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Abstract
MATLAB is a popular dynamic array-based language commonly
used by students, scientists and engineers, who appreciatethe in-
teractive development style, the rich set of array operators, the ex-
tensive builtin library, and the fact that they do not have todeclare
static types. Even though these users like to program in MATLAB ,
their computations are often very compute-intensive and are poten-
tially very good applications for high-performance languages such
as X10.

To provide a bridge between MATLAB and X10, we are devel-
oping MIX10, a source-to-source compiler that translates MAT-
LAB to X10. This paper provides an overview of the initial design
of the MIX10 compiler, presents a template-based specialization
approach to compiling the builtin MATLAB operators, and provides
translation rules for the key sequential MATLAB constructs with a
focus on those which are challenging to convert to semantically-
equivalent X10. An initial core compiler has been implemented,
and preliminary results are provided.

Categories and Subject Descriptors Software Notations and
tools [Compilers]: Source code generation

General Terms Languages

Keywords MATLAB , X10, source-to-source compiler

1. Introduction
MATLAB is a popular numeric programming language, used by
millions of scientists, engineers as well as students worldwide[12].
MATLAB programmers appreciate the high-level matrix operators,
the fact that variables and types do not need to be declared, the large
number of library and builtin functions available, and the interac-
tive style of program development available through the IDEand
the interpreter-style read-eval-print loop. However, even though
MATLAB programmers appreciate all of the features that enable
rapid prototyping, their computations are often quite compute in-
tensive and could benefit from a system more suited to high perfor-
mance computing.

On the other hand, X10 is an object-oriented and statically-
typed language which uses cilk-style arrays indexed byPoint ob-
jects, and has been designed with well-defined semantics andhigh
performance computing in mind.
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We have been working on MIX10, a source-to-source compiler
that helps to bridge the gap between MATLAB , a language familiar
to scientists, and X10, a language designed for high performance.
In particular, this paper identifies the key challenges and our ap-
proach to compiling MATLAB to X10, focusing on the sequential
core of X10.

The ultimate goal of the MIX10 compiler is two-fold. First,
it can be used as a back-end for a MATLAB system, producing
high-performance code via X10. Second, it can be used to help
programmers port their MATLAB code to X10 source code. The
techniques presented in this paper provide the core upon which
these two ultimate goals can be achieved.

The major contributions of this paper are as follows:

Identifying key challenges: We have identified the key challenges
in performing a semantics-preserving translation of MATLAB to
X10.

Overall design of M IX10: We provide the design of a source-
to-source translator, building upon the McLab front-end and
analysis toolkits.

M IX10 IR design: In order to provide a convenient target for the
first level of translation, we have defined a high-level MIX10
IR. This IR is currently used for code generation, but in the
future will also be used for code simplifications and transfor-
mations.

Template-based builtin framework: MATLAB supports many
builtin operations that can operate over a wide variety of run-
time types. We have designed and implemented a template-
based system that allows us to generate specialized X10 code
for a collection of important builtin operations.

Code generation strategies for key language constructs: There
are some very significant differences between the semantics
of MATLAB and X10. A key difference is that MATLAB is
dynamically-typed, whereas X10 is statically-typed. Further-
more, the type rules are quite different, which means that the
generated X10 code must include the appropriate explicit type
conversion rules, so as to match the MATLAB semantics. Other
MATLAB features, such as multiple returns from functions, a
non-standard semantics forfor loops, and a very general range
operator, must also be handled correctly.

Working core implementation: We have implemented the core
functionality for the MIX10 compiler, concentrating on the
sequential part of X10, and we provide some initial results.

The remainder of this paper is structured as follows. In Section 2
we describe the overall structure of MIX10, and how we build upon
the McLAB framework. Section 3 provides the high-level design of
M IX10 backend with details about the MIX10 IR. In Section 4 we
discuss the need to have several overloaded methods corresponding
to a MATLAB builtin method and describe the specialization tech-
nique to select the correct method in the generated X10 code.In



Section 5 we explain how various MATLAB features are mapped to
X10. Section 6 Provides a performance comparison of generated
X10 code with the original MATLAB code. Section 7 talks about
previous work related to static MATLAB compilation. Finally, in
Section 8 we conclude and discuss some planned future work.

2. Background
M IX10 is implemented on top of several existing MATLAB com-
piler tools. The overall structure is given in Figure 1, where the
new parts are indicated by the shaded boxes, and future work is
indicated by dashed boxes.
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Figure 1. Overview of MIX10 structure

MATLAB is actually quite a complicated language to compile,
starting with its rather unusual syntax, which cannot be parsed with
standard LALR techniques. There are several issues that must be
dealt with including distinguishing places where white space and
new line characters have syntactic meaning, and filling in optional
end keywords, which are sometimes optional. The McLAB front-
end handles the parsing of MATLAB through a two step process.
There is a pre-processing step which translates MATLAB programs
to a cleaner subset, calledNatlab, which has a grammar that can
be expressed cleanly for a LALR parser. The McLAB front-end
delivers a high-level AST based on this cleaner grammar.

After parsing, the next major phase of MIX10 uses the McSAF
framework [3, 4] to disambiguate identifiers usingkind analy-
sis [5], which determines if an identifier refers to avariable or a
named function. This is required because the syntax of MATLAB
does not distinguish between variables and functions. For exam-
ple, the expression a(i) could refer to four different computations,
a could be an array or a function, and i could refer to the builtin
function for the imaginary valuei, or it could refer to a variable i.
The McSAF framework also simplifies the AST, producing a lower-
level AST which is more amenable to subsequent analysis.

The next major phase is the Tamer [6], which is a key compo-
nent for any tool which statically compiles MATLAB . The Tamer
generates an even more defined AST calledTamer IR, as well as

performing key interprocedural analyses to determine boththe call
graph and an estimate of the base type and shape of each variable,
at each program point. The call graph is needed to determine which
files (functions) need to be compiled, and the type and shape infor-
mation is very important for generating reasonable code when the
target language is statically typed, as is the case for X10.

