
JIL: an Extensible Intermediate Language

David Eng

Sable Research Group
McGill University, Montreal

flynn@sable.mcgill.ca

ABSTRACT
The Java Intermediate Language (JIL) is a subset of XML and
SGML described in this document. Its goal is to provide an
intermediate representation of Java source code suitable for
machine use. JIL benefits from the features of XML, such as
extensibility and portability, while providing a common ground
for software tools. The following document discusses the design
issues and overall framework for such a language, including a
description of all fundamental elements.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – classes and objects, constraints, data types and
structures, frameworks.

General Terms
Design, Experimentation, Standardization, Languages.

Keywords
Combining static and dynamic data, intermediate languages,
visualization, profiling, software understanding.

1. INTRODUCTION
Java Intermediate Language describes a restricted form of XML,
the Extensible Markup Language [1]. It describes a class of
documents which represent an intermediate representation of Java
source code [3], suitable for use somewhere between the
programmer and the executing operating system.
JIL documents are constructed from markup tags which contain
textual data. Markup tags encode the documents storage layout
and logical structure, applying constraints on a standard XML
document. Every JIL document is a compliant XML document,
and the W3C recommendation for XML 1.0 [1] can be used as a
formal reference for the underlying syntax and document
requirements.

1.1 Origin and Goals
JIL was developed as an alternate representation of an
intermediate language (IL) used in an optimizing Java compiler.
The extensible nature of the format allowed the source code to be
annotated with analysis results and even runtime data. This
representation provided a common format for interoperability,
bridging the gaps between existing tools.
The design goals for JIL are:

1. JIL shall be strictly defined, but easily extensible.
2. JIL shall be supported across platforms and networks.

3. JIL shall be compatible with XML, SGML and related
tools.

4. JIL shall be easy to parse and generate.
These goals do not assume a particular use for JIL, but suggest an
open format that could be used in many different environments.
The base language and extensions presented in this document are
suited towards code understanding, optimization, and profiling.

2. OVERVIEW
The following sections will describe the design of the Java
Intermediate Language from several different, but intersecting
points of view.

2.1 JIL as a Java IL
Intermediate languages are widely used to provide an appropriate
representation of Java for a specific process or analysis. The
design of these kinds of languages is most commonly based on the
application, either by convenience or in order to optimize the
format for that particular task. This results in an abundance of
languages for each individual task with subtly different semantics.
JIL was designed to encapsulate much of the information
provided by these intermediate languages, making it suitable for
various applications.
In order to understand the types of data associated with an
intermediate language we will examine the lifetime of Java source
code.

[MyApp.java] => [javac] => [MyApp.class]

Given a source file, the Java compiler creates Java bytecode in the
form of a class file. Once compiled into bytecode, the source has
taken a platform independent form which can be executed by any
Java Virtual Machine (JVM). Java bytecode is one of the first
Java ILs, as it is the final representation of the source code before
it is passed to the JVM interpreter and executed.

[MyApp.class] => [JVM] => [MyApp]

Optimizing compilers can operate directly on these class files,
making them the initial and target representation for such
applications. JIL is not intended to replace Java bytecode, but to
aide in its analysis, optimization, transformation, and
visualization.

[MyApp.class] <=> [Optimizing Compiler]

Within the compiler, different intermediate representations can be
used, each defining its own semantics but describing the same
source object. JIL is designed to encapsulate each representation,
along with any associated data extracted by the compiler.

2.1.1 Base Intermediate Language Constructs
As a common IL, JIL contains many code elements which are
shared across ILs targeting Java bytecode. These elements form
the framework of a class, as they provide a structure upon which
extensions are applied. Every JIL document contains this
framework of base elements, which is specified using a Document
Type Definition (DTD).
The DTD specification enforces which elements and attributes are
included in a JIL document, what they are allowed to contain, as
well as their logical structure. Given a DTD, a validating parser
can identify any inconsistencies in a JIL document where it does
not follow the specification. These errors can result in the
document being rejected by the parser, or in some cases they can
be repaired or ignored. The DTD follows the premise that
anything not specified is forbidden, enforcing constraints on what
XML documents can be considered a valid JIL document. By
using DTDs for validation, JIL-aware applications can ensure that
they are generating or parsing documents that will be recognized
and understood by other applications.

