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Abstract

MATLAB is a popular dynamic array-based language commonly used within the scien-

tific community. MATLAB’s widespread use can be attributed to its large library of built-in

functions, and its high-level syntax, which requires no type declarations, making it ideal for

fast prototyping. This thesis presents extensions to ASPECTMATLAB, an aspect oriented

compiler developed for MATLAB.

ASPECTMATLAB was created with the intent of bringing aspect oriented programming

to MATLAB, and targeted features such as array accesses and loops, which are the core

computations in scientific programs. This thesis presents ASPECTMATLAB++. ASPECT-

MATLAB++ extends ASPECTMATLAB by focusing on a different set of challenges, seeking

to make aspect-oriented programming easier to use and providing mechanisms to handle

a variety of the problems that occur in a dynamically typed language. To this end, we in-

troduce pattern matching on annotations and types of variables, as well as new manners of

exposing context.

We also provide several use-cases of these features in the form of general-use aspects

which focus on solving issues that arise from use of dynamically-typed languages. These

include aspects which perform type and unit checking, profiling aspects, as well as as-

pects which perform basic loop optimizations. This thesis also details several performance

enhancements to the ASPECTMATLAB compiler, which result in a speed improvement of

about 10 times.
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Résumé

MATLAB est une langage de programmation dynamique utilisée partout dans la com-

munauté scientifique. L’utilisation répandu de MATLAB peut être attribué à sa grande bi-

bliothèque de fonctions incorporées et sa syntaxe de haut niveau, qui n’exige aucune décla-

ration de type, le faisant idéal pour prototypage rapide. Cette thèse présente des extensions

à ASPECTMATLAB, un compilateur orientée à l’aspect développé pour MATLAB.

ASPECTMATLAB a été créé avec l’intention d’amener programmation orientée à l’as-

pect à MATLAB. Il cible des fonctionalités comme des accès de tableau et des boucles, qui

sont les calculs principaux dans des programmes scientifiques. Cette thèse présente AS-

PECTMATLAB++. ASPECTMATLAB++ étend ASPECTMATLAB en se concentrant sur un

ensemble différent de défis, cherchant à faciliter la programmation orientée à l’aspect et

introduire des mécanismes qui gére une variété des problèmes qui arrivent dans une langue

dynamiquement tapée. À cette fin, nous présentons correspondance sur des annotations et

les types de variables, et des nouvelles manières d’exposer le contexte.

Nous fournissons aussi plusieurs cas d’utilisation de ces fonctions en forme des aspects

d’utilisation générale qui se concentrent sur les questions de résolution qui résultent de

l’utilisation de langues dynamiquement tapées. Ceux-ci incluent les aspects qui exécutent

le type et la vérification d’unité, des aspects de profilage, aussi bien que les aspects qui

exécutent des optimisations de boucles. Cette thèse fournit aussi plusieurs augmentations

de performance au compilateur ASPECTMATLAB, qui donnent une amélioration de vitesse

d’environ 10 fois.
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Chapter 1

Introduction

MATLAB [Molb, Mola, Mat09] is a dynamic array-based programming language, which

has widespread use throughout the scientific community. Its success stems from its conve-

nience as a dynamic scripting language - providing the programmer with high-level matrix

operators, a large library of built-in functions, a flexible syntax which requires no type

declarations, as well as a quick and easy development through the MATLAB IDE. These

factors all make the language very appealing to novice and expert programmers alike, as

development requires little training, and code can be rapidly prototyped.

Our work, ASPECTMATLAB++ builds upon the successes of the ASPECTMATLAB

project, which introduced the idea of aspects in MATLAB [ADDH10, Asl10]. The original

focus of ASPECTMATLAB was that prominent features in scientific programming, such as

loops and arrays could be easily matched and operated upon. It was designed to be easily

understood by those familiar with the MATLAB programming language, and did this by

extending object-oriented MATLAB classes. Aspects have properties and methods, similar

to MATLAB classes, but also allow for patterns, which specify sets of join points, as well

as actions, code associated with patterns to be executed at join points. Our challenge was

to further develop aspect-oriented programming for MATLAB, in a way that is consistent

with the ease of use of the base language. We wanted to introduce language mechanisms

through which programmers could more easily express their intent and control their code,

with the goal of preventing errors as well as improving performance. Simultaneously, we

aim to make ASPECTMATLAB more accessible to current MATLAB users.
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Introduction

Unlike more formal programming languages, MATLAB has neither static type declara-

tions nor static type checking, with type information being determined at run-time. Despite

the fact that no formal type declarations exist, many MATLAB functions have comments

which specify the types expected of its arguments. Failure to meet these informal rec-

ommendations can result in not only run-time errors, but also incorrect results. So while

forgoing static typing does make prototyping quick, it can also result in type inconsistencies

which can propagate throughout a program. One of our aims is to accommodate scientists

by creating language extensions and scientific aspects which help them to understand and

deal with these sorts of typing issues that arise in environments with no static types. In

the same vein, we also seek to help scientists reason about atypical forms of types, such as

units, that may occur throughout their computations.

To achieve these goals, we designed several new language features. These include a

number of new patterns, such as the annotate pattern, which allows pattern matching

on specially formatted MATLAB comments. We also introduce type and dimension

patterns, which match join points corresponding to a particular MATLAB base type or array

size respectively. In addition, we now allow for context exposure of the loop body in all

patterns which match loops. This enables ASPECTMATLAB programmers to implement

aspects which rewrite and modify the loop body.

Another important challenge was to improve the performance of ASPECTMATLAB

code. By inserting aspect code directly into the base MATLAB code, as well as making

local copies of aspect properties we eliminate a significant amount of overhead.

1.1 Contributions

The major contributions of this thesis are as follows:

Extensions to ASPECTMATLAB language: Building upon the ASPECTMATLAB language,

we introduce a number of language extensions which add more expressiveness. These

include the introduction of new patterns, such as the annotate pattern, as well as

new possibilities for action code.

Improvements to the ASPECTMATLAB compiler: Several functions of the ASPECTMAT-

2



1.2. Thesis Outline

LAB compiler have been reworked, in order to support not only new language fea-

tures, but to improve general performance.

Scientific aspects: We have developed a library of new aspects which provide easily ac-

quired benefits to ASPECTMATLAB users.

Experimental evaluation: We have tested the ASPECTMATLAB language on a set of

benchmarks to demonstrate the feasibility of woven code and the importance of our

optimizations. Aspects are shown to have a reasonable amount of overhead.

1.2 Thesis Outline

This thesis is divided into 8 chapters, including this introduction chapter. In Chapter 2,

we provide an introduction to the original ASPECTMATLAB language, describing it’s lan-

guage structures and their implementation. Chapter 3 discusses the various extensions we

have made to the basic ASPECTMATLAB language, and the motivation behind these ex-

tensions. Chapter 4 describes various difficulties involved with extending MATLAB for

aspects, and how we approach these difficulties differently from the original ASPECTMAT-

LAB language. Here, we also detail various analyses which improve the performance of

aspect code. Chapter 5 showcases a number of use cases that demonstrate the importance

of the proposed language extensions. The viability of ASPECTMATLAB is demonstrated in

Chapter 6, where it is shown to perform effectively in comparison to a suite of benchmark

MATLAB code. This chapter also demonstrates the significance of various implementa-

tion changes over the previous iteration of ASPECTMATLAB. Chapter 7 discusses related

work, and the ways in which our approaches differ. Chapter 8 presents our conclusions,

and provides an outline of possible future work.
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Chapter 2

Background

2.1 MATLAB Types Overview

MATLAB, unlike more many more formal programming languages, does not have any static

type declarations or static type checking. Instead, variable types are determined dynami-

cally at runtime. Also dissimilar from most languages, the default type for storing infor-

mation in MATLAB is a matrix, with even scalar constants being stored as a 1x1 array.

Matrices have two important characteristics, their dimensions, representing the size of the

matrix, and their base type, which represents the variety of data the matrix is allowed to

hold. The data type of a MATLAB variable can be one of several default types, such as the

numeric types double or int32, or they can be user-defined.

In MATLAB, type information is determined at run-time. Due to the lack of type decla-

rations, as the program progresses, the same variable may contain values of different types.

This lack of static type declarations is very convenient for fast prototyping, as it allows

programmers to write code without having to consider the minute details of their program.

However, despite the convenience this provides, MATLAB programmers often do have an

idea as to what base types and dimensions their variables are expected to have throughout

their program. Despite the fact that no formal type declarations exist, the authors of many

MATLAB functions leave comments which specify the types expected of its arguments. An

5
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example of this variety of informal declaration is shown in Figure 2.1. While this informa-

tion is not leveraged by MATLAB itself, failure to meet these informal recommendations

can result not only in run-time errors, but also incorrect results. Type errors of this variety

can easily propagate throughout a program, making it difficult to determine from where the

error originated. In this regard, MATLAB’s convenience comes with a trade-off, and when

choosing MATLAB, programmers forgo the benefits that static types provide.

1 function [F, V] = nbody3d(n, R, m, dT, T)

2 %-------------------------------%

3 % This function M-file simulates the gravitational

4 % movement of a set of objects

5 % Invocation:

6 % >> [F, V] = nbody3d(n, R, m, dT, T)

7 % where

8 % i. n is the number of objects,

9 % i. R is the n x 3 matrix of radius vectors,

10 % i. m is the n x 1 vector of object masses,

11 % i. dT is the time increment of evolution,

12 % i. T is the total time for evolution,

13 %

14 % o. F is the n x 3 matrix of net forces,

15 % o. V is the n x 3 matrix of velocities.

16 %-------------------------------%

Figure 2.1 Header of MATLAB simulation of n-body problem [RP99]

2.2 ASPECTMATLAB

In ASPECTMATLAB, aspects were developed as an extension to object-oriented MATLAB

code. Object-Oriented MATLAB classes are allowed to contain a properties block,

where data that belongs to an instance of the class is defined. These properties can be de-

fined with default values or initialized in the class constructor, and can consist of either a

fixed set of constant values, or depend on other values, and be evaluated when required.

Object-Oriented MATLAB classes also allow for a methods block, which can include

class constructors, property accessors, or ordinary MATLAB functions. Methods and prop-

erties can be declared public, protected, or private.

6



2.2. ASPECTMATLAB

ASPECTMATLAB expands upon this by adding aspects. Aspects are an extension to the

base MATLAB grammar, and like a MATLAB class, an aspect is a named entity, which has

a body. The body of an aspect not only allows for the properties and methods constructs,

but also allows for two aspect-related blocks: patterns and actions. Patterns, which

are analogous to pointcuts in other aspect-oriented languages, are used to pick out sets of

join points in program flow. Actions, which are analogous to advice, are blocks of code

that are intended to be joined to specific points of the base program. Actions specify what

should be done when code is matched by patterns.