The Tamer may find dynamic MATLAB features which cannot
be statically compiled, in which case it flags that feature asnot
tame, and the ultimate goal is to support a refactoring tool which
would aid the programmer to restructure their input MATLAB pro-
gram in order to eliminate the wild feature.

The Tamer also provides an extensibleinterprocedural value
analysisand an interprocedural analysis framework that extends
the intraprocedural framework provided by McSAF. Any static
backend will use the standard results of the Tamer, but is also
likely to implement some target-language-specific analyses which
estimate properties useful for generating code in a specifictarget
language. We have currently added an analysis for determining if a
MATLAB variable isreal or complex.

For the purposes of MIX10, the output of the Tamer is a low-
level, well-structured AST, which along with key analysis informa-
tion about the call graph, the types and shapes of variables,and
X10-specific information. These Tamer outputs are providedto the
code generator, which generates X10 code, as discussed in the next
section.

3. Design of X10 Generator and M IX10 IR
The MIX10 code generator is the key component which makes the
translation from the Tamer IR, which is based on MATLAB pro-
gramming constructs and semantics, to X10. The overall structure
of the MIX10 code generator is given in Figure 2.
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Figure 2. Structure of the MiX10 code generator

Rather than do a direct code generation to X10 source code, we
have defined a general and extensible IR to represent X10. We have
implemented the IR using JastAdd [2, 7], which allows us to easily
add new AST nodes by simply extending the JastAdd specification
grammar.



Although we currently do not transform the MIX10 IR very
much, the ultimate goal is to support a variety of analyses and
transformations that can be used to: (1) produce more efficient X10
code, and (2) produce more readable X10 code.

Note that there are potentially two places that optimizations and
transformations may happen: either at the Tamer IR level or at the
M IX10 IR level. It is our intent to put any analysis or transfor-
mation that is not X10-specific into the Tamer IR, so that other
back-ends can benefit from those improvements. However, opti-
mizations and transformations that are specific to X10 program-
ming constructs (such as points and regions) and semantics will
need to be done on the MIX10 IR. We may also use the MIX10 IR
as a convenient place to insert instrumentation code.

As shown in Figure 2, the X10 source code generator actually
gets inputs from two places. It uses the MIX10 IR to drive the
code generation, but for expressions referring to built-inMATLAB
functions it interacts with theBuilt-in Handler. In the next section,
Section 4, we discuss this process in in more detail, and in the
subsequent section, Section 5, we address source code generation
for the key X10 constructs.

4. MATLAB Builtins
MATLAB builtin methods are the core of the language and one
of the features that make it popular among scientists. They pro-
vide a huge set of commonly used numerical functions. All the
operators, including the standard binary operators (+, -, *,/),
comparison operators (<, >, <=, >=, ==) and logical opera-
tors (&, &&, |, ||) are merely syntactic sugar for corresponding
builtin methods that take the operands as arguments. For exam-
ple an expression likea+b is actually implemented asplus(a,b).
An important thing to note is that unlike most programming lan-
guages, all the MATLAB builtin methods by default operate on ma-
trix values as a whole. For examplea*b or mtimes(a,b) actually
performs matrix multiplication on matrix valuesa and b. How-
ever, most of the builtin methods also accept one or more scalar,
or more accurately,1 × 1 matrix arguments. Builtin methods are
overloaded to accept almost all possible shapes of arguments. Thus
mtimes(a,b) can have botha andb as matrix arguments (includ-
ing 1 × 1 matrices) with number of columns ina equal to number
of rows inb, in which case the result is a matrix multiplication ofa
andb or one of them can be a1×1 matrix and other can be a matrix
of any size and the result is a matrix containing each elementof the
non-scalar argument times the scalar argument. Wherever possible,
MATLAB builtins also support complex numerical values. X10 on
the other hand, like most of the programming languages operates
on scalar values by default.

Due to the fact that X10 is still new and evolving, it has a very
limited set of libraries, specially to support a large subset of avail-
able MATLAB builtin methods. The X10 Global Matrix Library
(GML) supports double-precision matrix operations however it is
still not as extensive as MATLAB ’s set of operations and it poses
some restrictions:

1. It works on values of typeMatrix instead of X10 typeArray
which means it needs explicit conversion ofArray values to
Matrix values before performing a matrix operation and and
then a conversion of the results back toArray type. This con-
version may be a large overhead, especially for small data sizes.

2. GML is limited to Matrix values of two dimensions and con-
taining elements of typeDouble, whereas many MATLAB
builtin methods support values of greater number of dimen-
sions.

3. GML currently does not support complex numerical values
whereas MATLAB naturally supports them.

4. Currently GML requires a separate installation and configura-
tion which is non-trivial specially for scientists who needsome-
thing that works out of the box.

Due to above restrictions, X10 Global Matrix Library is useful
in some situations, for example when there is a matrix multiplica-
tion of a very large data size, but cannot be used or is not a good
choice for a large number of operations.

For a language with open-sourced libraries, it would be possible
to actually compile the library methods to X10. However, many
MATLAB libraries are closed source and thus it is not possible to
translate them to X10.

4.1 M IX10 builtin support framework

We decided to write our own X10 implementations of the com-
monly used MATLAB builtin methods. Currently we have imple-
mented only those methods that are used in our benchmarks. Inthis
paper, we concentrate on how these methods are included in the
generated X10 code with minimal loss of readability and perfor-
mance rather than the actual implementation.

