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Abstract

MATLAB is a popular dynamic array-based language commonly
used by students, scientists and engineers, who appréiceata-
teractive development style, the rich set of array opesatbe ex-
tensive builtin library, and the fact that they do not havel¢éalare
static types. Even though these users like to program AmLMB ,
their computations are often very compute-intensive aagaten-
tially very good applications for high-performance langes such

as X10.

To provide a bridge between MLAB and X10, we are devel-
oping MiX10, a source-to-source compiler that translatestM
LAB to X10. This paper provides an overview of the initial design
of the MIX10 compiler, presents a template-based specialization
approach to compiling the builtin MrLAB operators, and provides
translation rules for the key sequentialAM.AB constructs with a
focus on those which are challenging to convert to semdlytica
equivalent X10. An initial core compiler has been impleneeint
and preliminary results are provided.

Categories and Subject Descriptors Software Notations and
tools [Compiler§: Source code generation

General Terms Languages

Keywords MATLAB, X10, source-to-source compiler

1. Introduction

MATLAB is a popular numeric programming language, used by
millions of scientists, engineers as well as students wade[12].
MATLAB programmers appreciate the high-level matrix operators,
the fact that variables and types do not need to be decléethrge
number of library and builtin functions available, and theerac-
tive style of program development available through the Hbid

the interpreter-style read-eval-print loop. However, retkough
MATLAB programmers appreciate all of the features that enable
rapid prototyping, their computations are often quite catagn-
tensive and could benefit from a system more suited to higloper
mance computing.

On the other hand, X10 is an object-oriented and statically-
typed language which uses cilk-style arrays indexedPbiynt ob-
jects, and has been designed with well-defined semantichighd
performance computing in mind.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

X10°13 June 20 2013, Seattle, WA, USA.
Copyright(© 2013 ACM 978-1-4503-2157-0/13/06. .. $15.00

Laurie Hendren

McGill University
hendren@cs.mcgill.ca

We have been working on M10, a source-to-source compiler
that helps to bridge the gap betweemiAB, a language familiar
to scientists, and X10, a language designed for high pegnos.

In particular, this paper identifies the key challenges amdap-
proach to compiling MTLAB to X10, focusing on the sequential
core of X10.

The ultimate goal of the MK10 compiler is two-fold. First,
it can be used as a back-end for aatf\lAB system, producing
high-performance code via X10. Second, it can be used to help
programmers port their MrLAB code to X10 source code. The
techniques presented in this paper provide the core uponhwhi
these two ultimate goals can be achieved.

The major contributions of this paper are as follows:

Identifying key challenges: We have identified the key challenges
in performing a semantics-preserving translation efas to
X10.

Overall design of M1X10: We provide the design of a source-
to-source translator, building upon the McLab front-end an
analysis toolkits.

M1X10 IR design: In order to provide a convenient target for the
first level of translation, we have defined a high-levelXd0
IR. This IR is currently used for code generation, but in the
future will also be used for code simplifications and transfo
mations.

Template-based builtin framework: MATLAB supports many
builtin operations that can operate over a wide variety of ru
time types. We have designed and implemented a template-
based system that allows us to generate specialized X10 code
for a collection of important builtin operations.

Code generation strategies for key language constructs. There
are some very significant differences between the semantics
of MATLAB and X10. A key difference is that MLAB is
dynamically-typed, whereas X10 is statically-typed. Rart
more, the type rules are quite different, which means that th
generated X10 code must include the appropriate explipé ty
conversion rules, so as to match theMAB semantics. Other
MATLAB features, such as multiple returns from functions, a
non-standard semantics fosr loops, and a very general range
operator, must also be handled correctly.

Working coreimplementation: We have implemented the core
functionality for the MX10 compiler, concentrating on the
sequential part of X10, and we provide some initial results.

The remainder of this paper is structured as follows. IniSe&
we describe the overall structure ofi X110, and how we build upon
the McLas framework. Section 3 provides the high-level design of
M1X10 backend with details about theiX10 IR. In Section 4 we
discuss the need to have several overloaded methods camcksg
to a MATLAB builtin method and describe the specialization tech-
nique to select the correct method in the generated X10 dade.



Section 5 we explain how various MLAB features are mapped to
X10. Section 6 Provides a performance comparison of gesgbrat
X10 code with the original MTLAB code. Section 7 talks about
previous work related to static MLAB compilation. Finally, in
Section 8 we conclude and discuss some planned future work.

2. Background

M1X10 is implemented on top of several existinghAM.AB com-
piler tools. The overall structure is given in Figure 1, wdéhe
new parts are indicated by the shaded boxes, and future \gork i
indicated by dashed boxes.
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Figurel. Overview of MiX10 structure

MATLAB is actually quite a complicated language to compile,
starting with its rather unusual syntax, which cannot begdwith
standard LALR techniques. There are several issues that lmus
dealt with including distinguishing places where white apand
new line characters have syntactic meaning, and filling tioopl
end keywords, which are sometimes optional. The MeLfront-
end handles the parsing of AMLAB through a two step process.
There is a pre-processing step which translatesIMB programs
to a cleaner subset, calléthtlab, which has a grammar that can
be expressed cleanly for a LALR parser. The MelLfront-end
delivers a high-level AST based on this cleaner grammar.

After parsing, the next major phase ofi KtL0O uses the Mc&F
framework [3, 4] to disambiguate identifiers usikgnd analy-
sis [5], which determines if an identifier refers tovariable or a
named functionThis is required because the syntax oATMAB
does not distinguish between variables and functions. kame
ple, the expression a(i) could refer to four different comagions,

a could be an array or a function, and i could refer to the ipuilt
function for the imaginary valug or it could refer to a variable i.
The McSar framework also simplifies the AST, producing a lower-
level AST which is more amenable to subsequent analysis.