In Figure 2.2 we see an example which makes use of these four features of aspects. The

properties block defines a counter, which is initialized at its declaration and can be

used throughout the aspect. The methods block defines a function called increment. In

the patterns block, we define a pattern,called callAdd, that we want to match in the base

code. In this case, we match calls to the function add. Finally, the actions block defines

an action called actCall. This action specifies that we should call the method increment

after every join point in the base code which matches the pattern callAdd. It then displays

the name of the function.

Patterns, which must be contained in the patterns block of an aspect, are formed

by a unique name and a pattern designator. The pattern designator can consist of one

of ASPECTMATLAB’s several primitive patterns, each of which target specific MATLAB

constructs, or it can be a logical combination of them. ASPECTMATLAB was introduced

with a variety of primitive patterns to match basic language constructs. An emphasis was

made on patterns to match the cross-cutting concerns found in a scientific programming

language. Since MATLAB code relies heavily on array constructs, and many programs are

written as large functions containing several loops, array accesses and loops are key targets

for patterns.

There are several function matching patterns, call, execution, and op which

match calls to a specified function, the execution of a specified function, and calls to basic

operations respectively. These patterns all take as a parameter the name of the function or

operation they should match. For example, in Figure 2.2, we see that the call pattern

takes as a parameter ‘add’, meaning that it will match calls to the function add.

ASPECTMATLAB has two array-related patterns get and set, which allow for match-

7
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1 aspect myAspect

2 properties

3 counter = 0;

4 end

5

6 patterns

7 callAdd : call(add);

8 end

9

10 methods

11 function increment(this)

12 this.counter = this.counter + 1;

13 end

14 end

15

16 actions

17 actCall : after callAdd : (name)

18 this.increment();

19 disp(['calling ', name]);

20 end

21 end

22

23 end

Figure 2.2 Simple ASPECTMATLAB example

ing accesses of and assignments to arrays respectively. Similarly to the function matching

patterns, the get and set patterns take as a parameter the identifier of the variable they

should match. Since an array access can exist within another array access, it is important

to note that patterns are matched in order of evaluation of an expression, meaning patterns

matching sub-expressions are evaluated before the containing expression.

ASPECTMATLAB also features loop-related patterns loop, loophead, loopbody

which allow for matching on various portions of loops in MATLAB. Unlike functions and

array accesses, there is no easy way to identify specific loop join points in the base code.

Instead, loops are specified by the name of the loop iterator variable.

Finally, the within pattern allows for limiting the context with which matches can be

made. It takes as a parameter the type of construct to match within, such as functions or

loops, as well as an identifier, which can be used to specify a particular function, loop or

8



2.2. ASPECTMATLAB

other construct. This pattern matches all join points within the construct, and thus can be

used in conjunction with other patterns to restrict the scope of matching.

In order to match more complex patterns, ASPECTMATLAB allows for compound pat-

terns to be created using logical combinations of primitive patterns. An example of this is

shown in Figure 2.3. pCallTest matches all calls to the function test that occur within

a loop, pGetOrSet will match array access and assignments occuring within a function

add, and pCallExec matches the previously defined pattern pCallTest as well as the

execution of the test function itself.

patterns

pCallTest : call(test) & within(loops, *);

pGetOrSet : (get(*) | set(*)) & within(function, add);

pCallExec : pCallTest | execution(test);

end

Figure 2.3 Compound ASPECTMATLAB patterns

There are three types of actions in ASPECTMATLAB, before, around, and after,

which specify when, in relation to a matched join point, a piece of code should be executed.

As one might expect, before actions are woven directly before a join point, and after

actions are woven directly after a join point. The third type of action, around actions, are

different in that they replace the join point completely. In order to execute the join point

itself when using an around action, a special proceed call exists. This call can be used

in the action code to execute the original join point. Omitting this call from action code

results in the original join point never being executed.

ASPECTMATLAB allows for extraction of context-specific information about join points

via the use of pre-defined context selectors. These selectors are specified along with an ac-

tion definition, and allow for context-specific information to be used within action code. An

example of context exposure is shown in Figure 2.2 on line 17, where we use the name se-

lector, to expose the name of the function matched by the pattern. This information is then

used on line 19 to display the name of the function being called. The applicable selectors

depend upon the type of join point being matched.

9
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Chapter 3

ASPECTMATLAB++ Language Extensions

We have defined and implemented a variety of new patterns to match additional lan-

guage constructs. Given that our target audience includes novice programmers, we wanted

to include a pattern in ASPECTMATLAB that allows MATLAB programmers who may not

be familiar with aspect oriented programming to exert more control as to where aspect

code would be woven. To this end, we introduce the annotate pattern, which allows for

pattern matching on special MATLAB comments. This pattern makes a useful tool for our

own aspects, as it allows for general solutions to problems to be written as aspects, while

making it possible for the specifics to be written into the base code as part of annotations.

To address the difficulties that MATLAB’s dynamic typing we introduced patterns for

matching based on the size of arrays with the dimension pattern, as well as the type of

data that arrays store, with the type pattern.

Another important extension was to allow for context exposure of the loop body in

loop patterns through use of a special body call. This is essential for around advice

on loop pattern, which themselves are of the utmost importance when targeting scientific

languages, as it makes it possible for us to alter the loop body while still executing the base

code correctly.

This chapter details the specification and basic use of these extensions. Advanced uses

are demonstrated in Chapter 5, where they are used to create general-use scientific aspects.

11



ASPECTMATLAB++ Language Extensions

3.1 Annotation Pattern

The annotation pattern differs from other patterns in ASPECTMATLAB in that it does not

match on MATLAB code itself. Instead, we allow for programmers to write annotations

which take the form of structured comments in their base code. The annotate pattern

then matches these specially formatted comments. This makes it possible to provide infor-

mation to the aspect program at any point in the execution, and allows for code to be woven

easily into arbitrary points of a program, all without requiring any alteration to the execu-

tion of the base code. This new functionality makes it easy to write code with aspects in

mind, by allowing for easy communication of relevant information from the base program

to the aspect.

Due to the fact that these annotations are not be executed by a MATLAB runtime, this

approach has the benefit of ensuring that the program executes normally without having

to weave aspects. The syntax for an annotation is shown in Figure 3.1. To specify that

a particular comment should be recognized as an annotation, it is marked using the ‘@’

symbol, and is followed by an identifier that gives the name of the annotation. Following

the identifier is a list of arguments, whose values can be exposed as context in an action

definition.

1 <annotation> ::=

2 '%@' <annotation_name> <annotation_arguments>*
3 | '%@' <annotation_name>

4 <annotation_arguments>* '%' <comments>*
5

6 <annotation_arguments> ::=

7 IDENTIFIER | STRING_LITERAL | CONSTANT

8 | '[' <array_argument> ']'

9

10 <array_argument>::=

11 <annotation_argument>

12 | <array_argument> ',' <annotation_argument>

Figure 3.1 Syntax of MATLAB Annotation

12



3.1. Annotation Pattern

There are four types of arguments that can be exposed as context, var (IDENTIFIER),

str (STRING_LITERAL), num (CONSTANT), and arrays of other arguments. Exposure

of a var provides the value of that variable as context to the aspect code. If a variable

is undefined, it will instead be exposed as a value of class AMundef, an empty MATLAB

class. str exposes a string, and num a numeric value as a double. Arrays of arguments

expose a cell array containing the context exposed by those arguments.1 All arguments

adhere to standard Matlab syntax.

The syntax for the annotation pattern is shown in Figure 3.2. It takes the name of the

annotation it should match, as well as a list of arguments that are expected to be present

in the annotation. In the event that a pattern matches the identifier and arguments, but

has arguments in excess of those specified, the pattern will still match, and the excess

arguments will not be exposed as context. This allows a matlab programmer to easily

integrate annotations into their comments, without having to omit information to fit the

annotation formatting. The allowed arguments are those described above and an insufficient

number of arguments will result in no match.

1 <annotation_pattern> ::=

2 'annotate' '(' <annotation_name>

3 '(' <annotation_pattern_selector>* ')'')'

4 <annotation_pattern_selector> ::=

5 'var' | 'str' | 'num'

6 | '[' <annotation_pattern_selector> ']'

7 | '*'

Figure 3.2 Syntax of Annotation Pattern

An example of use of the annotation pattern is shown in Figure 3.3. In this case, the

pattern matches all annotation comments that begin with the name ‘type’ and have at least

three arguments: the first a variable name, the second a string, and the third an array of

numbers.
1Cell arrays in MATLAB allow for different elements in the array to have different types, and so can be

used to represent heterogenous collections.
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patterns

typepat : annotate(type(var, char, [num]) ;

end

Figure 3.3 Example of Annotation Pattern

3.2 Type Pattern

The type pattern, introduces matching on the base type of arrays to ASPECTMATLAB.

For this pattern, a base type can be one of several MATLAB defaults, such as double, string,

int32, or it can be a user defined class type. The type pattern captures all variable accesses

and assignments in which the variable matches a specified MATLAB base type. The syntax

for invoking the type pattern is type(<basetype>), where basetype is the name of

the MATLAB base type to be matched. Accesses and assignments are captured in the order

of evaluation of an expression, with sub-expressions being matched before their containing

expression. For assignments, the MATLAB type considered is the one which would be held

after assignment occurs.

To match accesses or assignments of specific arrays, but only when they are of a partic-

ular type, one can use a compound pattern of the type and get or set patterns. Examples

of type patterns are given in Figure 3.4. Pattern isint32pat matches all join points

where an array access or assignment is being performed involving an array of type int32.

Pattern isxsinglepat demonstrates a compound pattern using type, get, and set to

match all accesses and assignments to array x, when x is of type single.

patterns

isint32pat : type(int32) ;

isxsinglepat :

(get(x)|set(x))&type(single) ;

end

Figure 3.4 Example of Type Pattern

14



3.3. Dimension Pattern

In addition to the standard MATLAB base types, we have defined one further base type

called realint to capture the special issue in MATLAB with its use of positive real in-

tegers. As the default data type in MATLAB is a double, all arrays can be indexed using

double values. However, in the event that this double value does not correspond to a pos-

itive integer, this returns an error. To determine if double x is a real integer or not, it is

necessary to check that x = round(x). The inclusion of this base type makes it easy to

determine whether the value in a matched array can be used as an index.

3.3 Dimension Pattern

Due to the fact that arrays are the default data type in MATLAB, it can be helpful to identify

arrays by their size and shape. To this end we introduce the dimension pattern. The

dimension pattern is similar to the type pattern, but instead of matching join points

based on type, it instead matches by the dimensions of the associated vector.