2.1.2 Language Extensions
One of the key features of JIL is its extensibility. JIL allows any
number of tools to annotate base elements with both static and
dynamic information. This information can come in any form,
such as analysis results or metadata, exposing characteristics of
code elements which would normally be hidden.
Language extensions are specified using additional DTDs which
are included by the base definition. An application acting as a JIL
generator must produce a documents which comply to the base
DTD and any extension DTDs that it supports. The most common
method of enforcing this requirement is by passing any documents
to a simple DTD validator once they are generated. DTD provide
are a fast and robust grammar which make extensions easy to
specify.
Generators self describe their extensions by adding an identity
element to the document’s header. Identity elements allow a
generator to recognize its own work by logging the command or
action which resulted in the added extensions. The document
header provides a history of all contributing generators in order to
allow a document consumer to identify what extensions to expect.

2.1.3 Static IL Extensions
A typical extension found in a JIL document might be the live
variables associated with a statement of IL. This is static data
which can be collected at compile-time and associated directly to
the code. Using JIL this extension would be expressed as
annotations applied to each statement, providing the list of
variables which are live coming in and out of that statement.
A JIL document augmented with such static data now provides a
consumer with all the content of the original IL along with the
results of a static intra-procedural analysis. This kind of
information can provide insight to a developer or subsequent JIL
consumer working with either the original source code or the
encapsulated IL.
An ideal generator for static JIL extensions is the SOOT
framework for optimizing Java bytecode [8]. Support for JIL was
recently added to SOOT as an output format. SOOT is able to
perform various analyses directly to Java bytecode, and the

extended data it persists in its JIL output is a rendering of data it
uses internally to perform optimizations and transformations.
This data aides the debugging and development of new
optimizations and analyses.

2.1.4 Language Extensions
Dynamic data describes the kinds of information which can vary
for the same code in different execution or processing
environments. Dynamic IL extensions are typically collected at
runtime in order to benchmark or profile code for a complete
description of its behavior. This kind of data is rarely associated
with low level code elements allowing programmers to easily
ignore the runtime behavior of their code. Investigation into such
details is usually triggered only when searching for a bug or
optimization.
The Sable Toolkit for Object-Oriented Profiling (STOOP) is a
typical source of dynamic data [2]. STOOP provides a framework
for building custom profilers which can collect runtime data on
almost any aspect of programs written in Java. This data is
collected by profiling agents and then passed through an event
pipe and on to a visualizer. We provide a backend which can
consume data events from the pipe and produce compliant JIL
with profiling extensions.
Benchmarking data is another runtime characteristic of code
which can be stored in JIL documents. Data can be associated
with any element at any level in the hierarchy, making JIL a
comprehensive benchmarking format. The kinds of benchmarking
information can vary from general timings to hotspot counters.
JIL provides a format where this information can be associated
directly to the code elements.

2.2 JIL as XML
JIL exploits many of the natural features of XML. The use of
XML tags in JIL is very straightforward since JIL is simply a well
formed XML document. As an XML document, JIL takes
advantage of the extensibility and hierarchical structure of XML.
The following sections will describe JIL as an XML application

2.2.1 Features
XML is a universal language for describing a structured format
which is widely used in many applications. JIL exploits many of
the features of XML:

• JIL is human readable and editable using text editor, which

aides debugging.
• JIL is easy to generate and parse, encouraging the

development of tools and good reliability and performance.
• JIL is modular and manageable through schemas and basic

processing.
• JIL is portable across languages, platforms, and networks.

XML is also license-free, making it a widely used format with
support in many popular packages:

• JIL can be browsed on a client using Internet Explorer,

Netscape, and Opera.
• JIL can be served as a native database using Microsoft SQL

Server 2000 or Oracle 8i.

• Programming APIs are available in C, C++, Java, Perl,
Python, COM etc.

XML also has some disadvantages which it passes on to JIL. For
example, JIL is extremely verbose, and a corresponding JIL
document will typically be much larger than the source code it
resulted from. However, the cost of disk space and the current
state of compression algorithms for both storage and network
transfer trivialize this disadvantage. XML is not always the best
choice for an application, but in the case of JIL it’s features cover
most of the design goals.

2.2.2 Structure
JIL exploits the natural hierarchy and nesting of XML for
describing the structure of code elements and extensions. By
nesting elements according to a specified framework they can be
annotated with extensions while preserving the underlying
structure. This allows backwards compatibility with JIL
consumers which are unaware of the extensions or how to
interpret them. Any unknown extensions can be ignored or
handled separately.

2.2.3 Markup
JIL is designed to provide a scalable framework where an
arbitrary number of documents can be merged and processed with
good performance. Attributes are used where possible to annotate
and describe objects, since they perform better than enclosing the
data between tags when processed by XML parsers. The
properties of a programming element, such as the name of a field
or the type of a local, are stored within the attributes of a tag.
Attributes can also be weakly typed using a DTD, limiting them to
a set of keywords or a name token.