The code below shows the X10 code for the MATLAB builtin
methodplus(a,b).

public static def
plus(a: Array[Double], b:Array[Double])
{a.rank == b.rank}{

val x = new Array[Double](a.region);
for (p in a.region){

x(p) = a(p)+ b(p);
}

return x;
}

public static def plus(a:Double, b:Array[Double]){
val x = new Array[Double](b.region);
for (p in b.region){

x(p) = a+ b(p);
}
return x;

}

public static def plus(a:Array[Double], b:Double){
val x = new Array[Double](a.region);
for (p in a.region){

x(p) = a(p)+ b;
}
return x;

}

public static def plus(a:Double, b:Double){
val x: Double;
x = a+b;
return x;

}

This X10 code contains four overloaded versions (and it still
does not contain methods to support complex values and of types
other than Double) based on whether the arguments are scalaror
array and their relative position in the list of arguments.

Including all the overloaded versions in the generated X10 code
would result in lot of lookup overhead, would require producing
redundant code (versions of methods with arguments of similar
shape but different types will have the same algorithm) and would
generate large code with less readability. Instead we designed a
specialization technique that selects the appropriate versions of
only the methods used in the source MATLAB program.



After studying numerous builtin methods we categorized most
of them into following five common types:

Type 1: All the parameters are scalar values or no parameters.

Type 2: All the parameters are arrays.

Type 3: First parameter is scalar, rest of the parameters are arrays.

Type 4: Last parameter is scalar, rest of the parameters are arrays.

Type 5: Variable number of parameters.

Each of these categories use the same code template for differ-
ent types of values.

We build an XML file that contains the method bodies for each
category for every builtin method (that we support). We implement
the following strategy to select and generate the correct and re-
quired methods. First, we make a pass through the AST to make
a list of all the builtin methods used in the source MATLAB pro-
gram. Next, we parse the XML file once and read in the X10 code
templates for all the categories of the builtin methods collected in
the first step. Next, whenever a call to a builtin method is made,
based on the results of the value analysis we generate the correct
method header and select the corresponding builtin template for
that method. The generated methods are finally written to a X10
class file namedMix10.x10. In the code generated for actual MAT-
LAB program the call to a builtin method is simply replaced by a
call to the corresponding method in the Mix10 class. For example,
MATLAB expressionplus(a,b) is translated to X10 expression
Mix10.plus(a,b).

Using the above approach not only improves the readability of
the generated code, but it also allows for future extensibility, better
maintenance and more specialization. One of the specialization that
we are currently working on is the ability to use the Global Matrix
Library for the available methods in it and whenever the datasize
is large enough.

5. Mapping wild MATLAB features to X10
MATLAB is a programming language designed specifically for nu-
merical computations. Every value is aMatrix and has an associ-
ated array shape. Even scalar values are1×1 matrices. Vectors are
1×n orn×1 matrices. All the values are by default of typedouble.
MATLAB naturally supports imaginary components for all numer-
ical values and almost all operators and library functions support
complex inputs. In the rest of this section we describe some of the
key features of MATLAB that demonstrate what makes MATLAB
different and challenging to compile statically and techniques used
by MIX10 to translate these “wild” features to X10.

5.1 Methods

A function definition in MATLAB takes one or more input argu-
ments and returns one or more values. A typical MATLAB function
looks as follows:

function[x,y] = foo(a,b)
x = a+3;
y = b−3;

end

This function has two input argumentsa andb that can be of any
type and any shape and returns two valuesx andy of the same shape
asa andb respectively and of types determined by MATLAB ’s type
conversion rules. The Tamer IR provides a list of input arguments
and a list of return values for a function. The interprocedural value
analysis identifies the types, shapes and whether they are complex
numerical values for all the arguments and the return values.

MATLAB functions are mapped to X10 methods. If it is the
entry function, the type of the input argument is specified bythe
user (Tame IR requires to have an entry function or a driver function
with one argument. This function may call other functions with
any number of input arguments). For other functions the parameter
types are computed by the value analysis performed by the Tamer
on the Tame IR. The type information computed includes the type
of the value, its shape and whether it is a complex value. Other
statements in the function block are processed recursivelyand
corresponding nodes are created in the X10 IR. Finally, if there
are any return values, as determined by the Tame IR, a return
statement is inserted in the X10 IR at the end of the method. Ifthe
function returns only one value, sayx then the inserted statement
is simply return x; but if the function returns more than one
values (which is quite common in MATLAB ) then we return a
one-dimensional array of typeAny whose elements are the values
that are returned. So, for the above example the return statement
is return [x as Any, y as Any];. Note that the use of short
syntactic form for one-dimensional array construction improves the
readability of the generated code. Below is the generated code for
the simple example above.

static def foo(a: Double, b: Double){
var mc t0: Double = 3;
var x: Double = Mix10.plus(a, mct0);
var mc t1: Double = 3;
var y: Double = Mix10.minus(b, mct1);
return [x as Any, y as Any];

}

Also note that the variablesmc_t0 andmc_t1 are introduced
by Tamer in the Tame IR. Note that their type isDouble because
in MATLAB values aredouble by default, to specify an integer in
MATLAB one must use an explicit conversion, such asint32(3).

5.2 Types, Assignments and Declarations

MATLAB provides following basic types:

• double, single: floating point values

• uint8, uint16, uint32, uint64: unsigned integer values

• int8, int16, in32, int64: integer values

• logical: boolean values

• char: character values (strings are vectors ofchar)

These basic types are naturally mapped to X10 base types as
follows. Floating point values are mapped toDouble andFloat re-
spectively, unsigned integers are mapped toUByte, UShort, UInt
andULong, integer values are mapped toByte, Short, Int and
Long, logical is mapped toBoolean andchar is mapped toChar
(vector of chars is mapped toString type). If the shape of an iden-
tifier of typeT is greater than1× 1 it is mapped toArray[T]. The
type conversion rules are quite different from standard languages.
For example, an operation involving adouble and anint32 re-
sults in a value of typeint32.1 M IX10 inserts an explicit typecast
wherever required.