The dimension pattern takes as arguments the size of the dimensions of the matrix it

should match. Similarly to the type pattern, the dimension pattern matches variable ac-

cesses and assignments when the array is of the shape specified by the pattern’s arguments.

The syntax for invoking the dimension pattern is dimension(<dimensions>), where

dimensions is a comma separated list of the expected dimensions of the array. For each

dimension, an integer value corresponding to the expected size of the dimension may be

specified, or the wild-card symbol, ‘*’ may be used to indicate that a dimension can be any

size. As with the type pattern, accesses of specific arrays can be accomplished by using a

compound pattern of the dimension, get and set patterns.

Examples of the dimension pattern are shown in Figure 3.5. Pattern dimp will

match all array accesses and assignments involving arrays that have 3 dimensions, and

whose first dimensions is of size 2. Pattern dimx2by2 will match array accesses or as-

signments to x when x is a 2 by 2 matrix.
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patterns

dimp : dimension(2,*,*) ;

dimx2by2 :

(get(x)|set(x))&dimension(2,2);

end

Figure 3.5 Example of Dimension Pattern

3.4 Loop Body Context Exposure

Loops are a critical structure to target when writing an aspect language for scientific pro-

gramming. To ensure these constructs can be handled meaningfully, the original ASPECT-

MATLAB introduced several patterns which matched on loops. While it did successfully

introduce means of handling loops themselves, one significant shortcoming is that it did

not introduce any means of handling or restructuring the bodies of loops. To allow AS-

PECTMATLAB programmers to deal with the body of loops more precisely, we introduce

the body call.

ASPECTMATLAB features a special proceed call which can be used in around ad-

vice to execute the original join point. While useful in most scenarios, with loop patterns it

would be useful to be able to execute simply the body of the loop, as opposed to the entire

join point. The body call is similar to the proceed call, however, instead of executing

the entire join point, it simply executes a portion of it - that portion which corresponds

to the body of a loop. To interact with the contents of the body, we also introduce the

loopiterator keyword, which can be assigned a value to replace or modify the value

held by the loop iterator variable.

Example Figure 3.6 showcases the use of these keywords, with an aspect that replaces

loops which iterate over i with a loop which iterates over the square root of the base

MATLAB loop’s arguments. The args exposed as context are the loop iteration space,

which is then square rooted and passed in as a loop iterator to another for loop, which

makes a call to body to execute the body of the original loop.
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actions

sqrtiter : around loop(i) : (args)

for loopiterator = sqrt(args)

body()

end

end

Figure 3.6 Example of Loop Body Context Exposure
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Chapter 4

ASPECTMATLAB++ Engine Enhancements

While the original implementation of ASPECTMATLAB provided a clean means for

weaving aspect-oriented code into MATLAB, the implementation, making use of MATLAB

classes, was particularly slow. Aspect code was converted into MATLAB classes, with ac-

tion code being converted into MATLAB class methods. Properties, as well as methods used

by aspect code remain part of the MATLAB class after compilation. These properties and

methods are then referenced from the appropriate join points in the base code. Unfortu-

nately, object-oriented MATLAB classes require a significant amount of overhead to access

their methods and properties, enough to cause woven code to run many times slower than

the base code on its own. In order to eliminate this slowdown of aspect code, we inline the

action code, and make local copies of aspect properties to avoid unnecessary overhead.

To demonstrate our enhancements, we look at the weaving of a simple aspect which

counts flops, shown in Figure 4.1, and apply it to a heat equation solver in Figure 4.2, the

result of which is shown in Figure 4.3 and Figure 4.4.

4.1 Inlining of Action Code

After weaving, the methods corresponding to action code would be called from the join

points which match the associated patterns. This is a functional solution, however MATLAB

classes have a significant amount of overhead involved in their use. Calling a method from a

MATLAB class entails a significant amount more overhead than a typical MATLAB function
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1 aspect flopcount

2 properties

3 count = 0;

4 end

5

6 patterns

7 flopp : op(*);

8 end

9

10 actions

11 aflop: before flopp

12 count = count + 1;

13 end

14 end

15 end

Figure 4.1 Simple aspect to count all floating point operations

1 function solveHeatEquation(a,steps)

2 tN= 3; % end of time interval

3 N = 300; % set total steps

4 h = 2*pi/(N-1); % set spacial step

5 X = [h:h:2*pi]; % set X axis points - the first point is ommitted (0)

6 U0 = 0*X; % set initial condition

7 U0(round(end/2.2):round(end/1.8)) = 1;

8 D = (Dxx(N)/h^2); % set second spatial derivative matrix

9 function y = F(t,u) % set rhs of ODE, i.e. Ut

10 y = a*D*u;

11 end

12 W = RungeKutta4(@F,[0, tN],U0,steps,1); % find the solution

13 disp('computation finished');

14 end

Figure 4.2 MATLAB function which solves the heat equation
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1 classdef flopcount < handle

2 properties

3 count = 0;

4 end

5 methods

6 function [] = flopcount_aflop(this)

7 count = (count + 1);

8 end

9 end

10 end

Figure 4.3 Generated code for the flopcount aspect for Figure 4.1

call. Looking at the woven code, shown in figure 4.4, it can be noted that there are many

calls to the method flopcount.flopcount_aflop().

To determine the impact of these calls to MATLAB classes, we test the overhead of the

call itself by making calls to empty functions. In Figure 4.1, we show the time required

for a call to an ordinary MATLAB function empty(). This is compared with calls to a

class method, empty(obj), which can also be invoked by calling obj.empty(). We

also compare to calls to a static class method test.empty(). These results demonstrate

that calls to object-oriented MATLAB code are more than 12 times slower than ordinary

function calls, and that static methods are slower still.

Time (s) for
1000000 calls

Time (µs)
per call

empty() 0.104 1.04
empty(obj) 1.294 12.94
obj.empty() 1.922 19.22
test.empty() 2.473 24.73

Table 4.1 Function call overhead for methods in object-oriented MATLAB

To increase the performance of woven aspect code, it would be ideal to do away with

these method calls. One possible solution would be to performing a simple inlining on

the function calls woven into the base code. This would require further work to be done

in order to inline around actions, where we have to deal with proceed calls that require
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1 function [] = solveHeatEquation(a, steps)

2 global AM_GLOBAL;

3 if isempty(AM_GLOBAL)

4 AM_GLOBAL.flopcount = flopcount;

5 AM_EntryPoint_0 = 1;

6 else

7 AM_EntryPoint_0 = 0;

8 end

9 tN = 3; % end of time interval

10 N = 300; % set total steps

11 AM_tmpBE_0 = 2

12 AM_GLOBAL.flopcount.flopcount_aflop();

13 AM_tmpBE_1 = (AM_tmpBE_0 * pi)

14 AM_GLOBAL.flopcount.flopcount_aflop();

15 h = (AM_tmpBE_1 / (N - 1)); % set spacial step

16 AM_tmpBE_2 = 2

17 AM_GLOBAL.flopcount.flopcount_aflop();

18 AM_tmpBE_3 = (AM_tmpBE_2 * pi)

19 X = ([(h : h : (AM_tmpBE_2 * pi))]); % set X axis points - the first

point is ommitted (0)

20 AM_tmpBE_4 = 0

21 AM_GLOBAL.flopcount.flopcount_aflop();

22 AM_tmpBE_5 = (AM_tmpBE_4 * X)

23 U0 = AM_tmpBE_5; % set initial condition

24 AM_GLOBAL.flopcount.flopcount_aflop();

25 U0((round((end / 2.2)) : round((end / 1.8)))) = 1;

26 AM_GLOBAL.flopcount.flopcount_aflop();

27 D = (Dxx(N) / (h ^ 2)); % set second spatial derivative matrix

28 W = RungeKutta4(@F, [0, tN], U0, steps, 1); % find the solution

29 disp('computation finished');

30 if AM_EntryPoint_0

31 AM_GLOBAL = [];

32 end

33 end

Figure 4.4 Example of code woven before inlining of action code
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passing of context information. A simpler option is to weave the action code directly into

the base code without ever writing it into the aspect class as a method.

The first step towards accomplishing this task is to perform a renaming on the action

code, to ensure that operations local to the aspect do not overwrite variables in the base

code. Once this is completed, the action code can be inserted directly into the AST. As-

signments to set up context selectors used by the action code are inserted before the action

code itself in the AST. The result of the inlining on our example is shown in figure 4.5,

with all function call overhead having been eliminated.

4.1.1 Considerations for Around Advice

Special consideration must be taken for the case of around advice. Due to the fact that

the original join point is replaced when using around advice, the original join point must

either be removed from the AST, or placed at the location of a proceed call if one is made.

In addition, we also have to consider the fact that around actions can return data, and the

data returned should correspond to the result of the execution of the original join point. To

accomplish these tasks, we replace proceed calls with the original join point, and set the

result aside, to be returned as a result at the end of the around advice.

The body calls are handled similarly to proceed calls, with the difference being that

we replace the call to body with the entirety of the body of the loop.

It is worth noting that the previous implementation’s handling of around advice re-

quired passing of context information to action code. In order to ensure that the join point

is correctly executed when a proceed call is made, it was necessary to store all necessary

context information within the action method, and use a switch statement to refer to the

context of specific join points. By writing the action code directly into the AST of the base

code, instead of making a call to a class method, this overhead is unnecessary. We can sim-

ply execute the join point with its original context intact, resulting in further performance

enhancements when several context selectors are used.
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1 function [] = solveHeatEquation(a, steps)

2 global AM_GLOBAL;

3 if isempty(AM_GLOBAL)

4 AM_GLOBAL.flopcount = flopcount;

5 AM_EntryPoint_0 = 1;

6 else

7 AM_EntryPoint_0 = 0;

8 end

9 tN = 3; % end of time interval

10 N = 300; % set total steps

11 AM_tmpBE_0 = 2

12 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;

13 AM_tmpBE_1 = (AM_tmpBE_0 * pi)

14 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;

15 h = (AM_tmpBE_1 / (N - 1)); % set spacial step

16 AM_tmpBE_2 = 2

17 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;

18 AM_tmpBE_3 = (AM_tmpBE_2 * pi)

19 X = ([(h : h : (AM_tmpBE_2 * pi))]); % set X axis points - the first

point is ommitted (0)

20 AM_tmpBE_4 = 0

21 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;

22 AM_tmpBE_5 = (AM_tmpBE_4 * X)

23 U0 = AM_tmpBE_5; % set initial condition

24 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;

25 U0((round((end / 2.2)) : round((end / 1.8)))) = 1;

26 AM_GLOBAL.flopcount.count = AM_GLOBAL.flopcount.count + 1;

27 D = (Dxx(N) / (h ^ 2)); % set second spatial derivative matrix

28 W = RungeKutta4(@F, [0, tN], U0, steps, 1); % find the solution

29 disp('computation finished');

30 if AM_EntryPoint_0

31 AM_GLOBAL = [];

32 end

33 end

Figure 4.5 Example of code woven after inlining of action code
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4.2 Local Copies of Aspect Properties

With action code having been inlined, aspect properties referenced in action code must still

be accessed through the generated MATLAB class. While the inlining process does reduce

a significant amount of the overhead involved in woven code, the overhead from accessing

these object properties may still be significant. We carried out a study to determine the

impact of property accesses and assignments by performing each 1000000 times within a

loop. The results are shown in Figure 4.2. While not as significant as the overhead for calls

to object-oriented methods, property accesses and assignments still take up more time than

function calls to ordinary MATLAB code, and are much slower than assignments to local

variables.