The next major phase is the Tamer [6], which is a key compo-
nent for any tool which statically compiles MLAB. The Tamer
generates an even more defined AST callather IR as well as

performing key interprocedural analyses to determine Hwlcall
graph and an estimate of the base type and shape of eachl@ariab
at each program point. The call graph is needed to deterntinghw
files (functions) need to be compiled, and the type and shdpe i
mation is very important for generating reasonable codenvthe
target language is statically typed, as is the case for X10.

The Tamer may find dynamic MLAB features which cannot
be statically compiled, in which case it flags that featurenas
tame, and the ultimate goal is to support a refactoring tdativ
would aid the programmer to restructure their inpuATMAB pro-
gram in order to eliminate the wild feature.

The Tamer also provides an extensilméerprocedural value
analysisand an interprocedural analysis framework that extends
the intraprocedural framework provided by M@S Any static
backend will use the standard results of the Tamer, but B als
likely to implement some target-language-specific analysleich
estimate properties useful for generating code in a speeifget
language. We have currently added an analysis for detemgiha
MATLAB variable isreal or complex

For the purposes of NK10, the output of the Tamer is a low-
level, well-structured AST, which along with key analysifarma-
tion about the call graph, the types and shapes of variabtes,
X10-specific information. These Tamer outputs are providetie
code generator, which generates X10 code, as discusseglniexh
section.

3. Design of X10 Generator and MiX10 IR

The MIX10 code generator is the key component which makes the
translation from the Tamer IR, which is based omiMAB pro-
gramming constructs and semantics, to X10. The overaltistre

of the MiX10 code generator is given in Figure 2.
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Figure2. Structure of the MiX10 code generator

Rather than do a direct code generation to X10 source code, we
have defined a general and extensible IR to represent X10aWe h
implemented the IR using JastAdd [2, 7], which allows us &ilga
add new AST nodes by simply extending the JastAdd speciitati
grammar.



Although we currently do not transform the1M10 IR very
much, the ultimate goal is to support a variety of analyses an
transformations that can be used to: (1) produce more effii&0
code, and (2) produce more readable X10 code.

Note that there are potentially two places that optimizetiand
transformations may happen: either at the Tamer IR levet trea
M1X10 IR level. It is our intent to put any analysis or transfor-
mation that is not X10-specific into the Tamer IR, so that othe
back-ends can benefit from those improvements. However, opt
mizations and transformations that are specific to X10 pnogr
ming constructs (such as points and regions) and semanifics w
need to be done on theiM10 IR. We may also use the M10 IR
as a convenient place to insert instrumentation code.

As shown in Figure 2, the X10 source code generator actually
gets inputs from two places. It uses theX10 IR to drive the
code generation, but for expressions referring to buiMiarLAB
functions it interacts with th8uilt-in Handler. In the next section,
Section 4, we discuss this process in in more detail, andén th
subsequent section, Section 5, we address source codag@mer
for the key X10 constructs.

4, MATLAB Builtins

MATLAB builtin methods are the core of the language and one
of the features that make it popular among scientists. Thiey p
vide a huge set of commonly used numerical functions. All the
operators, including the standard binary operaters €, *,/),
comparison operators<( >, <=, >=, ==) and logical opera-
tors &, &&, |, |I)are merely syntactic sugar for corresponding
builtin methods that take the operands as arguments. Fon-exa
ple an expression like+b is actually implemented gslus (a,b).

An important thing to note is that unlike most programming-la
guages, all the MrLAB builtin methods by default operate on ma-
trix values as a whole. For exampleb or mtimes(a,b) actually
performs matrix multiplication on matrix values and b. How-
ever, most of the builtin methods also accept one or morauscal
or more accuratelyl x 1 matrix arguments. Builtin methods are
overloaded to accept almost all possible shapes of arggmEmis
mtimes(a,b) can have both andb as matrix arguments (includ-
ing 1 x 1 matrices) with number of columns iequal to number
of rows inb, in which case the result is a matrix multiplicationzof
andb or one of them can belax 1 matrix and other can be a matrix
of any size and the result is a matrix containing each elewfghe
non-scalar argument times the scalar argument. Wheresgsitpe,
MATLAB builtins also support complex numerical values. X10 on
the other hand, like most of the programming languages tgera
on scalar values by default.

Due to the fact that X10 is still new and evolving, it has a very
limited set of libraries, specially to support a large stiligeavail-
able MaTLAB builtin methods. The X10 Global Matrix Library
(GML) supports double-precision matrix operations howet/és
still not as extensive as MLAB’s set of operations and it poses
some restrictions:

1. It works on values of typHatrix instead of X10 typdrray
which means it needs explicit conversion kfray values to
Matrix values before performing a matrix operation and and
then a conversion of the results backateray type. This con-
version may be a large overhead, especially for small daés si

. GML is limited to Matrix values of two dimensions and con-
taining elements of typ@®ouble, whereas many MrLAB
builtin methods support values of greater number of dimen-
sions.

. GML currently does not support complex numerical values
whereas MTLAB naturally supports them.

4. Currently GML requires a separate installation and comig
tion which is non-trivial specially for scientists who nesame-
thing that works out of the box.

Due to above restrictions, X10 Global Matrix Library is udef
in some situations, for example when there is a matrix midap
tion of a very large data size, but cannot be used or is not d goo
choice for a large number of operations.

For a language with open-sourced libraries, it would beiptess
to actually compile the library methods to X10. However, san
MATLAB libraries are closed source and thus it is not possible to
translate them to X10.

4.1 MiX10 builtin support framework

We decided to write our own X10 implementations of the com-
monly used MTLAB builtin methods. Currently we have imple-
mented only those methods that are used in our benchmairtkss In
paper, we concentrate on how these methods are includec in th
generated X10 code with minimal loss of readability and qerf
mance rather than the actual implementation.