<local name=”MyDouble” type=”double” />

Data is enclosed between tags when it contains special characters
or requires enumeration. Also, if there might be more than one
property of the same name then this style of markup is used.

<jimple>
<![CDATA[$r0 = $r1 + $r2;]]>

</jimple>

2.2.4 Enumerations
Enumerations are used widely in JIL to group and give order to
lists of programming elements. An optional attribute count can be
used to mark the number of nodes to expect in the enumeration.
A JIL consumer can use this number to decide if, when, and how
to process the nested nodes. Elements within an enumeration
require unique identifiers, indicated by the attribute id.

<modifiers count=”2”>
<modifier id=”0” name=”public” />
<modifier id=”1” name=”abstract” />

</modifiers>

Note that these attributes are omitted from examples in this
document in order to save space and highlight the other markup
being demonstrated.

2.2.5 Extensions
JIL is naturally extensible, allowing any element to be annotated
with additional data. These annotations are associated and
defined by a generator, so that a compliant JIL consumer which
supports these annotations knows what to expect when parsing the
document. A JIL generator will typically be accompanied by a
corresponding DTD. Supported extensions are then defined in
this additional DTD which is referenced by the base DTD when a
document is validated.

<statement>
<stoop_statement>

…
</stoop_statement>

</statement>

Extension elements are typically named by taking the extended
element’s name preceded by the extending generator and an
underscore. Generators can extend any element defined in the
base DTD, including attributes of existing elements.

2.3 JIL as Storage
JIL provides physical and logical storage for both static and
dynamic data. The following sections will discuss the creation,
management, and processing of JIL as a source of data.

2.3.1 Creating JIL
JIL requires no special encoding and can be created by hand using
a common text editor. This makes debugging JIL documents and
prototyping new elements or extensions quick and easy. This also
makes JIL generation easy to implement using standard libraries.
Applications which generate JIL documents can also do so using
some of the many programming APIs available for every major
language. These APIs provide a quick and easy way to generate
compliant JIL without having to worry about implementation
details.
Generated documents should be validated using the JIL Document
Type Definition. This ensures that the documents contain all
required elements, as well as identifying any unsupported
elements or attributes. DTD validation helps debug JIL
generation, and is also supported programmatically in most XML
APIs. Support has been recently added to SOOT to support JIL
generation, making it the first bytecode to JIL converter which
complies with the JIL DTD.

2.3.2 Managing Multiple Documents
Java applications typically consist of several classes organized
into a hierarchy. This object-oriented design is mimicked by the
organization of JIL documents. However multiple JIL documents
can exist for a single class file by including different extensions in
each. The ability to include dynamic data also means that even
though the same extensions are used, they can contain different
data resulting from several runtime environments or cases.
JIL documents self-describe the extensions they contain using
header markup which is specified in the base JIL definition. This
markup comes in the form of a history list of all contributing
generators. Each generator which has contributed markup to the
JIL document signs the document with its own identity tag which
indicates a time stamp as well as the action or command it
performed.

2.3.3 JIL as a Data Source
XML has been used as a data source in many different scenarios
in the past few years. As a truly portable data source it glues
together many different complex systems by allowing data to be
quickly and reliably queried much like a common relational
database.
Several programming models exist for consuming XML data such
as JIL, some which are optimized to save memory while others are
suited towards repeated processing of random elements.
Developers will have a rich library of APIs and tools to choose
from, which will continue to grow.

3. DOCUMENTS
A JIL document represents a single source code object, such as a
Java class. Each document begins with some header tags for
XML compliance and self-description, and can only contain those
elements defined in the JIL Document Type Definition including
any supported extensions.

3.1 JIL as a Java Class
The following sections will describe those elements included in a
JIL document which do not directly represent a characteristic of
source code or an intermediate language.

3.1.1 Naming
There is no requirement placed on the naming of JIL documents,
however they are typically associated with a single Java class.
The relation between a JIL document and the source object is
represented internally by the class name, allowing multiple JIL
documents to refer to the same class file.

3.1.2 Headers
JIL documents are textual, but contain header information in order
to self-describe the content within. Header tags come at the
beginning of the document and exist at the root level. They
uniquely identify a JIL document, while associating it with any
related documents. Separate JIL documents might refer to the
same Java source code, while containing different types or
versions of annotated data. These annotations must be recognized
in order to be accurately parsed and understood.

3.1.3 XML Declaration
Since every XIL document is a valid XML document, it must
begin with appropriate XML declaration tag. Refer to the XML
specification for extended syntax information.