Time (s) for
1000000 calls

Time (µs)
per call

empty() 0.104 1.04
property access 0.366 3.66
property assign 0.286 2.86

Table 4.2 Property access and assignment overhead for object-oriented MATLAB

In order to further reduce the overhead due to frequent accessing of object properties it

is helpful to make local copies of properties whenever possible. By doing this, base code

has many matched join points, or action code which makes reference to the same property

several times, can be rendered more efficient. One precaution we must take when making

local copies is ensuring that the properties are updated before they are used or modified

elsewhere in the code. To ensure this, we must copy back to the object prior to any function

calls to code that is woven by the same aspect. Similarly, we must be certain to copy the

property back to the associated object before the end of the woven function as well.

In order to accomplish this, we perform a local copy analysis, which is composed of

two sub-analyses, which determines which local copies must be live after each program

block. This analysis allows for us to copy back to the aspect prior to making a dangerous

function call, and load a local copy only when necessary at the end of each program block.

To set up the analysis, we mark all other function calls which are woven by the same aspect,
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such that we can recognize them as we traverse to code. The function calls are labeled as

dangerous calls, for which we need to write our local copy back to the aspect. It is worth

noting that by default the ASPECTMATLAB compiler assumes that aspect-woven code will

not be called from non-aspect woven code. This allows for copies to persist through most

function calls, increasing performance.

We then perform two analyses, the Local Copy Analysis to determine where local

copies should be made, and the Local Write Analysis, to determine where copies should

be written back. These analyses were written using the Matlab Static Analysis Framework,

MCSAF [Doh11].

4.2.1 Local Copy Analysis

The Local Copy Analysis computes for each program point which property uses could

made into a local copy. It is implemented using a forward flow sensitive analysis. At merge

points we take the intersection of the merged sets. The main cases we consider for this

analysis are as follows:

-Aspect Property Use: For each property use, the property being used and the line it is

used on is added to the current set.

-Unsafe Function Call: Upon calling any unsafe function, as we have defined above, all

items in the current set are killed.

-Clear workspace (’clear’): All items in the current set are killed.

The results of this analysis are used to determine optimal locations for local copies to

be made.

4.2.2 Local Write Analysis

The Local Write Analysis computes for each program point which property writes could

be written to at that point. It is implemented using a backward flow sensitive analysis. At

merge points we take the intersection of the merged sets. The main cases we consider for

this analysis are as follows:
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-Aspect Property Assignment: For each assignment to an aspect property, the property

being used and the line it is used on is added to the current set.

-Unsafe Function Call: As with the Local Copy analysis, upon calling any unsafe func-

tion, all items in the current set are killed.

-Clear workspace (’clear’): All items in the current set are killed.

The results of this analysis are used to determine optimal locations for writing local

copies back to aspect properties.

Once the analyses have been completed, we insert local copies of aspect properties and

writes of these copies back to the aspect properties at relevant locations, starting with those

program points which would cover the most copies and writes. Uses of aspect properties

are then replaced with these local copies.

The result of the local copies can be seen in figure 4.6. Before its first access, the prop-

erty is stored in a local variable AM_tmpcount. All operations that would be performed

on the aspect property are then performed on this local copy instead. Before the end of the

function, the final state of this copy is stored back in the object property. In this example,

which originally required 6 property accesses and 6 property assignments, we now only

require 1 of each, significantly reducing unnecessary overhead.
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1 function [] = solveHeatEquation(a, steps)

2 global AM_GLOBAL;

3 if isempty(AM_GLOBAL)

4 AM_GLOBAL.flopcount = flopcount;

5 AM_EntryPoint_0 = 1;

6 else

7 AM_EntryPoint_0 = 0;

8 end

9 tN = 3; % end of time interval

10 N = 300; % set total steps

11 AM_tmpBE_0 = 2

12 AM_tmpcount = AM_GLOBAL.flopcount.count;

13 AM_tmpcount = AM_tmpcount + 1;

14 AM_tmpBE_1 = (AM_tmpBE_0 * pi)

15 AM_tmpcount = AM_tmpcount + 1;

16 h = (AM_tmpBE_1 / (N - 1)); % set spacial step

17 AM_tmpBE_2 = 2

18 AM_tmpcount = AM_tmpcount + 1;

19 AM_tmpBE_3 = (AM_tmpBE_2 * pi)

20 X = ([(h : h : (AM_tmpBE_2 * pi))]); % set X axis points - the first

point is ommitted (0)

21 AM_tmpBE_4 = 0

22 AM_tmpcount = AM_tmpcount + 1;

23 AM_tmpBE_5 = (AM_tmpBE_4 * X)

24 U0 = AM_tmpBE_5; % set initial condition

25 AM_tmpcount = AM_tmpcount + 1;

26 U0((round((end / 2.2)) : round((end / 1.8)))) = 1;

27 AM_tmpcount = AM_tmpcount + 1;

28 AM_GLOBAL.flopcount.count = AM_tmpcount;

29 D = (Dxx(N) / (h ^ 2)); % set second spatial derivative matrix

30 W = RungeKutta4(@F, [0, tN], U0, steps, 1); % find the solution

31 disp('computation finished');

32 if AM_EntryPoint_0

33 AM_GLOBAL = [];

34 end

35 end

Figure 4.6 Example of code woven after local copies of aspect properties have been made
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Chapter 5

Aspect Examples

Using the language extensions outlined in the previous chapter, we designed and im-

plemented a number of aspects to help programmers to better understand and work with

their MATLAB code. In order to ensure programs meet expected type requirements, we

introduce a type checking aspect, which allows for programmers to specify stricter types

using type annotations which are matched by the annotate pattern. The unit check-

ing aspect uses unit annotations to allow programmers to ensure that their units match,

following basic rules of dimensional analysis. This allows for type checking of a scien-

tific variety. In order to better deal with peculiarities of MATLAB, we also introduce two

type profiling aspects, which employ the type and dimension patterns to detect dy-

namic type information. To help programmers get the most out of MATLAB code, we also

use aspects to automate loop transformations which use the newly introduced body con-

text exposure for loops, improving the ability of ASPECTMATLAB to help programmers

increase the efficiency programs by making loop unrolling and loop reversal optimiza-

tions quickly and easily. The full aspect code of each scientific aspect can be found at

http://www.sable.mcgill.ca/mclab/aspectmatlab/.

5.1 Stricter type checking

In MATLAB, variable types are not declared, and are instead determined dynamically. This

is beneficial for fast prototyping, as it allows programmers to focus on the task at hand.
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Despite MATLAB’s lack of static type checking, programmers often have some assumptions

about the types being used in their programs, as shown previously in Figure 2.1. Using

mechanisms provided by MATLAB in order to ensure that the types of variables are correct

after every assignment would require the programmer to insert checks manually, a tedious

job which opens up room for errors. The significant number of superfluous checks would

negatively impact the performance.

Our solution to this problem is to leverage the power of the newly introduced annotate

pattern to allow programmers to format their comments in such a way that the type infor-

mation they contain can be confirmed by an aspect. Figure 5.1 shows an example of what

annotated code looks like. It is very similar to the original comments, but by formatting

the comments into type annotations, the information in the comments can be used by the

ASPECTMATLAB compiler.

1 function [F, V] = nbody3d(n, R, m, dT, T)

2 %--------------------------

3 % This function M-file simulates the gravitational

4 % movement of a set of objects

5 % Invocation:

6 % >> [F, V] = nbody3d(n, R, m, dT, T)

7 % where

8 %inputs:

9 %@type n 'double' [1,1] %number of objects

10 %@type R 'double' [n,3] %matrix of radius vectors

11 %@type m 'double' [n,1] %vector of object masses

12 %@type dT 'double' [1,1] %time increment of evolution

13 %@type T 'double' [1,1] %total time for evolution

14 %outputs:

15 %@type F 'double' [n,3] %matrix of net forces,

16 %@type V 'double' [n,3] %matrix of velocities.

17 %-------------------------

Figure 5.1 Header of MATLAB simulation of n-body problem with type annotations

The formatting of these annotations are specified by the annotate pattern in our

type checking aspect and operates as shown in Figure 5.2. As with all ASPECTMATLAB

annotations, the first piece of information is annotation name, "type". After the annotation

name, this particular annotation has three other arguments. These are the identifier for the
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variable it should be checking, a string which declares the base type the variable is expected

to have, and an array that lists the expected size of each dimension.

〈type annotation〉 ::⇒
'%@' 'type' 〈variable〉 '〈type〉' '['〈dimensions〉']' 〈comment〉*

〈type〉 ::⇒
〈base matlab datatype〉
| 〈user defined datatype〉

〈dimensions〉 ::⇒
〈dimension〉 ',' 〈dimensions〉
| 〈dimension〉

〈dimension〉 ::⇒
IDENTIFIER | DOUBLE | CHAR

Figure 5.2 Definition of a type annotation

As an example, the annotation %@type n ’double’ [1,1] is checking that the

variable n is of type double, and is a scalar (or 1 by 1 matrix). For the base type, the user

may require that the variable be of any base MATLAB datatype, as well as any user defined

datatypes. The dimensions can be expressed in one of three ways, which capture the variety

of possible requirements a programmer may have of their program. The simplest method

of communicating the dimensions is by simply specifying the expected size numerically in

the annotation. In this case, the aspect will ensure that the size of the variable’s dimension

matches the one specified by the programmer. This is demonstrated on line 1 of Figure

5.3. The second method for specifying dimension size is by using an identifier which

corresponds to a variable in the base MATLAB code, which contains the size it should

match. This is shown on line 2 of Figure 5.3, where variable b is required to be a matrix

of size n by m, where n and m will have been previously initialized in the base MATLAB

code. Alternatively, a string can be used to specify the dimension sizes, as shown on lines

3,4 and 5 of Figure 5.3. When a string is used, the aspect checks that the size of the

dimension matches any other dimensions which use the same string. For example, variable

c is required to have 2 dimensions, and because both are specified by the same string, both

dimensions must have the same size. Similarly, the annotations on lines 3 and 4 specify

that the first dimension of d must be the same size as the second dimension of e, and vice
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versa.