The code below shows the X10 code for theAB builtin
methodplus(a,b).

public static def
plus(a: Array[Double], b:Array[Double])
{a.rank == b.rank{
val x = new Array[Double](a.region);
for (pin a.regionj
x(p) = a(p)+ b(p);

return x;

}

public static def plus(a:Double, b:Array[Double])
val x = new Array[Double](b.region);
for (pin b.region)
X(p) = a+ b(p);

return x;

}

public static def plus(a:Array[Double], b:Doublg)
val x = new Array[Double](a.region);
for (pin a.region]
x(p) = a(p)+ b;

return x;

}

public static def plus(a:Double, b:Doublég)
val x: Double;
X =atb;
return x;

}

This X10 code contains four overloaded versions (and it stil
does not contain methods to support complex values and ektyp
other than Double) based on whether the arguments are scalar
array and their relative position in the list of arguments.

Including all the overloaded versions in the generated Xddec
would result in lot of lookup overhead, would require proitigc
redundant code (versions of methods with arguments of &imil
shape but different types will have the same algorithm) aadlav
generate large code with less readability. Instead we dedig
specialization technique that selects the appropriatsioms of
only the methods used in the source&sNlAB program.



After studying numerous builtin methods we categorizedtmos
of them into following five common types:
Type 1. All the parameters are scalar values or no parameters.
Type 2. All the parameters are arrays.
Type 3: First parameter is scalar, rest of the parameters are arrays

Type 4: Last parameter is scalar, rest of the parameters are arrays.

Type5: Variable number of parameters.

Each of these categories use the same code template far diffe
ent types of values.

We build an XML file that contains the method bodies for each
category for every builtin method (that we support). We iempént
the following strategy to select and generate the corredtran

MATLAB functions are mapped to X10 methods. If it is the
entry function, the type of the input argument is specifiedhsy
user (Tame IR requires to have an entry function or a drivection
with one argument. This function may call other functionghwi
any number of input arguments). For other functions thematar
types are computed by the value analysis performed by theam
on the Tame IR. The type information computed includes the ty
of the value, its shape and whether it is a complex value. IOthe
statements in the function block are processed recursigrty
corresponding nodes are created in the X10 IR. Finally, eéfeh
are any return values, as determined by the Tame IR, a return
statement is inserted in the X10 IR at the end of the methadtlelf

function returns only one value, saythen the inserted statement

is simply return x; but if the function returns more than one

values (which is quite common in MLAB) then we return a

quired methods. First, we make a pass through the AST to make one-dimensional array of typeny whose elements are the values

a list of all the builtin methods used in the sourcexMAB pro-
gram. Next, we parse the XML file once and read in the X10 code
templates for all the categories of the builtin methodseméd in
the first step. Next, whenever a call to a builtin method is epad
based on the results of the value analysis we generate thector
method header and select the corresponding builtin tes et
that method. The generated methods are finally written to @ X1
class file name#tix10.x10. In the code generated for actuahv

LAB program the call to a builtin method is simply replaced by a
call to the corresponding method in the Mix10 class. For gstam
MATLAB expressiorplus(a,b) is translated to X10 expression
Mix10.plus(a,b).

Using the above approach not only improves the readability o
the generated code, but it also allows for future exteriibiletter
maintenance and more specialization. One of the spedializidat
we are currently working on is the ability to use the Globaltiia
Library for the available methods in it and whenever the dita
is large enough.

5. Mappingwild MATLAB featuresto X10

MATLAB is a programming language designed specifically for nu-
merical computations. Every value isMatrix and has an associ-
ated array shape. Even scalar valueslaxel matrices. Vectors are
1xnornx1matrices. All the values are by default of tyfeuble.
MATLAB naturally supports imaginary components for all numer-
ical values and almost all operators and library functiamspsrt
complex inputs. In the rest of this section we describe sohtieeo
key features of MTLAB that demonstrate what makesaWLAB
different and challenging to compile statically and tecfueis used
by Mi1X10 to translate these “wild” features to X10.

5.1 Methods

A function definition in MATLAB takes one or more input argu-
ments and returns one or more values. A typicaias function
looks as follows:

function[x,y] = foo(a,b)

X =a+3;
y=hb-3;
end

This function has two input argumenrdsndb that can be of any
type and any shape and returns two valuaady of the same shape
asa andb respectively and of types determined byaM AB 's type
conversion rules. The Tamer IR provides a list of input argota
and a list of return values for a function. The interprocedlvalue
analysis identifies the types, shapes and whether they axple®
numerical values for all the arguments and the return values

that are returned. So, for the above example the returnnsésie
isreturn [x as Any, y as Any];. Note that the use of short
syntactic form for one-dimensional array constructionrioves the
readability of the generated code. Below is the generatdd tar
the simple example above.

static def foo(a: Double, b: Doublg)
var mc_tO: Double = 3;
var x: Double = Mix10.plus(a, md0);
var mc_tl: Double = 3;
var y: Double = Mix10.minus(b, md1);
return [x asAny, y as Any];

Also note that the variablesc_t0 andmc_t1 are introduced
by Tamer in the Tame IR. Note that their typeDisuble because
in MATLAB values arelouble by default, to specify an integer in
MATLAB one must use an explicit conversion, suchias32(3).
5.2 Types, Assignmentsand Declarations
MATLAB provides following basic types:

e double, single: floating point values

e uint8, uint16, uint32, uint64: unsigned integer values
e int8, int16, in32, int64:integer values

e logical: boolean values

e char: character values (strings are vectorshér)

These basic types are naturally mapped to X10 base types as

follows. Floating point values are mappedigible andFloat re-

spectively, unsigned integers are mappedBpte, UShort, Ulnt
andULong, integer values are mappedBgte, Short, Int and
Long, logical is mapped tBoolean andchar is mapped t€har
(vector of chars is mapped $aring type). If the shape of an iden-
tifier of typeT is greater than x 1 it is mapped tairray [T]. The

type conversion rules are quite different from standardlaiges.

For example, an operation involvingg@uble and anint32 re-

sults in a value of typent32.1 MiX10 inserts an explicit typecast
wherever required.