All the MATLAB operators are designed to work on matrix val-
ues and are provided as syntactic sugar to the correspondingbuiltin
methods that take operands as arguments. Operators are overloaded
to support different semantics for1 × 1 matrices (scalar values).
MATLAB provides two types of operators -matrix operatorsand
array operators. Matrix operators work on whole matrix values.
These include matrix multiplication (*) and matrix division (\, /).

1 The type rules are explained in detail in the Tamer documents, www.
sable.mcgill.ca/mclab/tamer.html.



Array operators always operate in an element-wise manner. For ex-
ample array multiply operator.* performs element-wise multipli-
cation. MIX10 implements all operators as builtins as described in
Section 4.

MATLAB is a dynamically typed language which means that
variables need not be declared and take up any value that theyare
assigned to. X10 however is statically typed and requires variables
to be declared before being assigned to. MIX10 maintains a list
of all the declared variables. It starts with an empty list. Whenever
an identifier appears in an assignment statement on LHS, if itis
not already present in the list, a declaration statement is added to
the X10 IR and the variable (with its associated type and value
information) is added to the list, else if it is already present in
the list, the assignment statement is added to the X10 IR and the
associated type and value information is updated. In case the MAT-
LAB assignment statement is inside a loop and needs a declaration,
the declaration statement (without any assignment) is added to
the method block outside any loop or conditional scope and the
assignment statement is added in the scope where it is present in
MATLAB code. If the identifier on LHS is an array, then the declara-
tion creates a new array with the region corresponding to theshape
of the array. For example a MATLAB statement likea=b; where
shape ofa is, say,3 × 3 and type isdouble will be translated
to a:Array[Double]=new Array[Double](1..3*1..3,b);
(outside the scope of any loops or conditionals). Note that the
indexing starts from1 and not0, the way it is done in MATLAB .

5.3 Loops

Loops in MATLAB are fairly intuitive except for one semantic
difference from most of the languages. In afor loop if the loop
index variable is redefined inside the body of the loop then its new
value is persistent only in a particular iteration and does not affect
the number of loop iterations. For example, consider the following
listing.

function [x] = forTest1(a)
for i = (1:10)

i=3;
a=a+i;

end
x=a;

end

Note that inside every iteration, the value of loop index variablei
is 3 but the loop still terminates after ten iterations. The above code
would be translated to the following X10 code:

static def forTest1 (a: Double)
{
var mc t0: Double = 1;
var mc t1: Double = 10;
var i x10: Double;
var b: Double;
var i: Double;
for (i x10 = mct0; (i x10<= mc t1); i x10 = (i x10 + 1))

{
i = i x10;
i = 3 ;
b = Mix10.plus(a, i) ;

}
var x: Double = a;
return x;
}

To handle this somewhat different semantics we introduce a new
loop index variable and assign it to the original loop index variable
at the beginning of the loop body. The rest of the loop body is

translated by standard rules. Note that the new loop index variable
is introduced only if the actual loop index variable is redefined
inside the loop body.

5.4 Conditionals

In MATLAB conditionals are expressed using the if-elseif-else con-
struct and do not have any wild semantics. MATLAB also allows
switch statements which are converted to equivalent if-else state-
ments by the Tamer. It also recursively converts a statementlike
if (B1) S1 elseif (B2) S2 else S3 to a series of if-else
clauses likeif (B1) S1 else{ if(B2) S2 else S3}. This if-
else construct is intuitively mapped to the if-else construct in X10.

5.5 Array access and Colon operator

Arrays (or matrices) are the core of MATLAB and most of the data
read and write operations involve accessing one or a set of elements
of an array. There are two basic ways of accessing elements ofan
array, as described below.

Accessing individual elements: This type of access is similar
to that in C or Java where an array element is accessed given
its location index along each dimension of the array. MATLAB

naturally supports linear indexing2 More precisely, if the number of
subscripts in an array access is less than the number of dimensions
of the array, the last subscript is linearly indexed over theremaining
number of dimensions in a column-major fashion. (Support for
linear indexing in MIX10 is currently a work in progress). Note
that array indexing in MATLAB starts from 1. MATLAB allows the
use of keywordend or an expression involvingend (like end-1) as
a subscript.end denotes the highest index in that dimension.

This subscripting operation to access individual elementsis
mapped to X10 array subscripting operation. If the rank of array is
4 or less, it is subscripted directly by integers corresponding to sub-
scripts in MATLAB otherwise we create apoint object from these
integer values and use it to subscript the array. In caseend is used, if
we have complete shape information we easily know the highest in-
dex for a particular dimension, otherwise if shape information can-
not be determined at compile time we use themax(Int i) method
provided by theRegion class of X10. Thus an array access such
asa(i,end) is translated toa(i as Int, a.region.max(1)).
Whenever an identifier of typeDouble (default in MATLAB ) is
used as a subscript, we need to explicitly cast it toInt.

Accessing a set of elements: MATLAB supports accessed and
operations on a set of elements as a whole. To achieve this MAT-
LAB allows the use of an expression involvingcolon operator
in place of an integer subscript. An expression such asa:b (or
colon(a,b)) creates a vector of integers[a, a+1, a+2, ...b].3

In a second form, an interval size can also be provided. For example
a:i:bwith interval sizei creates a vector[a, a+i, a+2i, ...k]
wherek is the greatest integer such thatb-k<i. Use of acolon ex-
pression for array subscripting takes all the elements of the array
for which the subscript in a particular dimension is in the vector
created by thecolon expression in that dimension. For array sub-
scripting we can also use ”:” without specifying the lower and the
upper limit. In this case elements for all the indices in thatparticular
dimension are accessed.

Consider the MATLAB code below:

function [x] = crazyArray(a)
y = ones(3,4,5);
x = y(1,2:3,:);

end

2http://www.mathworks.com/help/matlab/math/matrix-
indexing.html
3 Seehttp://www.mathworks.com/help/matlab/ref/colon.html.