1 %@type a 'double' [2,3,4]

2 %@type b 'userdef' [n,m]

3 %@type c 'char' ['x','x']

4 %@type d 'double' ['y','z']

5 %@type e 'double' ['z','y']

Figure 5.3 Example of type annotations

Once the aspect has been woven, the aspect code will check whether or not the types

hold at the program point where the annotation is present. In addition, any time a variable

is assigned to after the annotation, the aspect code will check again to ensure that it obeys

the specified restrictions. These annotations are simple and straightforward and are able

to be easily inserted anywhere in a program where a programmer is uncertain. They also

correspond closely to comments that are typically found in MATLAB programs.

The type checking aspect, outlined in Figure 5.4, takes advantage of the annotation pat-

tern and weaves type checking code around these annotations. There are only two patterns

required for this aspect. The pattern typeAnn matches the type annotations. It matches

annotations with the annotation name type, and takes three arguments, an identifier corre-

sponding to the variable in question, a string constant corresponding to its type, and an array

which can contain any combination of numerical constants, identifiers, or string constants,

corresponding to its dimensions as described above. This demonstrates that while the an-

notation pattern is simple to use, it can be very powerful, allowing for easy introduction of

language features that don’t otherwise exist in MATLAB.

From here, the code which carries out type checking is straightforward. The action

actAnn, given in Figure 5.5, uses the information provided by the annotation. This in-

formation is extracted using the args context selector, which yields a cell array of the

arguments’ values, as well as the rep context selector, which provides a cell array of string

representations of the arguments’ values. Before we type check, we confirm that the vari-

able in question has been assigned a value. If it does not, the content of the variable will be

of type AMundef, signifying that no definition has been provided and that we can proceed

to storing type information. If the variable in question has been defined, we check that its
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aspect typechecking

...

patterns

typeAnn : annotate(type(var, char, [*]));

arraySet : set(*);

end

actions

actAnn : before typeAnn : (args, rep, line)

value = args{1};

varname = rep{1};

expectedtype = args{2};

expecteddims = args{3};

%Check that the provided variable meets the

%specified type and dimensions

%Store the type and dimensions for future checks

...

actArraySet : after arraySet : (newval, name, line)

%Compare with known type and dimensions for the

%given variable name

...

end

end

Figure 5.4 Outline of type checking aspect

value has the expected number of dimensions, the correct type, and the correct size for each

dimension as specified by the annotation. In the event that there is a conflict, an error is

emitted. If a string has been used to specify the size of a dimension, we check to see if any

previous annotations used the same string - comparing size with the previous use if it has,

and associating the current value for our variable if it hasn’t. Regardless of whether type

checking is performed, the information from the annotation is stored in container.Map

objects, so future array assignments can be checked. The action actArraySet , which

is woven around assignments to arrays, checks whether or not the variable being assigned

to has an existing mapping from a previous type annotation. If it does, type checking is

performed using similar checks to those made in the actAnn pattern, and throwing an

error if the checks fail.
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1 actAnn : before typeAnn : (args, rep, line);

2 %context expose of args gives the arguments provided by the

3 %annotation in order

4 %context expose of rep gives the string representation of the

5 %annotation arguments, which we use to obtain a string

6 %representation of the variable

7 value = args{1};

8 varname = rep{1};

9 expectedtype = args{2};

10 expecteddims = args{3};

11

12 %if the variable is defined at the point of the annotation, we

13 %immediately perform type checking

14 if(¬isa(value,'AMundef'))
15 dimensions = dims(value);

16 if((ndims(value) 6= size(expecteddims,1)) )

17 %prepare error message

18 end

19 if(¬isa(value,expectedclass))
20 %prepare error message

21 end

22

23 for dim = 1:size(expecteddims,1)

24 if(isa(expecteddims{dim},'char')

25 %check against any previous definition for the string

26 if(ismember(expecteddims{dim}, keys(chardims)))

27 if(size(value,dim) 6= chardims(expecteddims{dim}))

28 %prepare error message

29 else

30 %associate value with string if no previous definition

31 %exists

32 chardims(expecteddims{dim}) = size(value,dim);

33 end

34 elseif(size(value,dim) 6= dimensions{dim})

35 %prepare error message

36 end

37 end

38 %emit error message if one exists

39 end

40 %Whether the variable has been defined, we associate the

41 %variable name with the expected class and dimensions

42 varclass(varname) = expectedclass;

43 vardims(varname) = expecteddims;

44 end

Figure 5.5 actAnn action of typechecking aspect in detail
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Using this aspect, it is possible to leverage the types specified by the programmer, and

throw meaningful errors when they are not met. Due to the fact that types are stored as an-

notations, it is possible for a programmer to simply run their program without weaving type

checking code once they are certain that their program will execute correctly. This allows

for programmers to enable type checking at a small cost in performance to ensure their

MATLAB code executes as expected, and later dispense with the type checking to ensure

optimal performance. These annotations can be introduced into a program without knowl-

edge of aspect oriented programming, nor significant knowledge of the inner workings of

ASPECTMATLAB. As a result, this aspect is useful even for those who are not interested in

learning the ASPECTMATLAB language.

5.2 Units of measurement as types

In the previous section we explored an aspect for handling traditional type checking, how-

ever, for scientific programmers there exists more type information presented in Figure 2.1

aside from the dimensions of variables. Many inputs may have associated units of mea-

surement, corresponding to physical qualities such as times, distances, and masses. Even

in a programming language such as MATLAB, which targets scientific programmers, these

units of measurement will be lost, as it is most easy and efficient to store data as doubles

instead of having a separate class for every piece of data. This is unfortunate, as these units

of measurement have meaning within the context of a program, particularly programs with

a large number of arithmetic operations. For example, we know that it makes sense to add

a distance to a distance, and the result of such a computation would be a distance itself.

However, it is not meaningful to add a distance to a mass, as the result of the computation

would be meaningless. Similarly, assigning a value that is known to be a mass to a variable

which should contain a distance would also be incorrect. By keeping track of the units that

variables are intended to have, it is possible to prevent programmers from making mistakes

by throwing errors when incorrect units are used. In this sense, units can be thought of as

types unto themselves. By providing programmers with a means to incorporate units into

their programs, it can be ensured that their programs only use them safely.

In order to take advantage of unit information, we introduce the idea of unit annotations.
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Figure 5.6 shows how unit annotations can be used to take advantage of the information

programmers provide. Similarly to the type aspect, our unit aspect defines a formatting

which unit annotations must follow, and this is shown in Figure 5.7. Following the annota-

tion name, two arguments are required. The first is the string corresponding to the variable

whose units we are keeping track of. The second is an array of strings containing the SI

units of the variable. For example, the annotation %@unit ’dT’ [’s’] specifies that

the variable dT is a measure of time, in seconds. We support several common derived units,

and for those unsupported, combinations of the 7 base SI units can be used. For example,

a newton which could be conveyed in an annotation as [’N’], may also be expressed as

kg ·m/s2 which could be written in an annotation as [’kg’,’m’,’s^-2’]. Exponents

can be used in unit annotations, and units may be provided in any order.

1 function [F, V] = nbody3d(n, R, m, dT, T)

2 %--------------------------

3 % This function M-file simulates the gravitational

4 % movement of a set of objects

5 % Invocation:

6 % >> [F, V] = nbody3d(n, R, m, dT, T)

7 % where

8 %inputs:

9 %@unit 'n' [] %number of objects

10 %@unit 'R' ['m'] %n x 3 matrix of radius vectors

11 %@unit 'm' ['kg'] %n x 1 vector of object masses

12 %@unit 'dT' ['s'] %time increment of evolution

13 %@unit 'T' ['s'] %total time for evolution

14 %outputs:

15 %@unit 'F' ['N']

16 %@unit 'V' ['m','s^-1']

17 %-------------------------

Figure 5.6 Header of MATLAB simulation of n-body problem with unit annotations

The unit checking aspect, outlined in Figure 5.8, works similarly to the type checking

aspect, taking advantage of these annotations the programmer can use in their code. The

pattern unitAnn is a usage of the annotate pattern which matches all unit annotations,

as they have been specified. The action unitAnnAct specifies that, around these annota-

tions, we weave code which stores the type information and ensures that there is no conflict
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5.2. Units of measurement as types

〈unit annotation〉 ::⇒
'%@' 'unit' '〈variable〉' '[' 〈units〉 ']' 〈comment〉*

〈units〉 ::⇒
〈unit〉 ',' 〈units〉
| 〈unit〉

〈unit〉 ::⇒
| '<si_unit>'

| '<si_unit> '^' INTEGER '

〈<si_unit>〉 ::⇒
m | kg | s | A | K | mol | cd | N | J | ...

Figure 5.7 Definition of a unit annotation

with the current units held in the variable and the ones the annotation specified. We apply

these units as specified by the annotation when they are accessed by using the get pattern,

and store these units in a struct which contains both the units as well as the original value.

The original value is stored in a val field, and the units are stored in a unit field as an array

containing the exponents of each of the 7 base SI units. For example, a value of 3 newtons

would be stored as struct(’val’,3,’units’,[1,1,-2,0,0,0,0]). Wrapping

all units in such a structure would result in disruption of the normal program execution. To

handle this, we perform a unit removal whenever we cannot be certain that such a struct

would be handled appropriately, for example when it is used as a parameter in function

calls, or used as an index for an array. We also match all arithmetic operations, and, using

separate actions for each operation, determine what the units will be after a line of code is

executed. In the case of addition, subtraction and exponentiation, we also ensure that there

is no conflict in the units of the operands. From the point of a unit annotation onward, any

addition or subtraction operations between a specified variable and another variable that

has not been annotated with the same units will result in an error, and the programmer will

be informed of the mismatch. Similarly, exponentiation performed with an exponent that

has units will also result in an error. Using the set pattern, we check on each assignment

whether a unit annotation has been violated, throwing an error when an assignment is made

to that variable that has units other than those specified.

Because the units have been written in the program as annotations, the programmer is
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1 aspect unitchecking

2 ...

3

4 patterns

5 unitAnn : annotate(unit(char, [char]));

6 pMlabConstructs : within(call,*) | within(get, *) |

within(condition, *) | within(logical, *) | ...