All the MATLAB operators are designed to work on matrix val-
ues and are provided as syntactic sugar to the correspohdittig
methods that take operands as arguments. Operators al@aolest

to support different semantics farx 1 matrices (scalar values).

MATLAB provides two types of operatorsmatrix operatorsand
array operators Matrix operators work on whole matrix values.

These include matrix multiplicatiors] and matrix division X, /).

1The type rules are explained in detail in the Tamer documenis.
sable.mcgill.ca/mclab/tamer.html.



Array operators always operate in an element-wise manneex
ample array multiply operators performs element-wise multipli-
cation. M X10 implements all operators as builtins as described in
Section 4.

MATLAB is a dynamically typed language which means that
variables need not be declared and take up any value thatthey
assigned to. X10 however is statically typed and requireabtes
to be declared before being assigned taXM0 maintains a list
of all the declared variables. It starts with an empty lishéfever
an identifier appears in an assignment statement on LHSjsf it
not already present in the list, a declaration statemenddgd to
the X10 IR and the variable (with its associated type andevalu
information) is added to the list, else if it is already pmsin
the list, the assignment statement is added to the X10 IRtand t
associated type and value information is updated. In casBInT-

LAB assignment statement is inside a loop and needs a dedtaratio
the declaration statement (without any assignment) is chdde
the method block outside any loop or conditional scope aed th
assignment statement is added in the scope where it is pri@sen
MATLAB code. If the identifier on LHS is an array, then the declara-
tion creates a new array with the region corresponding tshiape

of the array. For example a MLAB statement likea=b; where
shape ofa is, say,3 x 3 and type isdouble will be translated

to a:Array[Double]l=new Array[Double](1..3%1..3,b);
(outside the scope of any loops or conditionals). Note that t
indexing starts from and noto, the way it is done in MTLAB.

5.3 Loops

Loops in MATLAB are fairly intuitive except for one semantic
difference from most of the languages. Irfar loop if the loop
index variable is redefined inside the body of the loop theméw
value is persistent only in a particular iteration and doatsaffect
the number of loop iterations. For example, consider thieviohg
listing.

function [x] = forTestl(a)
for i = (1:10)
i=3;
a=a+i;

Note that inside every iteration, the value of loop indexalale i
is 3 but the loop still terminates after ten iterations. Thewe code
would be translated to the following X10 code:

static def forTestl (a: Double)

var mc_t0: Double = 1;

var mc_tl: Double = 10;

var i_x10: Double;

var b: Double;

var i: Double;

for (i-x10 = mctO; (i-x10 <= mc.t1); i-x10 = (ix10 + 1))

i =i.x10;
i=3;
b = Mix10.plus(a, i) ;

var x: Double = a;
return x;

}

To handle this somewhat different semantics we introdu@ma n
loop index variable and assign it to the original loop indexiable
at the beginning of the loop body. The rest of the loop body is

translated by standard rules. Note that the new loop indeahia
is introduced only if the actual loop index variable is redefl
inside the loop body.

5.4 Conditionals

In MATLAB conditionals are expressed using the if-elseif-else con-
struct and do not have any wild semanticsaiMAB also allows
switch statements which are converted to equivalent #-state-
ments by the Tamer. It also recursively converts a statefitent

if (B1) S1 elseif (B2) S2 else S3 to a series of if-else
clauses likeif (B1) S1 else{ if(B2) S2 else S3}. Thisif-
else construct is intuitively mapped to the if-else corstim X10.

5.5 Array access and Colon operator

Arrays (or matrices) are the core ofAVIiLAB and most of the data
read and write operations involve accessing one or a setofezits
of an array. There are two basic ways of accessing elements of
array, as described below.

Accessing individual elements: This type of access is similar
to that in C or Java where an array element is accessed given
its location index along each dimension of the arrayatiaB
naturally supports linear indexifdylore precisely, if the number of
subscripts in an array access is less than the number of diomsn
of the array, the last subscript is linearly indexed overémeaining
number of dimensions in a column-major fashion. (Support fo
linear indexing in MX10 is currently a work in progress). Note
that array indexing in MTLAB starts from 1. MTLAB allows the
use of keyworcend or an expression involvingnd (like end-1) as
a subscriptend denotes the highest index in that dimension.

This subscripting operation to access individual eleménts
mapped to X10 array subscripting operation. If the rank cdyais
4 or less, itis subscripted directly by integers correspaontb sub-
scripts in MATLAB otherwise we creategoint object from these
integer values and use it to subscript the array. In eageés used, if
we have complete shape information we easily know the highes
dex for a particular dimension, otherwise if shape infoioratan-
not be determined at compile time we userhe (Int i) method
provided by theRegion class of X10. Thus an array access such
asa(i,end) istranslated ta(i as Int, a.region.max(1)).
Whenever an identifier of typBouble (default in MATLAB) is
used as a subscript, we need to explicitly cast itrte.

Accessing a set of elements: MATLAB supports accessed and
operations on a set of elements as a whole. To achieve this M
LAB allows the use of an expression involvirglon operator
in place of an integer subscript. An expression sucla as (or
colon(a,b)) creates avector of integefs, a+1, a+2, ...b]l.°
In a second form, an interval size can also be provided. Fameie
a:i:bwithinterval sizei creates avectdra, a+i, a+2i, ...kl
wherek is the greatest integer such thak<i. Use of acolon ex-
pression for array subscripting takes all the elements efattay
for which the subscript in a particular dimension is in thetee
created by theolon expression in that dimension. For array sub-
scripting we can also use ” without specifying the lower and the
upper limit. In this case elements for all the indices in fieaticular
dimension are accessed.

Consider the MTLAB code below:

function [x] = crazyArray(a)
y =ones(3,4,5);
x =y(1,2:3,2);

end

2http://www.mathworks.com/help/matlab/math/matrix-
indexing.html

3Seehttp://www.mathworks.com/help/matlab/ref/colon.html.



