for example, to watch intense object
allocation phases to their method calling
counterparts. For example in Figure 22, the
upper visualization plots method invocation (x-
axis: bytecode, y-axis: methods invoked) and
lower visualization plots object allocation (x-
axis: memory allocated, y-axis: allocating
methods). The phases in memory allocation
hotspot are copied from the method invocation
hotspot. As shown in the figure, one third
memory is allocated in phase 0, while 80
percents methods are invoked during this
phase. This means only a few methods are
memory intensive (methods that are invoked in
phase 3).

Page 19 of 25

Figure 22 Phase Detection Result

4.7 Visualization Cloning
While practicing with EVolve, we found that
duplicating a visualization and then changing its
configuration a little is very useful. To serve this
purpose, we add the Cloning feature into
EVolve. Right clicking on the visualization to be
cloned and choosing Clone will duplicate this
visualization (shown in Figure 23).

Figure 23 Cloning Visualization

4.8 Manipulating Selections
EVolve enables the user to make selections,
these selections can then be used to create
filters. In this project, making selections is
enhanced.

First, options are offered to help the user define
selection more precisely. For example, in Figure
24 two options are available: Time Frame and
Occurred Entities. The first option defines the
time duration of selection; if not checked, the
whole trace is selected. The second option tells
EVolve only select entities occurred in the
selection box; if not checked all entities are
selected. Note that different types of
visualization could have different selection
options.

After a selection is made, we can further refine
or manipulate the selection. For example, using
regular expressions as criteria to remove or
keep some entities, changing time frame,
cloning selection and so on (Figure 25).

Page 20 of 25

4.9 Zooming
When a trace file grows larger, it becomes
difficult to examine detail information. We
create a zooming tool (fisheye view) to help the
user. Holding down ALT key and moving mouse
around can activate the zooming tool. Zooming
window enlarges the 20 x 20 area under the
mouse pointer to allow the user to see the fine-
grained structure of the graph and to point to a
specific dot in order to see the reference name.
This feature is available to all types of
visualizations. Figure 26 demonstrates a
zooming example.

4.10 Visualization Restoring
By default, all visualization is resized to fit the
window size. Although zooming tool helps the
user a lot, it does not work well when the trace
becomes very huge. The reason is that in order
to fit the visualization to the window, AWT has
to map multiple pixels into one pixel when the
real size of visualization is large. When this is
the case, restoring visualizations becomes more
helpful. Restoring visualizations allows the user
to restore the visualization on x-axis or y-axis or
both and scroll the restored result, mapping

every data point to one pixel. Figure 27
illustrates an example of restoring x and y axis.
The visualization on the top left is resized to fit
the window’s size; the y-axis of the top right
visualization is restored to display one entity
per pixel; the x-axis of the bottom left
visualization is restored to display one interval
per pixel.

4.11 Source Code Browsing
Although EVolve offers mouseMove to help the
user find out entity’s name, it is still not enough
to understand programs sometimes. Browsing
source code might become a solution.

Figure 28 is an example of browsing source
code. Right clicking on the entity and choosing
Browse Source Code will activate this function.
Note that in order to make this function work
correctly, the user must set appropriate values
to source code path and additional class path.
Section 4.12 will talk about these in more
detail.

Figure 24 Options for Selection

Page 21 of 25

Figure 25 Manipulating Selection

Figure 26 Zoomed View

Page 22 of 25

Figure 27 Restoring Axes

Figure 28 Source Code Browsing

Page 23 of 25

Figure 29 Saving Settings

4.12 Saving EVolve Settings
Figure 29 shows a setting saving dialog, in this
dialog the user is allows to set frequently used
paths in EVolve. Totally there are five paths:

• Default Data Path: By default, EVolve
searches this path for trace files.

• Default Viz Result Path: EVolve uses this
path to store visualization files created in
batch (Section 4.5)

• Default Viz Config Path: By default, EVolve
searches this path for configuration files.

• Additional Class Path: When browsing
source code, EVolve searches these paths
for class files and parses them in order to
get source file names.

• Source File Path: After EVolve gets source
file names, it will search these paths and try
to open those source files.