In this codey is a 3-dimensional array of shape3×4×5. x is an
array created by copying the elements ofy at(1,2,1), (1,2,2),
... (1,2,5), (1,3,1), (1,3,2), ... and (1,3,5). How-
every itself is of shape1 × 2 × 5 and is indexed normally. This
code is translated into the following X10 code.4

public static def crazyArray(a: Double){
var mc t1: Double = 3;
var mc t2: Double = 4;
var mc t3: Double = 5;
val y: Array[Double] =

new Array[Double]( Mix10.ones(mct1, mc t2, mc t3));
var mc t4: Double = 2;
var mc t5: Double = 3;
val mc t0: Array[Double] =

new Array[Double]( Mix10.colon(mct4, mc t5));
var mc t6: Double = 1;
val x: Array[Double];
val mix10 pt y: Point;
mix10 pt y = Point.make(1−(mc t6 as Int),

1−(mc t0(mc t0.region.min(0))as Int), 0);
x = new Array[Double]((1..1)∗

((mc t0.region.min(0))as Int..
(mc t0.region.max(0))as Int)∗
((y.region.min(2))..y.region.max(2)),
(p:Point(3))=>y(p.operator−(mix10 pt y)));

}

Our current shape analysis engine does not compute the shape
of arrays involvingcolon operator but we can use the
Region.min(Int i) andRegion.max(Int i) methods to com-
pute the correct values at run time. In the above example, we first
create a newPoint object that serves as an offset to get the ele-
ments at the correct position of the array accessed. Then we create
the new array with region derived from the resultant vector from
thecolon operator for second dimension and from the third dimen-
sion of the source arrayy. Thus the resultant arrayx has the region
1..1*1..2*1..5. Note that MIX10 creates arrays with starting
index 1 to maintain readability of the generated code for MATLAB
users. This is easy due to region-based arrays in X10. Providing
support forcolon operator in array access on LHS of an assign-
ment statement and support forcolon operator with specified in-
terval value is currently a work in progress.

5.6 Function calls

Function calls in MATLAB are similar to other programming lan-
guages if the called function returns nothing or returns only one
value. However, MATLAB allows a function to return multiple val-
ues. Whenever a call is made to such a function, returned values are
received in a list in the order specified by function definition. For
example in the statement[x,n] = bubble(a); a call is made to
the functionbubble which returns two values that are read intox
andn respectively. This statement is compiled to following codein
X10.

var x: Double;
var n: Double;
val x n: Array[Any];
x n = bubble(A) ;

x = x n(0 as Int)as Double ;
n = x n(1 as Int)as Double ;

4 Note that we are currently implementing aggregation transformations
which will aggregate expressions, including folding constants into expres-
sions.

The key idea here is to create an array of typeAny and read the
returned value. Remember that MIX10 packs the multiple return
values of a method in an array of typeAny and returns it. Individual
elements of the list simply read the values from this array. If the
function call is inside a loop, all the declarations are moved out of
the loop and only assignments are inside the loop.

5.7 Cell Arrays

Cell arrays in MATLAB are arrays of data containers called cells
and each cell can contain data of any type. For examplefooCell =
{’x’,10,’I like’,ones(3,3)}; creates a cell array containing
values of type char, double, char array and a double array. To
convert to X10, the elements of the cell array are packed intoan
X10 array of typeAny. While accessing an element it is type cast
into its original type. Consider the following MATLAB listing:

function [x] = cellTest(a)
m = ones(2,3);
n = [4,5];
myCell ={m, n∗100};
x = myCell{1,2};

end

It creates a cell array containing two arrays. It is translated to
the below X10 code:

static def cellTest (a: Double)
{

var mc t2: Double = 2;
var mc t3: Double = 3;
var m: Array[Double] =new
Array[Double](Mix10.ones(mct2, mc t3));
var mc t5: Double = 4;
var mc t6: Double = 5;
var n: Array[Double] =new
Array[Double](Mix10.horzcat(mct5, mc t6));
var mc t0: Array[Double] =new Array[Double](m);
var mc t7: Double = 100;
var mc t1: Array[Double] =new
Array[Double](Mix10.mtimes(n, mct7));
var myCell: Array[Any] = [mc t0 as Any ,mc t1 as Any];
var mc t9: Double = 1;
var mc t10: Double = 2;
var x: Array[Double];
x = myCell(mct9 as Int, mc t10 as Int) as Array[Double];
return x;

}

6. Evaluation
In this section we present the preliminary results of testing our
current implementation. To test our compiler we used some of
the benchmarks used in the previous McFor project [10] plus
some standard programs like bubble sort, sieve of Eratosthenes,
Fibonacci sequence generation, etc. For this paper we present the
results for the following seven benchmarks.

• bubble is the standard bubble sort. We chose this because it
involves nested loops and consists of many array read and copy
operations.

• capr computes the capacitance per unit length of a coaxial pair
of rectangles. It involves four methods and operations on 2-
dimensional matrices. It is also dominated by a large number
of 2-dimensional array accesses.capr rank is a specialized
version ofcapr for which we statically declare the rank of all
the arrays in the generated X10 code.



• dich finds the Dirichlet solution to Laplace’s equation. It in-
volves mathematical operations on a 2-dimensional matrix and
is dominated by a large number of 2-dimensional array accesses
inside nested loops.dich rank, similar tocapr rank, is the spe-
cialized version ofdich with statically declared ranks for the
arrays.

• fiff is a finite difference solution to a wave equation. It is dom-
inated by a number of trigonometric operations and involves
2-dimensional matrix data.

• mbrt computes a mandelbrot set. The main features of this
benchmark are computations involving complex numerical val-
ues and loops.

• nb1dsimulates the gravitational movement of a set of objects.
It involves computations on column vectors inside nested loops.
nb1d arr uses a specialized version of the MIX10 library which
has specialized methods for column vectors.