In this codey is a 3-dimensional array of shapex 4 x 5. x is an
array created by copying the elementsat (1,2,1), (1,2,2),
1,2,5), (1,3,1), (1,3,2), ... and (1,3,5). How-
every itself is of shapel x 2 x 5 and is indexed normally. This
code is translated into the following X10 cofle.

public static def crazyArray(a: Double)
var mc_tl: Double = 3;
var mc_t2: Double = 4;
var mc_t3: Double = 5;
val y: Array[Double] =
new Array[Double]( Mix10.ones(mgal, mct2, mct3));
var mc_t4: Double = 2;
var mc_t5: Double = 3;
val mc_t0: Array[Double] =
new Array[Double]( Mix10.colon(mct4, mct5));
var mc_t6: Double = 1;
val x: Array[Double];
val mix10_pt.y: Point;
mix10_pty = Point.make(%(mc.t6 as Int),
1—(mc_t0(mc.tO.region.min(0))s Int), 0);
X = new Array[Double]((1..1x
((mc._t0.region.min(0) s Int..
(mc_t0.region.max(0)as Int)«
((y.region.min(2))..y.region.max(2)),
(p:Point(3))=>y(p.operato+ (mix10_pt.y)));

Our current shape analysis engine does not compute the shape

of arrays involvingcolon operator but we can use the
Region.min(Int i) andRegion.max(Int i) methods to com-
pute the correct values at run time. In the above example,rate fi
create a newoint object that serves as an offset to get the ele-
ments at the correct position of the array accessed. Themeagec
the new array with region derived from the resultant vectont
thecolon operator for second dimension and from the third dimen-
sion of the source array. Thus the resultant arrayhas the region
1..1%1..2*1..5. Note that MX10 creates arrays with starting
index 1 to maintain readability of the generated code farhhB
users. This is easy due to region-based arrays in X10. Rngvid
support forcolon operator in array access on LHS of an assign-
ment statement and support feslon operator with specified in-
terval value is currently a work in progress.

5.6 Function calls

Function calls in MATLAB are similar to other programming lan-
guages if the called function returns nothing or returngy anle
value. However, MTLAB allows a function to return multiple val-
ues. Whenever a call is made to such a function, returneésale
received in a list in the order specified by function defimiti&or
example in the statemelik,n] = bubble(a); a call is made to
the functionbubble which returns two values that are read isto
andn respectively. This statement is compiled to following cade
X10.

var x: Double;

var n: Double;

val _x_n: Array[Any];

X_n =bubble(A) ;

x = _x_n(OasInt)as Double ;
n =_x_n(lasInt)as Double ;

4Note that we are currently implementing aggregation tramsétions
which will aggregate expressions, including folding camss into expres-
sions.

The key idea here is to create an array of typg and read the
returned value. Remember thatt X1LO packs the multiple return
values of a method in an array of typey and returns it. Individual
elements of the list simply read the values from this arrathé
function call is inside a loop, all the declarations are ntbwat of
the loop and only assignments are inside the loop.

5.7 CédlArrays

Cell arrays in MATLAB are arrays of data containers called cells
and each cell can contain data of any type. For exatfyi€ell =
{’x7,10,°I like’,ones(3,3)}; creates a cell array containing
values of type char, double, char array and a double array. To
convert to X10, the elements of the cell array are packedanto
X10 array of typeAny. While accessing an element it is type cast
into its original type. Consider the following M LAB listing:

function [x] = cellTest(a)
m = ones(2,3);
n =[4,5];
myCell ={m, n«100};
x =myCel{1,2};
end

It creates a cell array containing two arrays. It is tramslab
the below X10 code:

static def cellTest (a: Double)
{
var mc_t2: Double = 2;
var mc_t3: Double = 3;
var m: Array[Double] =new
Array[Double](Mix10.ones(md2, mct3));
var mc_t5: Double = 4;
var mc_t6: Double = 5;
var n: Array[Double] =new
Array[Double](Mix10.horzcat(md5, mct6));
var mc_t0: Array[Double] =new Array[Double](m);
var mc_t7: Double = 100;
var mc_tl: Array[Double] =new
Array[Double](Mix10.mtimes(n, md7));
var myCell: Array[Any] = [mc_t0 as Any ,mc.tl as Any];
var mc_t9: Double = 1;
var mc_t10: Double = 2;
var x: Array[Double];
x = myCell(mct9 as Int, mc_t10 as Int) as Array[Double];
return x;

6. Evaluation

In this section we present the preliminary results of testir
current implementation. To test our compiler we used some of
the benchmarks used in the previous McFor project [10] plus
some standard programs like bubble sort, sieve of Eratosthe
Fibonacci sequence generation, etc. For this paper wergrése
results for the following seven benchmarks.

e bubbleis the standard bubble sort. We chose this because it
involves nested loops and consists of many array read and cop
operations.

e capr computes the capacitance per unit length of a coaxial pair
of rectangles. It involves four methods and operations on 2-
dimensional matrices. It is also dominated by a large number
of 2-dimensional array accessemapr.rank is a specialized
version ofcapr for which we statically declare the rank of all
the arrays in the generated X10 code.



e dich finds the Dirichlet solution to Laplace’s equation. It in-
volves mathematical operations on a 2-dimensional mairix a
is dominated by a large number of 2-dimensional array aesess
inside nested loopslich.rank, similar tocapr_rank, is the spe-
cialized version ofdich with statically declared ranks for the
arrays.

o fiff is a finite difference solution to a wave equation. It is dom-
inated by a number of trigonometric operations and involves
2-dimensional matrix data.

e mbrt computes a mandelbrot set. The main features of this
benchmark are computations involving complex numerichl va
ues and loops.

e nbldsimulates the gravitational movement of a set of objects.
It involves computations on column vectors inside nestegdg$o
nbldarr uses a specialized version of the X0 library which
has specialized methods for column vectors.