5. Related Work
Quite a lot dynamic data visualization tools,
such as Jinsight[1,6,7], JProbe[2] and
OptimizeIt[3], are designed to help
programmers optimize their programs by
visualizing the runtime usage of system
resources (CPU time, memory usage, etc).
Some dynamic visualization tools, such as
Jinsight and TARANTULA, are even used on
program debugging. These tools, however, are
not designed to be extensible. Normally they
use specific trace collecting techniques and
have a fixed visualization library.

An exception is BLOOM[8], it is designed to be
extensible. Unlike EVolve, which provides
extensibility through simplified framework,
BLOOM’s extensibility is achieved by providing a

visualization back-end supporting a variety of
visualization strategies.

Visualization tools are also used on reverse
engineering and algorithm understanding. For
example, Dotplot[4] is used to explore self-
similarity of code, SHriMP[10] is used on
understanding software architecture and
hierarchy by parsing and visualizing source
code.

Although in software visualization, extensibility
is not often seen, quite a lot of information
visualization systems are designed to be
extensible since they are used to solve general-
purpose problems. Visage[18], for example,
supports and coordinates multiple visualizations
and analysis tools in data-intensive domain.

6. Contributions
We redesigned and extended the EVolve
program, originally implemented of Qin
Wang[17] in the following ways:

• In order to make EVolve more extensible
and more efficient in code reuse, we revised
the hierarchy of visualization library. In the
new hierarchy, all 2-D visualizations are
divided into three categories according to
how x and y axis are treated.

• We also created a set of painters and apply
them on old visualizations. Applying painters
enables these old visualizations to convey
more information. We also generated a set
of new visualizations (Thread hotspot, Stack
hotspot, Dotplot, Stack, Event and
Relationship) and added them to the library.

• The user interface was enhanced greatly.
We generated a couple of new features to

Page 24 of 25

help the user study the trace file more
closely and more clearly, for example,
zooming tool and axes restoring give the
user a fine-grained view of the visualization,
predefined visualization enables the user to
reproduce experiment settings easily.

• We added a brand-new phase detector,
which is used to detect phases in hotspot
visualizations. In addition, we provided
several little tools:

 Entity trigger, which helps the user to
locate specific entity.

 Entity set, which helps user to find
execution patterns that consists of a set
of entities

 Phase clipboard, which enables the user
to copy and paste phases between
visualizations. This kind of operation
enables user to set up cross references
between visualizations.

• When I worked as an intern at Nokia, I
enabled EVolve to parse Nokia’s data traces
by implementing a new data source. I also
created several visualizations by extending
Hotspot and Value-Value visualization to
help the user at Nokia understand their data
trace. Unfortunately, I cannot give more
details, but this demonstrates the
extendibility of EVolve.

7. Conclusion
In this report, we present an extensible
software visualization framework for visualizing
the runtime behavior of Java programs. EVolve
is divided into three parts: the data source, the
core platform and the visualization. Except the
core platform, both data source and
visualization can be added independently and
easily.

To help the user analyze a trace file, we
provided a set of visualizations and integrated
these into EVolve platform. A new visualization
hierarchy is developed to categorize these
visualizations more reasonably.

We also describe a set of new features in this
report. These features include some user

interface enhancements (zooming window,
load/save predefined visualization, etc.) and
small tools (phase detector, batch runner, etc.).

8. Future Work
Although the current version of EVolve is more
powerful than its predecessor, it still has a long
way to go. Here are some possible future
works:

 The current phase detector is pretty naive,
a more sophisticate phase detection
algorithm is required to get better results.

 Now the phase detector can only be applied
on hotspot visualizations, it may be useful
to enable phase detector for other type of
visualizations.

 EVolve has memory leak problem. For
example, after generating a couple of
visualizations for a large data trace, EVolve
may throw OutOfMemory exception.

 Relationship visualization also needs to be
revised, a possible scheme may be
introducing “gravity” between two
references according to the correlation
between them.

 A new user of EVolve may have trouble in
choosing correct visualizations to analyze a
data trace. It may be necessary to create a
“wizard” to guide the user.