We compiled the X10 code generated by our current implemen-
tation of MIX10 using both the managed backend (generates Java)
and the native backend (generates C++). For the managed backend
we compiled the generated X10 code with following optimization
switches: no optimizations,-O, -NO_CHECKS and-O -NO_CHECKS.
Only-NO_CHECKS and-O -NO_CHECKS flags were used for the na-
tive backend since [8] states that-NO_CHECKS option is required for
acceptable multi-dimensional array performance. We also used the
X10 compiler with libraries compiled with-DNO_CHECKS=true
when we used-NO_CHECKS for compiling generated X10 code. We
first verified the correctness of the generated code by using small
data. All the benchmarks produced accurate results compared to
the results produced by MATLAB for original MATLAB implemen-
tations.

All the programs were executed on a machine with Intel(R)
Core(TM) i7-3820 CPU @ 3.60GHz processor and 16 GB mem-
ory running GNU/Linux(3.2.0-26-generic #41-Ubuntu). TheMAT-
LAB version used was R2011a and X10 programs were built and
executed using x10dt-2.3.1, Oracle Java version 1.6.0-01 and gcc
version 4.6.3.

Table 1 shows execution results for original benchmarks exe-
cuted in MATLAB compared with execution results for managed
backend. Table 2 shows execution results for native backend. The
scales 1x, 5x and 25x corresponds to problem sizes that take ap-
proximately 20 seconds, 100 seconds and 500 seconds respec-
tively to execute the original MATLAB code. The columns la-
beled ‘speedup’ show the speedup factor or relative execution time
(Matlab execution time/X10 execution time) compared to
the original MATLAB code. Numbers greater than one indicate that
our generated X10 code is faster than the original MATLAB ver-
sion.

6.1 Managed backend (Java)

Let us first evaluate the performance of our generated code using
the managed X10 backend which generates Java code.

For bubble, the MIX10 generated code is about 30% slower
than the original MATLAB code. Inlining of methods for array ac-
cesses inx10.lang.array.Array was enabled by addition of the
X10 -O flag, giving it a speedup of about 22% over the MATLAB
code. Adding the X10NO_CHECKS flag does not give a significant
speedup because currentlybubble involves 1-dimensional arrays
which do not seem to incur a lot of array bounds check overhead.

capr and dich show very surprising results. The unoptimized
versions give acceptable performance, and enabling the X10
NO_CHECKS flag gives further improvements. However, very sur-
prisingly, adding the X10-O flag caused enormous slowdowns, up
to two orders of magnitude in some cases. Both of these bench-

marks are dominated by a large number of two-dimensional array
accesses inside nested loops where most of the computation is
done. It turns out that the X10 optimizer inlines the code forthese
array accesses, and the inlined code is fairly long and complex for
each access, including a dynamic check that the rank of the array is
2. With all of the array reads and writes inlined, the core computa-
tion methods become too large/complex for the Java JIT compiler
to handle and thus the core computation can no longer be JIT com-
piled and is instead interpreted, leading to huge slowdowns(this
was observed both for the Java Hotspot and J9 JITs).

To reduce the amount of code that the X10 compiler gener-
ates for the two-dimensional array accesses, we definedcapr rank
anddich rank which are the specialized versions ofcapr anddich
where ranks of the arrays are declared statically in the generated
X10 code (currently this specialization is done by hand to test its
effects on performance and will be implemented automatically in
M IX10 in future). The results of this specialization were quite sur-
prising. It eliminated the dynamic rank checking code from the gen-
erated Java code which was quite a large overhead given that it was
inserted for every array access and included exception handling.
Forcapr rank the generated code Java code was now short enough
for the JIT compiler to compile the core computation method and
thus gave speedups of over 120 times compared to unspecialized
version (with optimization switched on). However, fordich rank
even though this specialization did provide a speedup of about
1.4 times over the optimizeddich, it was still over 90 times slow
compared to the unoptimized version (with-NO_CHECKS enabled).
This specialization did shorten the core method, but apparently not
enough to be acceptable by the JIT compiler used in our experi-
ments.

fiff contains a large number of library calls to trigonometric
functions in a loop. These calls are made to methods in the gener-
ated MIX10 library which in turn call the methods in the X10 Math
library thus explaining the slowdown of more than 50% for unopti-
mized code compared to MATLAB code. Switching on the-O flag
gives a speedup of about 20% over unoptimized code.-NO_CHECKS
also provides speedup by about 20% over unoptimized code due
to 2-dimensional array accesses inside nested loops. However
-O -NO_CHECKS gives significant speedup of above 100% com-
pared to unoptimized code because all the code is now inlinedand
has ”no checks” applied to it.

mbrt shows a large slowdown of 84% compared to original
MATLAB code. It mainly consists of mathematical operations on
scalar values of typeComplex. MATLAB naturally supports com-
plex numerical values and operations on them efficiently, whereas
X10 implements constructors for complex numerical values and
operations on them via the standard library. Our generated X10
code does not directly call methods in the X10 standard library
but via calls to methods in the MIX10 library. We believe that the
slowdown in managed backend is due to the overhead involved in
dealing with all theComplex objects, including an allocation of
a newComplex object for every scalar operation. Because this is
mostly a scalar benchmark, there is no effect ofNO_CHECKS.

nb1d involves operations on column vectors as a whole inside
a doubly-nested loop unlike other benchmarks which operateon
individual elements inside an array. Also, the size of column vec-
tors increase proportional to

√
scale. The operations on the col-

umn vectors are implemented in the MIX10 library and involve
iterating over every point in the column vector, represented as a
2-dimensional array. Since there are few array accesses andmore
method calls to the MIX10 library both-O and-NO_CHECKS have
insignificant effect on runtime. For the 1x problem size the unop-
timized version is about 70% slower than MATLAB code and with
optimizations and “no checks” turned on it is still 54% slower. You
may note that on a problem size of 5x, the MIX10-generated code