7 end

8

9 actions

10 unitAnnAct : before unitAnn : (args)

11 %Store the variable name and units for future

12 varunits[args{1}] = args{2}

13

14 actAddOp : around op(+) : (args, line)

15 actSubOp: around op(-) : (args, line)

16 %Compare the inputs of addition or subtraction, if

17 %they conflict throw an error

18 actMultOp : around op(*) : (args)

19 actDivOp : around op(/) : (args)

20 %Determine what the units will be after

21 %multiplication or division

22 actExpOp : around op(^) : (args, line)

23 %Throw error if exponent is not unitless,

24 %determine what units will be after exponentiation

25

26 addUnits : around get(*) & ¬pMlabConstructs : (name, obj)

27 %if units would not interfere with normal expecution of

28 %the program, we ensure that units are applied based on

29 %name of variable, if an associated annotation exists.

30

31 removeUnits : around get(*) & pMlabConstructs : (name,obj)

32 %remove units if they would interfere with normal

33 %execution of the program.

34

35 actSet : after set(*) : (name, newVal, line)

36 %Check that the units being assigned do not violate

37 %annotation

38 end

39 end

Figure 5.8 Outline of unit checking aspect
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able to run the program without weaving in the aspect once they are satisfied that their

program runs as expected. This means they can choose to run the program with the unit

check on, ensure no unit violations take place, and then run the program without the aspect

afterwards to avoid the overhead associated with unit checking.

5.3 Profiling real positive integers

The default numeric data type in all MATLAB programs is a double-precision floating point.

This has some advantages for scientific programmers, as doubles are more likely to be used

in most scientific computations. Not having to worry about conversions between reals and

integers allows scientific programmers to focus on the functionality of their program. One

negative side effect of this, however, is that all arrays in MATLAB can be indexed using real

numbers. Given that indexing with a non-integer value is not meaningful, MATLAB only

allows certain classes of real numbers to be used for indexing, “real positive integers".

A real positive integer is any real positive number which is equal to the result of round-

ing said number. Checking whether or not this property holds at all program points is a

tedious task for a programmer. However, making a mistake in using a real that is not a

real positive integer could result in unexpected runtime errors. In addition, it presents some

difficulty for those interested in translating MATLAB programs to other languages, as it

cannot necessarily be checked statically. To aid these two groups, an aspect was created to

determine which variables cannot be safely used for indexing.

This aspect, outlined in Figure 5.9 takes advantage of the type pattern, matching on all

array accesses which do not contain real integers. By taking note of the variables which

are not real integers, we can know which variables would be unsafe to use for array access

operations. The pattern realint matches all array accesses which are not real positive

integers. The action actRealInt uses the name and line context selectors to store the

name of the variable being accessed, as well as the line number at which it was accessed.

At the end of the execution of the program, the actRealInt action prints the result of

the profiling, and informs the programmer as to which variables were unsafe, and the lines

where they were found to be unsafe.
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1 aspect safeindex

2 properties

3 nonrealint = container.Map;

4 end

5

6 patterns

7 realint : get(*)&type(¬realinteger);
8 exec : mainexecution();

9 end

10

11 actions

12 actRealInt : after realint : (name,line)

13 %Store the name and line of the variable, if it

14 %has not already been stored.

15 unrealintlines = nonrealint[name]

16 if(¬ismember(unrealintlines,line))
17 nonrealint[name] = [unrealintlines line]

18 end

19

20 results : after exec

21 %Display results

22 ...

23 end

24 end

Figure 5.9 Outline of real integer profiling aspect

5.4 Profiling 1 dimensional arrays

Another area where profiling MATLAB is useful is array dimensions. As MATLAB is a

matrix-based programming language, a one dimensional array can refer to either a matrix

with only 1 column and several rows or a matrix with only 1 row and several columns. This

differs from other more conventional programming languages, where information stored

in a one dimensional array does not have an orientation. While the data contained in a

one dimensional array may seem the same to a programmer regardless of orientation, the

orientation can change the functionality of a program. An improperly oriented array could

lead to program terminating runtime errors, or to data being improperly handled, causing

incorrect results.

To aid programmers in understanding their code, we provide an aspect which profiles
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one dimensional arrays, as outlined in Figure 5.10. We match on all assignments of one

dimensional arrays, and store information about the orientation and size of the array. At

the end of execution of the program, the programmer is informed of the orientation of the

arrays. Weaving and running this aspect provides the programmer with certainty that their

arrays are handled correctly.

1 aspect profileoned

2 properties

3 columnvars = container.Map;

4 rowvars = container.Map;

5 end

6

7 patterns

8 onedcolumn : set(*)&dimension(1,*);

9 onedrow : set(*)&dimension(*,1);

10 exec : mainexecution();

11 end

12

13 actions

14 actColumn : after onedcolumn : (name,line)

15 %Store the name of the variable, the line it

16 %occured on, and its orientation

17 columnslines = columnvars[name]

18 if(¬ismember(columnslines,line))
19 columnvars[name] = [columnslines line]

20 end

21

22 actRow : after onedrow : (name,line)

23 %Store the name of the variable, the line it

24 %occured on, and its orientation

25 rowslines = rowsvars[name]

26 if(¬ismember(rowslines,line))
27 rowvars[name] = [rowslines line]

28 end

29

30 results : after exec

31 %Display results

32

33 end

34 end

Figure 5.10 Outline of one dimensional array profiling aspect
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The aspect itself consists of two primary patterns, both of which make use of the

dimension pattern. The pattern onedcolumn catches all array assignments which

correspond to a 1-dimensional column, and onedrow does the same for 1-dimensional

rows. The actions actColumn and actRow, are performed after the assignments to the

1-dimensional array are made. The name and line context selectors are used so we can

store information about the variable being assigned to, and the location in the code where

the assignment took place. The action results, called after the execution of the pro-

gram, prints out a list of assignments made to 1-dimensional arrays over the course of the

program, consisting of the name, the line it occurred on, and the orientation.

5.5 Loop Transformations with Aspects

In addition to the aspects which help manage type information, we have also contributed

new aspects with the goal of helping programmers improve the efficiency of their code.

One such aspect is the loop unrolling aspect, outlined in Figure 5.11. Loop unrolling is

a fairly simple transformation, in which the body of a loop is executed several times per

loop iteration. The result is that the loop condition needs to be tested fewer times, and

fewer jumps are required. The cost of this transformation is that the program’s code size

increases, and may experience slowdown due to poor register usage. However, unrolling

loops by hand is tedious and time consuming, requiring large amounts of code to be copied

and repeated. In addition, if loop unrolling decreases performance, additional effort must

be expended to repair the code to its original state. This additional programming overhead

decreases the appeal of this transformation.

In order to automate the process, and decrease the effort required to determine whether

manual loop unrolling is a beneficial transformation, we introduce an aspect which unrolls

for loops. This aspect takes advantage of newly introduced loop functionality, as well

as annotations. In order to unroll the desired number of times, the unroll aspect takes

information from an unroll annotation, which the programmer may place in their code,

and which takes the form @unroll 10. It takes as an argument the number of time the

loop should be unrolled, and from the point of the annotation onwards, for loops will be

unrolled the specified number of times. Due to limitations of the AspectMatlab engine, the
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1 aspect unroll

2 properties

3 numunroll = 2;

4 end

5

6 patterns

7 annUnroll : annote(unroll(double));

8 loopp : loopbody(*);

9 end

10

11 actions

12 actUnroll : after annUnroll : (args)

13 numunroll = args{1}

14 end

15

16 unroll2 : around loopp : (looptype, obj)

17 if(strcmp(looptype,'for') && unrollvalue == 2)

18 i = 0;

19 while(i<(size(obj)-2)

20 i = i+1;

21 loopiterator = obj(i)

22 body()

23 i = i+1;

24 loopiterator = obj(i)

25 body()

26 end

27 while(i<size(obj)

28 i = i+1;

29 loopiterator = obj(i)

30 body()

31 end

32 end

33 end

34

35

36 unroll5 : around loop : (looptype, obj)

37 ...

38 end

39

40 ...

41

42 end

Figure 5.11 Outline of Loop Unrolling aspect
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only accepted values for the unrolling parameter are 2,3,4,5, and 10. The body() call is

used to duplicate the loop body multiple times. The result of weaving the aspect is that

each loop will be unrolled to 5 extents, and at runtime, the loop which matches the desired

number of unrolls will be run.

1 aspect reversal

2

3 actions

4 reversal : around loopp : (looptype, obj)

5 if(strcmp(looptype,'for'))

6 i = size(obj);

7 while(i>0)

8 loopiterator = obj(i)

9 body()

10 i = i-1;

11 end

12 end

13 end

14 end

Figure 5.12 Outline of loop reversal aspect

Another loop transformation that can be performed with aspects is loop reversal. Like

loop unrolling, loop reversal is a fairly straightforward, but performing it by hand on each

loop to determine its value is time consuming. The transformation involves reversing the

order in which values are assigned to the index variable. Again, we introduce an aspect

which automates the process of reversing loops. This aspect functions by executing the

body with a loop iterator that proceeds in reverse. This aspect, given in Figure 5.12 and

which involves only a few lines of aspect code, demonstrates the ease with which transfor-

mations can be executed.
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Chapter 6

Performance

In this section, we provide the results of experiments performed on a set of 10 MAT-

LAB benchmarks, which demonstrate the significance of the performance improvements

made to the ASPECTMATLAB compiler, as well as the utility of the scientific aspects pro-

vided. The benchmarks used have come from various projects targeting MATLAB, such as

FALCON [RP99] and OTTER [QMS98] , Chalmers University of Technology1 and “The

MathWorks’ Central File Exchange”2. To analyze performance, we run each of the original

benchmarks in MATLAB without weaving any aspects. We adjust the problem size of the

benchmarks such that they take approximately 25 seconds to execute. We then weave code

for each of the aspects outlined in chapter 4 using the ASPECTMATLAB compiler, and run

each of them in MATLAB with the same problem size. Our performance analysis compares

the running time of several benchmarks with each aspect. We then look at the impact of

the optimizations outlined in Chapter 7 by performing the same experiment with them dis-

abled. For our analysis, we use MATLAB version 2013a, and ran on an Intel Core i7-3820

CPU @ 3.60GHz x 8 processor and 16 GB memory machine running Ubuntu 12.04 LTS.

To obtain our results, we test each individual benchmark 10 times and take the mean of the

results.
1 http://www.elmagn.chalmers.se/courses/CEM/
2http://www.mathworks.com/matlabcentral/fileexchange
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6.1 Benchmarks

For our evaluation, we use a set of benchmarks retrieved from a wide variety of sources.