 An on-line help system may be very helpful
for a new user. For example, when a new
user is using a hotspot visualization, telling
him how to extract useful information (i.e.
where is the hotspot and what does the
hotspot area signify) will be very nice.

 All current built-in visualizations are 2-D,
implementing 3-D visualizations might be
useful.

9. References
[1] Jinsight. http://www.research.ibm.com/jinsight

[2] JProbe. http://www.sitraka.com/software/jprobe

Page 25 of 25

[3] Optimizeit. http://www.optimizeit.com

[4] Kenneth Ward Curch and Jonathan Issac
Helfman. Dotplot: a program for exploring self-
similarity in millions of lines of text and code. In
Porceedings of Journal of Computational and
gGraphical Statistics, pages 2:153-174, 1993

[5] Michele Lanza and Stephane Ducasse. A
categorization of classes based on the visualization
of their internal structure: the class blueprint. In
Proceedings of Conference on Object-Oriented
Programming Systems, Languages and Applications(
OOPSLA’01), PAGES 300-311,2001

[6] Wim De Pauw, Erik Jensen, Nick Mitchell, Gary
Sevitsky, John Vlissides, and Jeaha Yang. Visualizing
the execution of Java programs. International
Seminar, Dagstuhl Castle, Germany, May 20-25,
2001. In Lecture Notes in Computer Science Vol.
2269, pages 151-162. Springer Verlag, 2002

[7] Wim De Pauw, Richard Helm, Doug Kimelman
and John Vlissides. Visualizing the behavior of
object-oriented systems. In Proceedings of the
Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA’93),
pages 326-337, 1993

[8] Steven P.Reiss. An overview of BLOOM. In
Proceedings of the 2001 ACM SIGPLAN – SIGSOFT
Workshop on Program Analysis for Software Tools
and Engineering (PASTE’01), pages 2-5, 2001

[9] Steven F. Roth, Peter Lucas, Jeffrey A. Senn,
Cristina C. Gomberg, Michael B. Burks, Philip J.
Stroffolino, John A. Kolojejchick, and Carolyn
Dunmire. Visage: Auser interface environment for
exploring information. In Proceeding of Information
Visualization, IEEE, pages 3-12, 1996

[10] Margaret-Anne D. Storey and Hausi A. Muller.
Manipulating and documenting software Structures
using SHriMP views. In Proceedings of International

Conference on Software Maintenance, pages 275-
285, 1995

[11] Margaret-Anne D. Storey, Kenny Wong, an
Hausi A. Muller. Rigi: A visualization environment for
reverse engineering. In Proceedings of the
International Conference on Software Engineering
(ICSE’97), PAGES 606-607, 1997

[12] Margaret–Anne D. Storey, K.Wong, F.D.
Fracchia, H.A. MÜller. On Integrating Visualization
Techniques for Effective Software Exploration

[13] Wim De Pauw, Nick Mitchell, Martin Robillard,
Gary Sevitsky, Harini Srinivasan. Drive-by Analysis of
Running Programs

[14] Win De Pauw, David Lorenz, John Vlissides,
Mark Wegman. Execution Patterns in Object-
Oriented Visualization

[15] Steven P. Reiss. Bee/Hive: A Software
Visualization Back End

[16] Bruno Dufour, Karel Driesen, Laurie Hendren,
and Clark Verbrugge. Dynamic metrics for compiler
developers. Sable Technical Report SABLE-TR-2002-
11, McGill University, School of Computer Science

[17] Qin Wang, Rhodes Brown, Karel Driesen, Laurie
Hendren, and Clark Verbrugge. EVolve: An
Extensible Software Visualization Framework. Sable
Technical Report SABLE-TR-2002-06, McGill
University, School of Computer Science

[18] Steven F. Roth, Peter Lucas, Jeffrey A. Senn,
Cristina C. Gomberg, Michael B. Burks, Philip J.
Stroffolino, John A. Kolojejchick, and Carolyn
Dunmire. Visage: A user interface environment for
exploring information. In Proceedings of Information
Visualization, IEEE, pages 3-12, 1996.