We compiled the X10 code generated by our current implemen-

marks are dominated by a large number of two-dimensionalarr
accesses inside nested loops where most of the computation i
done. It turns out that the X10 optimizer inlines the codetlf@se
array accesses, and the inlined code is fairly long and caxfpt
each access, including a dynamic check that the rank of thy &r

2. With all of the array reads and writes inlined, the core pota-

tion methods become too large/complex for the Java JIT dempi
to handle and thus the core computation can no longer be 3iif co
piled and is instead interpreted, leading to huge slowdoftis
was observed both for the Java Hotspot and J9 JITs).

To reduce the amount of code that the X10 compiler gener-
ates for the two-dimensional array accesses, we defiapdrank
anddich.rank which are the specialized versionsaapr anddich
where ranks of the arrays are declared statically in the rgée
X10 code (currently this specialization is done by hand &b its
effects on performance and will be implemented automaéyicdal
M1X10 in future). The results of this specialization were gustir-
prising. It eliminated the dynamic rank checking code frbmgen-
erated Java code which was quite a large overhead given tias i

tation of MiX10 using both the managed backend (generates Java)inserted for every array access and included exceptionlingnd

and the native backend (generates C++). For the managedrzhck
we compiled the generated X10 code with following optimizat
switches: no optimizationsp, -NO_CHECKS and-0 -NO_CHECKS.
Only -NO_CHECKS and-0 -NO_CHECKS flags were used for the na-
tive backend since [8] states thalD_CHECKS option is required for
acceptable multi-dimensional array performance. We adgal the
X10 compiler with libraries compiled witRDNO_CHECKS=true
when we usedNO_CHECKS for compiling generated X10 code. We
first verified the correctness of the generated code by usiail s
data. All the benchmarks produced accurate results compare
the results produced by MLAB for original MATLAB implemen-
tations.

All the programs were executed on a machine with Intel(R)
Core(TM) i7-3820 CPU @ 3.60GHz processor and 16 GB mem-
ory running GNU/Linux(3.2.0-26-generic #41-Ubuntu). TWeT-

For capr_rank the generated code Java code was now short enough
for the JIT compiler to compile the core computation method a
thus gave speedups of over 120 times compared to unspedializ
version (with optimization switched on). However, fdich.-rank
even though this specialization did provide a speedup ofiabo
1.4 times over the optimizedich, it was still over 90 times slow
compared to the unoptimized version (witkio_CHECKS enabled).
This specialization did shorten the core method, but appigraot
enough to be acceptable by the JIT compiler used in our experi
ments.

fiff contains a large number of library calls to trigonometric
functions in a loop. These calls are made to methods in thergen
ated M X10 library which in turn call the methods in the X10 Math
library thus explaining the slowdown of more than 50% for piito
mized code compared to MLAB code. Switching on the0 flag

LAB version used was R2011a and X10 programs were built and gives a speedup of about 20% over unoptimized celig. CHECKS

executed using x10dt-2.3.1, Oracle Java version 1.6.0r01gac
version 4.6.3.

Table 1 shows execution results for original benchmarks exe
cuted in MATLAB compared with execution results for managed
backend. Table 2 shows execution results for native backdrte
scales 1x, 5x and 25x corresponds to problem sizes that fake a

also provides speedup by about 20% over unoptimized code due
to 2-dimensional array accesses inside nested loops. Howev
-0 -NO_CHECKS gives significant speedup of above 100% com-
pared to unoptimized code because all the code is now inined
has "no checks” applied to it.

mbrt shows a large slowdown of 84% compared to original

proximately 20 seconds, 100 seconds and 500 seconds respecMATLAB code. It mainly consists of mathematical operations on

tively to execute the original MrLAB code. The columns la-
beled ‘speedup’ show the speedup factor or relative exattitine
(Matlab execution time/X10 execution time) compared to
the original MaTLAB code. Numbers greater than one indicate that
our generated X10 code is faster than the originaThhAB ver-
sion.

6.1 Managed backend (Java)

Let us first evaluate the performance of our generated codeg us
the managed X10 backend which generates Java code.

For bubble the MIX10 generated code is about 30% slower
than the original MTLAB code. Inlining of methods for array ac-
cesses iix10.lang.array.Array was enabled by addition of the
X10 -0 flag, giving it a speedup of about 22% over theMAB
code. Adding the X1MO0_CHECKS flag does not give a significant
speedup because currentiybbleinvolves 1-dimensional arrays
which do not seem to incur a lot of array bounds check overhead

capr and dich show very surprising results. The unoptimized

versions give acceptable performance, and enabling the X10

NO_CHECKS flag gives further improvements. However, very sur-
prisingly, adding the X160 flag caused enormous slowdowns, up

to two orders of magnitude in some cases. Both of these bench-

scalar values of typ€omplex. MATLAB naturally supports com-
plex numerical values and operations on them efficientlyenshs
X10 implements constructors for complex numerical valued a
operations on them via the standard library. Our generatéf X
code does not directly call methods in the X10 standard fjbra
but via calls to methods in the 10 library. We believe that the
slowdown in managed backend is due to the overhead invotved i
dealing with all theComplex objects, including an allocation of
a newComplex object for every scalar operation. Because this is
mostly a scalar benchmark, there is no effedi@f CHECKS.
nbldinvolves operations on column vectors as a whole inside
a doubly-nested loop unlike other benchmarks which opesate
individual elements inside an array. Also, the size of calurac-
tors increase proportional t¢'scale. The operations on the col-
umn vectors are implemented in thel X0 library and involve
iterating over every point in the column vector, represérdas a
2-dimensional array. Since there are few array accessemarel
method calls to the MX10 library both-0 and-NO_CHECKS have
insignificant effect on runtime. For the 1x problem size thep+
timized version is about 70% slower thanaM.AB code and with
optimizations and “no checks” turned on it is still 54% slowéou
may note that on a problem size of 5x, theX¥.0-generated code