They were selected both for their coverage of commonly used features in MATLAB as well

as their applicability to the various scientific aspects they were to be tested on. In this

section, we describe the benchmarks used.

beul

Solves the heat equation using the backward Euler method. Features numerous inputs

to which units, types, and dimensions can be applied and verified.

crni

Uses the Crank-Nicolson finite difference method to find a solution to the heat equa-

tion. Suggests dimensions, and types and units can be applied.

diff

Calculates the diffraction pattern of monochromatic light through a transmission

grating. Suggests units for inputs and variables throughout the program, and fea-

tures nested loops.

fdtd

Applies the finite difference time-domain method to compute the electric and mag-

netic fields in a hexahedral cavity with conducting walls. Features several inputs and

outputs to which units, types, and dimensions can be applied, and features several

get and set operations in a single loop.

fiff

Calculates a solution to the wave equation using the finite difference method. Has

numerous inputs to which types, and units can be applied, features nested loops and

several array operations.

hnor

Normalises array of homogeneous coordinates to a scale of 1. Types and dimensions
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can be applied to the input and output argument, which are accessed throughout the

program.

mils

Matlab package for solving mixed integer least squares problems. Features inputs

and outputs for which types and dimensions are suggested.

nb1d

Computes the solution to an n-body problem in one dimension. Features nested

loops, and some inputs for which types and dimensions can be applied, as well as

variables which can be associated with units.

nb3d

Computes the solution to an n-body problem in three dimensions. Features nested

loops, and inputs for which types and dimensions can be applied, as well as variables

which can be associated with units.

capr

Computes the capacitance of a transmission line using finite difference and Gauss-

Seidel iteration. A loop based program which features multiple inputs for which

types and dimensions are suggested, and to which units can be applied.

6.2 Experimental Results

In Table 6.1, we list the execution time in seconds of different benchmarks. We then list the

slowdown experienced when running benchmarks with each aspect. At the bottom of each

column, we also provide the geometric mean of the slowdown across all benchmarks, giv-

ing the average slowdown one can expect to experience with each aspect. Aspects whose

slowdowns are denoted by a "-" were not run with the particular benchmark. The reasoning

for this is that it does not make sense to apply all aspects to all benchmarks - for exam-

ple, the unit checking aspect cannot reasonably be used with a benchmark featuring no

quantities with units.
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Time (sec) Slowdown

Benchmark
Original
Program

Type
Checking

Unit
Checking

Dimension
Profiling

Integer
Profiling

Loop
Unrolling

Loop
Reversal

beul 24.95 1.65 3.78 1.42 1.29 - -
crni 23.56 1.29 7.23 1.34 1.24 0.97 1.05
diff 23.82 3.20 3.75 1.39 1.28 1.18 1.11
fdtd 25.23 3.58 16.15 1.54 1.48 0.96 -
fiff 24.50 1.30 1.24 1.36 1.34 0.98 0.97

hnor 26.12 1.04 - 1.18 1.19 1.00 1.01
mils 25.05 1.17 - 1.55 1.52 - -
nb1d 25.19 3.69 5.88 1.53 1.50 1.04 -
nb3d 24.67 3.53 6.60 1.53 1.42 1.08 -
capr 24.78 1.29 8.10 1.79 1.71 0.98 -
Geometric Mean 2.00 5.43 1.46 1.39 1.03 1.03

Table 6.1 Time in seconds for execution of benchmarks, and slowdowns with woven aspects

Given that most of the aspects are adding extra functionality to the base MATLAB pro-

gram, we expect the runtimes to increase. From the results, we can note that both the type

checking and unit checking aspects result in notable increases in runtime, with the type

checking aspect running 2 times slower than the original program, and the unit checking

aspect running 5.43 times slower than the original program. These slowdowns are the result

of a large number of checks that must be made at every assignment to ensure the program

is behaving as specified. In particular the fdtd benchmark runs 16.15 times slower when

woven with units. The reason behind this is that there are many quantities which can be

annotated with units, and as a result most computations require several secondary compu-

tations to ensure unit consistency. While it may seem cumbersome, one must consider that

once a user has ensured their program is operating as expected, they can opt to cease usage

of these aspects and their program returns to its original speed. The profiling aspects also

feature a notable slowdown, running at 1.46 and 1.39 times slower than original program.

However, much like the type and unit checking aspects, one would expect these aspects to

only be used to find information about the program, and then returning to simply using the

base MATLAB code. Given this usage, the slowdown is quite reasonable.

Unlike the other aspects, we hope that the loop unrolling and loop reversal aspects may

lead to some performance increase, as their purpose is to perform some optimizations prior

to running the program. While on average neither of these aspects outperforms the base

48



6.3. Analysis of Engine Improvements

MATLAB code, we can note that the Loop Unrolling aspect runs faster for three bench-

marks, crni, fdtd, and fiff, and that the Loop Reversal aspect runs faster on fiff. While using

these aspects with all programs would not be advisable, as they do on average run 1.03

times slower, their utility lies in the fact that they make these program optimizations easy.

It is straightforward to simply weave a program with these aspects, and if it performs better,

continue using woven code or use it as an indication that one could consider performing

the optimization manually, and disregard it if it results in a performance decrease.

6.3 Analysis of Engine Improvements

In this section, we demonstrate the value of the engine improvements made to the ASPECT-

MATLAB compiler. First, we perform the same experiments as in the previous section, but

without using the function inlining and the local copy of aspect variable optimizations. Of

note, we do not perform this comparison with the loop optimization aspects, as they rely

on these optimizations in order to function. The results of this experiment are shown in

Table 6.2. As before, entries with a "-" indicate where the aspect did not apply. From

these results, it is clear that the two optimizations have a very significant impact. The unit

checking aspect runs 74.05 times slower than the base MATLAB program, making its use

impractical. The type checking aspect, while not as bad, still performs 43.23 times slower,

which again is an unreasonably large slowdown that makes it too cumbersome to use.

In Table 6.3, we show the results of the same experiment after enabling function inlin-

ing, but without the local copies of aspect variables. The significant decrease in runtimes

that result from enabling function inlining demonstrate clearly the importance of that op-

timization. Clearly, the function call overhead in object-oriented MATLAB is important to

consider for those who are concerned about performance, as eliminating it has obtained a

speedup of about 5 times in the case of the unit checking aspect. As a lack of function

inlining implies that the program must make function calls each time action code is to

be executed, programs with a large number of pattern matches experience a much greater

slowdown. Thus, aspects such as the type checking and unit checking aspects, which will

often perform several actions for a single line of code, experience a much more significant

slowdown than those aspects whose patterns match less frequently. Similarly, accesses to
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Time (Sec) Slowdown

Benchmark
Original
Program

Type
Checking

Unit
Checking

Dimension
Profiling

Integer
Profiling

beul 24.95 25.71 50.51 14.85 13.73
crni 23.56 26.77 100.45 13.26 12.78
diff 23.82 24.18 39.51 13.04 12.41
fdtd 25.23 81.78 116.18 9.67 9.45
fiff 24.50 32.25 35.12 14.34 13.97

hnor 26.12 31.69 - 13.51 13.83
mils 25.05 68.67 - 12.48 10.74
nb1d 25.19 85.75 129.13 11.62 12.84
nb3d 24.67 64.33 115.58 9.89 11.66
capr 24.78 96.59 149.02 9.50 7.96
Geometric Mean 43.23 74.05 12.07 11.77

Table 6.2 Time in seconds for execution of benchmarks, and slowdowns with aspects woven

without function inlining and without local copies of aspect variables

Time (Sec) Slowdown

Benchmark
Original
Program

Type
Checking

Unit
Checking

Dimension
Profiling

Integer
Profiling

beul 24.95 8.07 10.85 5.00 4.85
crni 23.56 8.07 14.34 5.25 4.67
diff 23.82 7.97 10.98 4.66 4.29
fdtd 25.23 9.94 22.25 5.52 5.39
fiff 24.50 6.24 9.88 5.71 5.29

hnor 26.12 4.23 - 4.49 3.89
mils 25.05 8.17 - 3.70 3.50
nb1d 25.19 5.63 16.68 5.74 5.65
nb3d 24.67 6.63 19.11 5.75 5.54
capr 24.78 4.99 16.00 6.13 5.99
Geometric Mean 7.02 14.26 5.14 4.84

Table 6.3 Time in seconds for execution of benchmarks and slowdown with aspects woven with

function inlining but without local copies of aspect variables
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6.4. Code size increase

aspect variables is time consuming, with all aspects performing about 3 times faster with

the local copies being made. When using object-oriented MATLAB code, the time require

to access object properties is significant, and any program which makes heavy use of object

properties would likely see a notable performance increase through local copies.

6.4 Code size increase

It is worth noting that using aspects also results in a notable bloating of the program size

after the action code has been woven. To evaluate the extent of this bloating, in table 6.4

we look at the lines of code (LOC) of each MATLAB benchmark, and note the increase

in size for each aspect. All aspects result in a significant increase in code size, with the

type aspect resulting in woven code that is on average 4 times longer than the original

and the unit aspect resulting in woven code that is on average 14 times longer than the

original. This is a significant increase, but it is to be expected, as most of the aspects weave

multiple lines of code around many array accesses. In addition, many of the simplifications

performed in order to allow for precise weaving also greatly expand the program size. For

most applications, this significant increase in code size is likely not a concern.

LOC Increase in LOC

Benchmark
Original
Program

Type
Checking

Unit
Checking

Dimension
Profiling

Integer
Profiling

Loop
Unrolling

Loop
Reversal

beul 23 4.31 10.81 2.10 2.08 - -
crni 194 3.89 12.15 2.24 2.26 42.12 3.49
diff 115 4.76 9.12 2.13 2.05 46.22 4.21
fdtd 77 5.20 43.19 1.98 2.13 37.28 -
fiff 105 3.42 16.84 2.38 2.34 31.81 4.12

hnor 22 3.14 - 2.27 2.00 44.65 2.46
mils 31 2.18 - 1.87 1.94 - -
nb1d 166 4.95 12.36 2.34 2.37 57.16 -
nb3d 141 5.79 13.54 2.62 2.51 28.12 -
capr 206 4.30 12.07 2.56 2.24 15.23 -

Geometric Mean 4.03 14.66 2.24 2.19 40.06 3.49

Table 6.4 Size in lines of code of benchmarks and increase after weaving aspects
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6.5 Summary

Overall, the type checking, unit checking, and profiling aspects discussed in chapter 4 do

experience a notable slowdown, however, due to the ease with which aspects can be ap-

plied and removed, this presents no significant loss to those who would use these aspects

to better understand their programs. The loop optimization aspects also perform slower on

average, but again, due to the ease with which they can be applied and removed, make it

easy to test the effects of optimizations. With the function inlining and local copy optimiza-

tions, ASPECTMATLAB code runs nearly 10 times faster than it did before - a significant

improvement.
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Chapter 7

Related Work

In this thesis, we present the development of an aspect-oriented compiler targeted at

dynamically typed, array-based scientific languages. In this section, we contrast our work

with other approaches to the problems we address.