<?xml version”1.0” ?>

3.1.4 JIL Declaration
JIL documents will have a header tag at the root level in order to
indicate the version of the JIL contained within. The version
information indicates to a consumer which version of JIL it must
be prepared to parse. This version corresponds to the version of
the validating DTD.

<jil version=”1.0” />

3.1.5 Document History
JIL documents are associated with a single class, but they may be
created from multiple sources throughout their lifetime. One JIL
generator might create a JIL document while another might extend
the document with additional code characteristics of which the
original generator had no understanding.
The history element indicates which applications were was used to
create the JIL document. It’s an enumeration of identity elements
which self-describe a generator and the action it took when
contributing to the JIL document. Typical information found in
an identity node would include a time stamp of when the
operation was performed and the command line which triggered
it.

<history>
<soot version=”1.2.2” cmd=”–X MyClass”>
<stoop version=”1.0” mode=”field-accesses”>

</history>

3.2 Classes
JIL documents contain a single class tag at the root level. All
source code characteristics are represented with JIL tags contained
within the class tag. Nested classes are not supported, and should
be handled using separate JIL documents.
The class name is stored in the name attribute. If this class has a
parent in the class hierarchy, it can be indicated in the extends
attribute. Currently JIL mimics Java and supports only single
inheritance.

<class name=”MyClass” extends=”MyParent” />

3.2.1 Class Modifiers
Class modifiers indicate the accessibility or hierarchical attributes
of the class. JIL supports any number of modifiers, but only
keywords which are used as modifiers in Java. Note that some
other JIL elements also use the modifiers tag.

<modifiers>
<modifier name=”public” />
<modifier name=”final” />

</modifiers>

Typical class modifiers include public, final, and abstract. For a
complete list of accepted modifiers see the base JIL DTD.

3.2.2 Interfaces
If the class implements one or more interfaces this is indicated
using the interfaces enumeration.

<interfaces>
<interface name=”my.package.interface” />

</interfaces>

3.2.3 Extensions
Class extensions are defined using the standard notation.

<class>
<generator_class>
…
</generator_class>

</class>

Java attributes are planned to be included as a class extension.

3.3 Fields
Member variables which are global to the entire class are
contained within the fields tag. Each field is enumerated and
assigned a unique identifier, a name, and a type.

<fields>
<field name=”MyDouble” type=”double” />
<field name=”MyLong” type=”long” />

</field>

3.3.1 Field Modifiers
Each field can indicate its accessibility and behavior by including
a modifiers tag within the field tag.

<field>
<modifiers>
<modifier name=”private” />
<modifier name=”static” />

</modifiers>
</field>

Typical field modifiers include public, private, protected, static,
final, transient, and volatile. A complete list of accepted
modifiers can be found in the base JIL DTD.

3.3.2 Extensions
Field extensions apply to each field, and are typically partnered
with an associated extension to statements.

<field>
<generator_field>
…
<generator_field>

</field>

JIL documents generated by the JIL backend for STOOP support
a profiling mode which records field reads and writes. These
counts, and any other profiling data provided by STOOP which
applies to each field, are attached to each field through the use of
a stoop_field tag.

3.4 Methods
Methods are enumerated within the methods tag. Each method
tag indicates the method’s name and return type.

<methods>
<method name=”main” returntype=”void” />

</methods>

3.4.1 Method Modifiers
Method accessibility and behavior is described using an
enumeration of modifiers. Usage is similar to the class and field
modifiers.

<method …>
<modifiers>
<modifier name=”native” />
<modifier name=”synchronized” />

</modifiers>
</method>

3.4.2 Parameters
Parameters are enumerated within the parameters tag for each
method.

<parameters>
<parameter name=”MyString” type=”String” />
<parameter name=”MyDouble” type=”double” />

</parameters>

3.4.3 Extensions
Method extensions use the standard notation, but they can also
exist for child nodes as well.

<method>
<generator_method>
…
</generator_method>

</method>

SOOT supports parameter extensions which indicate the
statements where the associated parameter was used or defined.
This static data is associated to another element through the
statement line numbers, however this association is defined
internally within the generators and consumers supporting this
extension.

<parameter>
<soot_parameter uses=”1” defines=”1”>
<definition line=”1” />
<use line=”2” />

</soot_parameter>
</parameter>

3.5 Locals
Variables which are local to each method are represented by a
locals enumeration tag, which is a child of each method tag.

<locals>
<local name=”MyLocal” />

</locals>

3.5.1 Locals by Type
Local variables are also stored by type. This is a grouping which
could be computed by a JIL consumer, but by storing this basic
grouping within the JIL it can simplify the implementation of a
consumer.