X10 library compiled with CHECKS X10 library compiled with NOCHECKS
MATLAB No opt. speedup -O speedup -NO CHECKS speedup -O -NO CHECKS speedup

bubble 1x 22.36 32.07 0.70 18.39 1.22 28.28 0.79 12.19 1.83
bubble 5x 139.88 201.2 0.70 114.4 1.22 176.96 0.79 75.86 1.84

capr 1x 23.53 31.41 0.75 1875.63 0.01 22.82 1.03 1458.80 0.02
capr 5x 117.89 160.49 0.73 11395.21 0.01 121.59 0.97 8578.2 0.01

capr rank 1x 23.53 29.41 0.80 18.91 1.24 22.75 1.03 4.85 4.85
capr rank 5x 117.89 146.18 0.81 90.77 1.30 104.12 1.13 23.64 4.99

dich 1x 19.9 44.59 0.45 2447.73 0.01 27.54 0.72 1942.04 0.01
dich 5x 99.62 220.46 0.45 11735.06 0.01 138.37 0.72 10072.32 0.01

dich rank 1x 19.9 28.61 0.70 1762.39 0.01 21.27 0.94 1584.48 0.01
dich rank 5x 99.62 143.18 0.70 8757.56 0.01 100.97 0.99 7448.48 0.01

fiff 1x 21.25 44.36 0.48 37.38 0.57 38 0.56 19.97 1.06
fiff 5x 107.38 221.72 0.48 195.05 0.55 186 0.58 85.24 1.26

mbrt 1x 18.6 117.45 0.16 117.27 0.16 115.42 0.16 116.48 0.16
mbrt 5x 93.55 579.09 0.16 581.73 0.16 571.41 0.16 577.64 0.16
nb1d 1x 24 77.95 0.31 65.71 0.37 56.82 0.42 52.69 0.46
nb1d 5x 116.28 591.65 0.20 531.24 0.22 472.35 0.25 409.27 0.28

nb1d arr 1x 24 20.56 1.17 17 1.41 16.26 1.48 9.48 2.53
nb1d arr 5x 116.28 163.3 0.71 124.02 0.94 129.22 0.90 80.08 1.45

Table 1. Execution results (time in seconds) for managed (Java) backend

X10 library compiled with NOCHECKS
MATLAB -NO CHECKS speedup -O -NO CHECKS speedup

bubble 1x 22.36 121.1 0.18 17.11 1.31
bubble 5x 139.88 753.33 0.19 104.69 1.34

bubble 25x 557.63 3020.53 0.18 429.06 1.30
capr 1x 23.53 129.55 0.18 22.23 1.06
capr 5x 117.89 654.98 0.18 135.83 0.87

capr 25x 617.63 3240.32 0.19 566.1 1.09
capr rank 1x 23.53 76.31 0.31 5.17 4.55
capr rank 5x 117.89 390.87 0.30 28.74 4.10

capr rank 25x 617.63 1959.83 0.32 137.91 4.48
dich 1x 19.9 127.63 0.16 25.83 0.77
dich 5x 99.62 664.62 0.15 129.49 0.77

dich 25x 508.22 3157.01 0.16 515.92 0.99
dich rank 1x 19.9 94.93 0.21 20.23 0.98
dich rank 5x 99.62 474.60 0.21 101.29 0.98

dich rank 25x 508.22 2397.54 0.21 507.15 1.00
fiff 1x 21.25 137.58 0.15 24.28 0.88
fiff 5x 107.38 684.33 0.16 117.7 0.91

fiff 25x 537.22 3485.94 0.15 600.38 0.89
mbrt 1x 18.6 43.08 0.43 12.83 1.45
mbrt 5x 93.55 218.51 0.43 63.34 1.48

mbrt 25x 389.63 1083.79 0.36 317.54 1.23
nb1d 1x 24.00 157.93 0.15 94.12 0.25
nb1d 5x 116.28 1196.36 0.10 716.52 0.16

nb1d 25x 566.15 10591.97 0.05 5875.75 0.10
nb1d arr 1x 24.00 62.34 0.38 11.46 2.09
nb1d arr 5x 116.28 498.71 0.23 104.04 1.12

nb1d arr 25x 566.15 4184.31 0.14 811.66 0.70

Table 2. Execution results (time in seconds) for native (C++) backend



is proportionally slower than that for 1x. This may be due to the
fact that the MATLAB array/vector-based library routines have been
highly tuned and may be better optimized and/or use multithreaded
libraries for larger data sizes.

Since our generatednb1dperformed poorly due to the slowness
of our general-purpose MIX10 library code for array/vector oper-
ations, we experimented with generating more efficient specialized
library operations. We created a specialized version ofnb1dcalled
nb1d arr that uses a version MIX10 library containing specialized
methods for column vectors.5 In these specialized methods, instead
of iterating over the points, we use the traditional for loopto iterate
overn ∗ 1 elements of the array. Comparing the performancen1bd
nb1d arr shows that the specialized library approach gives up to 5
times faster execution times over unspecialized version.

6.2 Native backend (C++)

Results for compilation to native backend are reasonably good,
and contained no big surprises. Overall, the-NO_CHECKS flag by
itself does not produce performant code, but combined with-O,
performance nearly equals original MATLAB code, withbubbleand
mbrt surpassing it.

capr rank gives up to 4 times faster results as compared to
capr with optimization and ”no checks” switched on. Without the
optimizations also it is over 1.5 times faster than the unspecialized
version.dich rank is about 1.3 times faster than the unspecialized
version for both optimized and unoptimized cases. This difference
in improvement for these two benchmarks is probably due to the
fact thatcapr has nearly 3 times more array access operations than
dich thus this specialization has greater impact oncapr.

The results formbrt compiled to native backend are about 9
times faster than those for managed backend. The reason is that
x10.lang.Complex can be implemented much more efficiently in
C++ using structs which can be allocated more efficiently by either
being allocated on the stack or are embedded in a containing object.