X10 library compiled with CHECKS X10 library compiled with NOQCHECKS
MATLAB No opt.  speeduf -O speedup|| -NO_CHECKS  speeduf -O -NO.CHECKS  speedug
bubble 1x 22.36 32.07 0.70 18.39 1.22 28.28 0.79 12.19 1.83
bubble 5x 139.88 201.2 0.70 114.4 1.22 176.96 0.79 75.86 1.84
capr 1x 23.53 3141 0.75 1875.63 0.01 22.82 1.03 1458.80 0.02
capr 5x 117.89 160.49 0.73 | 11395.21 0.01 121.59 0.97 8578.2 0.01
caprrank 1x 23.53 29.41 0.80 18.91 1.24 22.75 1.03 4.85 4.85
caprrank 5x 117.89 146.18 0.81 90.77 1.30 104.12 1.13 23.64 4.99
dich 1x 19.9 44.59 0.45 2447.73 0.01 27.54 0.72 1942.04 0.01
dich 5x 99.62 220.46 0.45 | 11735.06 0.01 138.37 0.72 10072.32 0.01
dich.-rank 1x 19.9 28.61 0.70 1762.39 0.01 21.27 0.94 1584.48 0.01
dich.rank 5x 99.62 143.18 0.70 | 8757.56 0.01 100.97 0.99 7448.48 0.01
fiff 1x 21.25 44.36 0.48 37.38 0.57 38 0.56 19.97 1.06
fiff 5x 107.38 221.72 0.48 195.05 0.55 186 0.58 85.24 1.26
mbrt 1x 18.6 117.45 0.16 117.27 0.16 115.42 0.16 116.48 0.16
mbrt 5x 93.55 579.09 0.16 581.73 0.16 571.41 0.16 577.64 0.16
nbld 1x 24 77.95 0.31 65.71 0.37 56.82 0.42 52.69 0.46
nbld 5x 116.28 591.65 0.20 531.24 0.22 472.35 0.25 409.27 0.28
nbldarr 1x 24 20.56 1.17 17 141 16.26 1.48 9.48 2.53
nbldarr 5x 116.28 163.3 0.71 124.02 0.94 129.22 0.90 80.08 1.45
Table 1. Execution results (time in seconds) for managed (Java)dvatk
X10 library compiled with NQCHECKS
MATLAB || -NO_.CHECKS speedug -O-NO.CHECKS speedug

bubble 1x 22.36 1211 0.18 17.11 131

bubble 5x 139.88 753.33 0.19 104.69 1.34

bubble 25x| 557.63 3020.53 0.18 429.06 1.30

capr 1x 23.53 129.55 0.18 22.23 1.06

capr 5x 117.89 654.98 0.18 135.83 0.87

capr 25x 617.63 3240.32 0.19 566.1 1.09

caprrank 1x 23.53 76.31 0.31 5.17 4.55

caprrank 5x 117.89 390.87 0.30 28.74 4.10

caprrank 25x 617.63 1959.83 0.32 137.91 4.48

dich 1x 19.9 127.63 0.16 25.83 0.77

dich 5x 99.62 664.62 0.15 129.49 0.77

dich 25x 508.22 3157.01 0.16 515.92 0.99

dich.-rank 1x 19.9 94.93 0.21 20.23 0.98

dich.-rank 5x 99.62 474.60 0.21 101.29 0.98

dich.rank 25x 508.22 2397.54 0.21 507.15 1.00

fiff 1x 21.25 137.58 0.15 24.28 0.88

fiff 5x 107.38 684.33 0.16 117.7 0.91

fiff 25x 537.22 3485.94 0.15 600.38 0.89

mbrt 1x 18.6 43.08 0.43 12.83 1.45

mbrt 5x 93.55 218.51 0.43 63.34 1.48

mbrt 25x 389.63 1083.79 0.36 317.54 1.23

nbld 1x 24.00 157.93 0.15 94.12 0.25

nbld 5x 116.28 1196.36 0.10 716.52 0.16

nbld 25x 566.15 10591.97 0.05 5875.75 0.10

nbldarr 1x 24.00 62.34 0.38 11.46 2.09

nbldarr 5x 116.28 498.71 0.23 104.04 1.12

nbldarr 25x 566.15 4184.31 0.14 811.66 0.70

Table 2. Execution results (time in seconds) for native (C++) badken



is proportionally slower than that for 1x. This may be duelte t generating specialized M 10 library routines can also provide ex-
fact that the MATLAB array/vector-based library routines have been cellent performance improvements, and we also plan to addah
highly tuned and may be better optimized and/or use muitétied M1X10.
libraries for larger data sizes. Our results also point out some places where the code gener-
Since our generatetbldperformed poorly due to the slowness ation for the managed backend for X10 could be improved. The
of our general-purpose M 10 library code for array/vector oper-  aggressive inlining done by the X0 option seems to be counter-
ations, we experimented with generating more efficientigized productive in situations where this creates code that idamye/-
library operations. We created a specialized versionbdfd called complex for the JIT compiler. Furthermore, the simplifioas per-
nbldarr that uses a version M 10 library containing specialized  formed by the X10 compiler to enable the inlining appearstm
methods for column vectorsin these specialized methods, instead duce many spurious temporary variables and type castshwiiy

of iterating over the points, we use the traditional for loojiterate be putting further pressure on the JIT compiler. We also vieske
overn x 1 elements of the array. Comparing the performantied significant overheads for the benchmark us@ughplex scalars.
nbldarr shows that the specialized library approach gives up to 5 For these cases it may be worth implementing some object-inli
times faster execution times over unspecialized version. ing in the generated X10 code.