<types>
<type name=”MyType”>
<local name=”MyLocal” />

</type>
</types>

3.5.2 Extensions
Extensions to locals are stored using the standard notation.

<local>
<generator_local>
…
</generator_local>

</local>

The JIL generated by SOOT contains local extensions which
indicate the statement where each local was used or defined, much
like it does for fields.

<local>
<soot_local>
<definition line=”1” />
<use line=”2” />

</soot_local>
</local>

3.6 Labels
Labels are used in Java bytecode to indicate basic blocks of code
which can be used as targets for branch operations. Every
statement must be associated to a label, and in JIL this association
is stored in each statement.

<labels>
<label name=”MyLabel” />

</labels>

3.7 Statements
Statements represent the actual lines of code stored in an
intermediate language.

<statements>
<statement label=”Mylabel” />

</statements>

Bytecode statements would include an operation and any
associated parameters. For other intermediate languages,
statements can range in complexity and might contain special
characters. The natural representation of a statement is kept in its
own tag as content.

<statement label=”MyLabel”>
<jimple>
<![CDATA[$r0 = $r1 + $r2;]]>

</jimple>
</statement>

3.7.1 Extensions
Statement extensions associate date to each individual statement.

<statement>
<generator_statement>
…
</generator_statement>

</statement>

SOOT extends each statement with annotations, some of which
relate to other elements such as fields or locals. Analysis results
which apply to each statement are also stored as statement
extensions, such as which variables are live coming in and out of
a given statement.

<statement>
<soot_statement>
<livevariables incount=”1” outcount=”1”>
<in local=”MyLocal” />
<out local=”MyLocal” />

</livevariables>
</soot_statement>

</statement>

3.8 Exceptions
Exceptions are also represented in JIL as an enumeration
contained within each method. Exceptions reference three labels
which indicate where the specified exception catching begins,

ends and which handler represents the location of the exception
handler.

<exceptions>
<exception type=”MyException”>
<begin label=”MyBeginLabel” />
<end label=”MyEndLabel” />
<handler label=”MyHandlerLabel” />

</exception>
</exceptions>

4. DISCUSSION
The following sections discuss the language presented in this
paper, with respect to the original design goals, as well as related
and future work.

4.1 Related Work
Much work has been done towards the design of intermediate
languages, however the design goals of these languages are
usually driven by a particular application.

4.1.1 Language Extensions
Compilers typically use intermediate languages internally as a
specialized format for efficient processing. Typed intermediate
languages have received much interest for their ability to preserve
type information throughout the compilation process [5], [6].
Compilers can use this information to guide optimizations and
generate strongly typed code. The cost of processing type
information at such a low-level can be offset by caching it within
an extensible language.

4.1.2 Interoperability
Runtime systems which use a common IL have also been able to
provide type-safe JIT compilation, as well as providing language
and platform independence [7]. Some ILs are borrowing
language features directly from high-level programming languages
such as Java, so that they can be executed and debugged using
commonly available tools [4]. JIL takes a different approach by
not assuming anything about the tools which produce and
consume it. As a result, JIL provides a format which is able to
encapsulate many of features found in typical ILs.

4.2 Future Work
JIL represents an effort to consolidate the work that goes into the
design, generation, and processing of intermediate languages for
Java. This work is ongoing, and new analyses and
transformations are constantly being developed. These analyses
can produce new information about source code which will be
beyond the scope of current ILs. JIL provides a language which
can be extended in parallel with tool development, so that data
can be quickly visualized and shared with existing tools. With the
proper support, JIL can help developers fine tune their code and
tools with an expandable, object-oriented framework.

4.3 Availability
The proposed specification of JIL and related extensions are
available online as Document Type Definitions at this web site:

http://www.sable.mcgill.ca/~flynn/jil/

5. REFERENCES
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.

Extensible Markup Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/REC-xml.

[2] R. Brown, K. Driesen, D. Eng, L. Hendren, J. Jorgensen, C.
Verbrugge, and Q. Wing. STOOP: The Sable Toolkit for
Object-Oriented Profiling. McGill University, Technical
Report SABLE-2001-2, 2001.

[3] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1997.

[4] J.C. Hardwick and J. Sipelstein. Java as an Intermediate
Language. Carnegie Mellon University, Technical Report
CMU-CS-96-161, 1996.

[5] S. L. P. Jones and E. Meijer. Henk: A typed intermediate
language. TIC 1997.

[6] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-
based typed assembly language. ACM Workshop on Types
in Compilation, 1998.

[7] D. Syme. ILX: Extending the .NET Common IL for
Functional Language Interoperability. BABEL 2001.

[8] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E.
Gagnon, and P. Co. SOOT: a Java bytecode optimization
framework. CASCON 1999.