There have been very few attempts at bringing aspect-oriented techniques to scientific

programming. Of note is the work by Cardoso et Al. [CFM+13], who also target the MAT-

LAB language, and bring aspect-oriented features to it. Their approach focuses primarily on

the problems of monitoring variables and tracking behaviour in embedded systems. They

implement their own aspect oriented language, which consists of a set of properties, anal-

ogous to ASPECTMATLAB patterns, which are then used in rules, which are analogous to

ASPECTMATLAB actions to insert code into a separate base program. The implementation

features only static pointcuts, matching function calls, variables, functions, tags, programs,

and MATLAB reserved keywords. They introduce the concept of "tags", special comments

that are acknowledged by their compiler in a similar fashion to ASPECTMATLAB anno-

tations. These tags however, operate somewhat differently from our annotations, in that

while they allow code to be woven around them, they cannot contain information which

might be used by the woven code. In the rules demonstrated, these tags are primarily used

to monitor when the compiler passes specific points in the base code.

Another approach to enriching scientific programming using aspect-oriented techniques

is demonstrated by Irwin et al. [ILG+97]. They describe an approach to handling sparse

matrix code through the use of aspect-oriented techniques. When dealing with sparse-
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matrix code, it is desirable to use a high-level matrix language (such as MATLAB), due to

the ease with which you can prototype and produce easily understandable code. However,

in doing so you forgo the advantages of using a lower-level language which can exploit ap-

propriate data-structures to gain increased performance. Their approach allows for a user

to write high level matrix code, but annotate it with information regarding an efficient im-

plementation. Their approach to this dilemma was to create a language called AML, which

allows for a user to write high level sparse matrix code, but annotate it with information

regarding an efficient implementation. As a base language, they approximate the MATLAB

language, but allow additional information to be passed regarding the data representation

of matrices. This information is then interpreted by an aspect weaver, which weaves the

appropriate data structure into the base code, which is then compiled into C/C++. Their ap-

proach, allowing for annotations in code to contain important implementation information

is similar to what we accomplish with our annotate pattern. However, their work targets a

very specific task, while our approach is far more broad.

A similar approach for handling the dynamic types in MATLAB using aspect-orientation,

which inspired our current approach, has been documented in [Hen11]. It proposes the use

of “atype" statements, which provide similar type information about variables as we re-

quire in our type annotations. The “atype" approach was a paper design and did not have

an implementation. Another significant difference between this proposed strategy and the

one we have adopted is the placement of annotations inside of MATLAB comments. The

tradeoff here is that by placing type information in comments, it is possible to run annotated

code without first using the ASPECTMATLAB compiler, however by using atype statements

within MATLAB code, it would be possible to have an aspect which matches these state-

ments, as well as a MATLAB function which executes the necessary type checking code

even if aspect code is not woven - at some performance cost. For our implementation, we

have decided that the best strategy would be to ensure that it is possible to run code without

checks or performance loss.

Other approaches to types in dynamically typed scripting languages have been demon-

strated by Ren et al. [RTSF13] , who introduce rtc, an annotation-based dynamic type

checker for Ruby. Their design goals are similar to our own, in that they allow for check-

ing types only when required, to support rapid prototyping and provide flexibility to the
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programmer. Their approach differs from our own in that it is provided in the form of a

Ruby library with methods for type checking on objects, as opposed to using a separate

compilation process.

In AspectJ, it is possible for patterns to match on constructs based on the annotations

they are annotated with. Note, this is different from MATLAB, where our annotations do

not annotate constructs, and instead designate important areas in code. Noguera et al.

[NKDD10], introduce the idea of dynamic annotations to AspectJ. These achieve a similar

goal to what we have done with ASPECTMATLAB annotations, though are presented in

a very different context. Their implementation allows for annotations to communicate

with the aspect compiler by associating them with conditions that determine when they

should be active. This is somewhat limiting, as the communication is limited to whether

the annotation is either in an on or off state, but succeeds at providing additional flexibility

to users of AspectJ. One could imagine that a similar implementation of their dynamic

annotations which take our approach to communication between base code and aspect code

could increase its capabilities even further.

In our paper, we provide an aspect-oriented approach to dimensional analysis in MAT-

LAB. Other approaches to handling dimensional analysis have been done as part of the

Osprey project [JS06] by Jiang et al. They introduce a constraint-based approach which

models units as types. They use annotations on variables, which contain similar informa-

tion to our unit annotations, and use these annotations to statically detect and report errors.

One advantage of our approach is that by operating at runtime, we can operate correctly in

the face of several dynamic features endemic to MATLAB such as eval.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have provided several valuable extensions to the ASPECTMATLAB lan-

guage. We have carried out various optimizations to improve the performance of aspect-

woven code, and introduced several new aspects with the intent of helping MATLAB pro-

grammers better understand and use their programs.

Our main goal was to make the ASPECTMATLAB language more accessible to pro-

grammers who would be unfamiliar with aspect-oriented programming. We achieve this

goal in several ways. First, through the introduction of multiple new patterns, we make

it easier for programmers who use ASPECTMATLAB to have their aspects function as de-

sired. The introduction of the annotation pattern allows for programmers to communicate

to aspect code through annotations, enabling an exchange of information that is relevant to

aspect code. The type and dimension patterns allow programmers to further specify condi-

tions under which they expect their action code to be woven. The new body keyword for

around advice on loops allows more flexibility for programmers who wish to take advan-

tage of loop patterns, which are core to ASPECTMATLAB, given the loop heavy nature of

scientific programming.

The introduction of new aspects makes it easy for programmers to get started using

ASPECTMATLAB. By introducing a variety of new aspects, it is possible for novice pro-
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grammers to gain immediate benefits from using ASPECTMATLAB, even without a full

understanding of the language itself. Our type and unit checking aspects allow for MAT-

LAB users to better communicate the intentions of their code, and provide them with tools

to verify that their code operates as expected. Our profiling aspects also extend program-

mers’ ability to understand their code. The loop transformation aspects we have included

make it easier for programmers to find ways in which they can optimize their code.

By implementing several optimizations to the woven ASPECTMATLAB code, we sig-

nificantly improve the performance of aspect-oriented code. These optimizations have

been demonstrated to have a significant impact, and expected performance gains have been

shown to easily amount to an order of magnitude.

8.2 Future Work

In this section, we look into possible improvements that could be made to ASPECTMATLAB

which build upon and address issues with our current implementation. It is our belief that

as usage of ASPECTMATLAB grows, people will find new and exciting ways to use the

tool. In this regard, the language holds much potential for extension, and can grow to

suit the needs of its users with new patterns, targeting different MATLAB constructs. The

development of more general-purpose scientific aspects would also contribute to the utility

of ASPECTMATLAB. By packaging the compiler with a greater number of aspects that

easily allow scientists to gain advantages with their MATLAB programming, there will be an

enhanced incentive to use ASPECTMATLAB. Other areas of improvement lie in increasing

the readability of woven code. Currently, woven code can be difficult for a human to

parse, due in part to a number of simplifications that are necessary for pattern matching.

These simplifications result in a low-level structure, which can obscure the meaning behind

several operations. Transformations could be performed on the woven code to improve

readability.

Performance improvement is another large area for future investigation. While our

experience with inlining action code has shown it to be often beneficial, it is possible that a

more selective heuristic for determining when function inlining should be performed could

lead to some performance increases. Knowledge obtained from type annotations as we have
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described could also be used by a MATLAB JIT compiler to produce more efficient code.

One could achieve performance gains by writing a MATLAB implementation which took

annotations into account, perhaps by relying on the user ensuring type safety by running

the program with our type checking aspect beforehand.

It is our hope that scientists will find use for the example cases provided, and use them

as a platform to develop their own aspects, pushing the ASPECTMATLAB language in new

and exciting directions.
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Appendix A

Using ASPECTMATLAB

The current release of the ASPECTMATLAB compiler is can be downloaded from

http://www.sable.mcgill.ca/mclab/aspectmatlab/

After obtaining a copy of compiler, it can be used to weave aspect files in one of two

ways.

A.1 Execute Jar Directly

Among the included files, you can find and execute the ASPECTMATLAB jar directly. As

an example, one may run java -jar amc.jar aspect.m matlabfunction.m,

which would apply the aspect to the function. Any number of aspects and functions may

be provided, and each aspect will be woven to each function. A weaved directory will

be placed in the current working direction, and code woven by the compiler can be found

within.

When running from a terminal, ASPECTMATLAB allows for several flags, outlined

below.

-main A MATLAB function file can be specified as the entry point to a program by

inserting the -main flag before the function name.

-m By default, standard MATLAB code is translated into Natlab code prior to weav-

ing. Using the -m tag skips this translation.
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-out The output directory can be specified using a -out flag, followed by the directory

name.

-version The version number can be checked with the -version flag.

-help The -help or -h flag can be can be used to describe useage of the ASPECT-

MATLAB compiler.

A.2 Using ASPECTMATLAB from within a MATLAB envi-

ronment

To make ASPECTMATLAB easier to use, we have included in this release an interface that

can be used from within a MATLAB environment. This interface can be used to choose

aspect files and MATLAB functions to be woven, and allows for weaving with the push of a

button. To use ASPECTMATLAB within MATLAB, simply place the amc directory into the

working directory of your MATLAB environment. Then, simply call the runAMC function.

The interface shown in Figure A.1 will be displayed.

Figure A.1 Using ASPECTMATLAB in a MATLAB environment.

To add aspects, select the desired aspect from the top left box, and press the "Add As-

pect" button. Added aspects will be displayed in the top right box, and can be removed with
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A.2. Using ASPECTMATLAB from within a MATLAB environment

the "Remove Aspect" button. To add a MATLAB file, select the desired MATLAB function

in the bottom left box and press the "Add Matlab File". Added MATLAB functions will be

displayed on the bottom right, and can be removed with the "Remove Matlab File" button.

The "View" buttons can be used to preview aspects and MATLAB files, displaying their

contents in the center pane. Once all desired files have been selected, press the "Weave"

button to run the ASPECTMATLAB compiler with the selected aspects and MATLAB files.

The woven output will be placed in a weaved directory.
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