In this first phase of MX10 development we achieved our goal
6.2 Native backend (C++) to generate correct and robust code for many of the commaelgt u
Results for compilation to native backend are reasonabydgo =~ MATLAB features. In the next phase ofIM10 development we
and contained no big surprises. Overall, t8_CHECKS flag by plan to focus on optimizations for performance of generated
itself does not produce performant code, but combined with quential COd? and to identify parallelism inAviLAg code and map
performance nearly equals originalVLAB code, withbubbleand them to X10’s concurrency contrqls./MlTAB vector instructions
mbrt surpassing it. andparfor loops are a good starting point.

caprrank gives up to 4 times faster results as compared to
capr with optimization and "no checks” switched on. Without the
optimizations also it is over 1.5 times faster than the ucisfieed 7. Related Work
version.dich.rank is about 1.3 times faster than the unspecialized
version for both optimized and unoptimized cases. Thistkffice
in improvement for these two benchmarks is probably due ¢o th
fact thatcapr has nearly 3 times more array access operations than
dichthus this specialization has greater impactapr.

The results formbrt compiled to native backend are about 9
times faster than those for managed backend. The reasoatis th
x10.1lang.Complex can be implemented much more efficiently in
C++ using structs which can be allocated more efficientlyithee
being allocated on the stack or are embedded in a contaibjegto

Results fonblddo not show any improvement witd because
it uses for loops with points which are not optimized [i@pldarr
however gives a huge speedup of up to 8 times comparedid
This shows that generating specializedX\0 library methods is
beneficial for both X10 back-ends.

As discussed in Section 2, this work builds upon the previous
work from the McLaB group, including the front-end, the Ma8
analysis framework [3, 4] analysis framework, and thaTas
Tamer [6].

There have been previous research projects on static ampil
tion of MATLAB which focused particularly on the array-based sub-
set of MATLAB and developed advanced static analyses for deter-
mining shapes and sizes of arrays. For example, FALCON gld] i
MATLAB to FORTRAN9O translator with sophisticated type infer-
ence algorithms. The McLab group has previously implenteate
prototype Fortran 95 generator [10], and is developing & gen-
eration Fortran generator in parallel with the X0 project. Some
of the solutions can be shared between the projects, efipehm
parts which extend the Tamer. The MEGHA project[13] proside
an interesting approach to mapavLAB array operations to CPUs
and GPUs, but only supports a very small subset aff MAB .

There are also commercial compilers. One such product is the

Our initial experiments have given some reasonable peenoe MATLAB Coderecently released by MathWorks[11], which pro-
results, and pointed out some places where both our codeagene duces C code for a subset ofAVLAB .

6.3 Summary

tion, and the X10 managed code generation could be improved. There are other projects providing open source implemientat

In its current form, the code NK10 generates is directly trans-  of MATLAB -like languages, such as Octave[1] and Scilab[9]. These
lated from low-level Tame IR and keeps all the extra variglite add valuable contributions to the open source communityekier
troduced in it. Also, since default data type for numbersduise their focus is on providing interpreters and open librarpmart
MATLAB is double and in X10 isInt, there is a large amount  and they have not tackled the problems of static compilatie
of type conversion overhead, specially for array accesigesr{ are investigating if there is any way of sharing some of thieiary
LAB used subscripts of typéouble but X10 uses subscripts of  support with MX10.
type Int). Another factor is that MTLAB builtins are mapped to In terms of source-to-source compilers for X10, we are aware
method calls (some of which make further library calls) vbhiic- of two other projects. StreamX10 is a stream programmingéra
troduces further overhead. Currently itis a trade-off letwread-  work based on X10 [16]. StreamX10 includes a compiler which
ability and performance but it can be reduced once we impiéme  translates programs in COStream to parallel X10 code. Titsu
method inlining optimization (which can be invoked optitiya cusses the design of a Ruby-based DSL for parallel programmi

Our experiments also show that generating more specialized that is compiled to X10 [15].
X10 code can lead to much faster executions. In particulap-i
pears that declaring the ranks of arrays in the generatedcdd®
is very important. Our MX10 compiler can use the shape infor-

mation provided by the Tamer framework to automaticallyeinf 8. Conclusionsand Future Work

the ranks of many arrays, so future versions atXi0 will spe- In this paper we have outlined the important first steps itding

cialize array declarations whenever possible. We alsorebdehat M1X10, a source-to-source compiler fromAvLAB to X10. We
have provided an overview of the design, including our use of

5This specialization for MX10 library is currently done by hand and will  €xisting tools and the new components we have defined for e X

be implemented in MX10 in the future. code generation.



We presented our approach to handling mamyrMaB features
including our treatment of MTLAB built-in operators, MTLAB
stylefor loops, and colon-style indexing operations on arrays.

We demonstrated that we could generate working X10 code for [11] MathWorks.

a collection of MaTLAB benchmarks, showing that the core trans-
lation is in place. In many cases the execution speed of therge
ated X10 code was comparable, and sometimes slightly fdter
the original MATLAB code. In particular, the results with the native
backend were quite encouraging. This initial experimeevalua-
tion also pointed out several areas where we can improveaue ¢
generation further including: reducing extra functior cakrhead,
minimizing type conversions, and specializing code basethe
results of shape analysis.

Based on the foundations in this paper we plan to continue the
project in several directions. On the performance side wenhto
further optimize the generated code, and to expose thel@ésal
inherent in MATLAB vector instructions and MrLAB parfor
loops. We also intend to add some X10-specific optimizations
including one that will identify immutable variables, whican
thus be declared as such in the generated X10 code.

For peak performance of the generated X10 code we use the

-NO_CHECKS switch which disables the array bounds checks and
type conversion checks. However, the semantics eff MB re-
quire that array bounds checks be made. We are currently-work
ing on array bound analyses which will allow us to generatayar
bounds checks where necessary in our generated code.

One of our goals is to generate readable X10 code, so that
programmers could use IM10 to port MATLAB code to X10.
The structure of the generated code is already quite cleathb
individual statements are too low-level because they dlewimg
the simplified form of the Tamer IR. We are currently devehgpi
a collection of aggregating transformations which will ugth the
expressions to a level more like what a programmer wouldipec
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