Results fornb1ddo not show any improvement with-O because
it uses for loops with points which are not optimized [8].nb1d arr
however gives a huge speedup of up to 8 times compared tonb1d.
This shows that generating specialized MIX10 library methods is
beneficial for both X10 back-ends.

6.3 Summary

Our initial experiments have given some reasonable performance
results, and pointed out some places where both our code genera-
tion, and the X10 managed code generation could be improved.

In its current form, the code MIX10 generates is directly trans-
lated from low-level Tame IR and keeps all the extra variables in-
troduced in it. Also, since default data type for numbers used in
MATLAB is double and in X10 isInt, there is a large amount
of type conversion overhead, specially for array accesses (MAT-
LAB used subscripts of typedouble but X10 uses subscripts of
typeInt). Another factor is that MATLAB builtins are mapped to
method calls (some of which make further library calls) which in-
troduces further overhead. Currently it is a trade-off between read-
ability and performance but it can be reduced once we implement
method inlining optimization (which can be invoked optionally).

Our experiments also show that generating more specialized
X10 code can lead to much faster executions. In particular, it ap-
pears that declaring the ranks of arrays in the generated X10code
is very important. Our MIX10 compiler can use the shape infor-
mation provided by the Tamer framework to automatically infer
the ranks of many arrays, so future versions of MIX10 will spe-
cialize array declarations whenever possible. We also observed that

5 This specialization for MIX10 library is currently done by hand and will
be implemented in MIX10 in the future.

generating specialized MIX10 library routines can also provide ex-
cellent performance improvements, and we also plan to add this to
M IX10.

Our results also point out some places where the code gener-
ation for the managed backend for X10 could be improved. The
aggressive inlining done by the X10-O option seems to be counter-
productive in situations where this creates code that is toolarge/-
complex for the JIT compiler. Furthermore, the simplifications per-
formed by the X10 compiler to enable the inlining appears to intro-
duce many spurious temporary variables and type casts, which may
be putting further pressure on the JIT compiler. We also observed
significant overheads for the benchmark usingComplex scalars.
For these cases it may be worth implementing some object inlin-
ing in the generated X10 code.

In this first phase of MIX10 development we achieved our goal
to generate correct and robust code for many of the commonly used
MATLAB features. In the next phase of MIX10 development we
plan to focus on optimizations for performance of generatedse-
quential code and to identify parallelism in MATLAB code and map
them to X10’s concurrency controls. MATLAB vector instructions
andparfor loops are a good starting point.

7. Related Work
As discussed in Section 2, this work builds upon the previous
work from the McLAB group, including the front-end, the McSAF
analysis framework [3, 4] analysis framework, and the MATLAB
Tamer [6].

There have been previous research projects on static compila-
tion of MATLAB which focused particularly on the array-based sub-
set of MATLAB and developed advanced static analyses for deter-
mining shapes and sizes of arrays. For example, FALCON [14] is a
MATLAB to FORTRAN90 translator with sophisticated type infer-
ence algorithms. The McLab group has previously implemented a
prototype Fortran 95 generator [10], and is developing the next gen-
eration Fortran generator in parallel with the MIX10 project. Some
of the solutions can be shared between the projects, especially the
parts which extend the Tamer. The MEGHA project[13] provides
an interesting approach to map MATLAB array operations to CPUs
and GPUs, but only supports a very small subset of MATLAB .

There are also commercial compilers. One such product is the
MATLAB Coderrecently released by MathWorks[11], which pro-
duces C code for a subset of MATLAB .

There are other projects providing open source implementations
of MATLAB -like languages, such as Octave[1] and Scilab[9]. These
add valuable contributions to the open source community, however
their focus is on providing interpreters and open library support
and they have not tackled the problems of static compilation. We
are investigating if there is any way of sharing some of theirlibrary
support with MIX10.

In terms of source-to-source compilers for X10, we are aware
of two other projects. StreamX10 is a stream programming frame-
work based on X10 [16]. StreamX10 includes a compiler which
translates programs in COStream to parallel X10 code. Tetsudis-
cusses the design of a Ruby-based DSL for parallel programming
that is compiled to X10 [15].

8. Conclusions and Future Work
In this paper we have outlined the important first steps in building
M IX10, a source-to-source compiler from MATLAB to X10. We
have provided an overview of the design, including our use of
existing tools and the new components we have defined for the X10
code generation.



We presented our approach to handling many MATLAB features
including our treatment of MATLAB built-in operators, MATLAB
stylefor loops, and colon-style indexing operations on arrays.

We demonstrated that we could generate working X10 code for
a collection of MATLAB benchmarks, showing that the core trans-
lation is in place. In many cases the execution speed of the gener-
ated X10 code was comparable, and sometimes slightly fasterthan
the original MATLAB code. In particular, the results with the native
backend were quite encouraging. This initial experimentalevalua-
tion also pointed out several areas where we can improve our code
generation further including: reducing extra function call overhead,
minimizing type conversions, and specializing code based on the
results of shape analysis.

Based on the foundations in this paper we plan to continue the
project in several directions. On the performance side we intend to
further optimize the generated code, and to expose the parallelism
inherent in MATLAB vector instructions and MATLAB parfor
loops. We also intend to add some X10-specific optimizations,
including one that will identify immutable variables, which can
thus be declared as such in the generated X10 code.

For peak performance of the generated X10 code we use the
-NO_CHECKS switch which disables the array bounds checks and
type conversion checks. However, the semantics of MATLAB re-
quire that array bounds checks be made. We are currently work-
ing on array bound analyses which will allow us to generate array
bounds checks where necessary in our generated code.

One of our goals is to generate readable X10 code, so that
programmers could use MIX10 to port MATLAB code to X10.
The structure of the generated code is already quite clear, but the
individual statements are too low-level because they are following
the simplified form of the Tamer IR. We are currently developing
a collection of aggregating transformations which will rebuild the
expressions to a level more like what a programmer would specify.
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