
Overview of the artifact
MiX10: Compiling Matlab to X10 for High Performance

OOPSLA 2014

Vineet Kumar and Laurie Hendren

June 28, 2014

w w w . s a b l e . m c g i l l . c a

Contents

1 Getting started guide 2

1.1 Prerequisites . 2

1.2 Availability . 3

1.3 Setup and usage . 3

1.3.1 Step 1: Extract the archive . 3

1.3.2 Step 2: Run the jar file . 3

1.3.3 Understanding the switches . 4

1.3.4 Current limitations . 4

1.3.5 Before compiling and running the generated X10 code 5

2 Artifact evaluation 6

2.1 Obtaining and using the X10 compiler . 6

2.2 Command line switch combinations for evaluating the artifact 8

1

Abstract

Matlab is a popular dynamic array-based language commonly used by students, scientists
and engineers who appreciate the interactive development style, the rich set of array operators,
the extensive builtin library, and the fact that they do not have to declare static types. Even
though these users like to program in Matlab, their computations are often very compute-
intensive and are better suited for emerging high performance computing systems. This paper
reports on MiX10, a source-to-source compiler that automatically translates Matlab programs
to X10, a language designed for “Performance and Productivity at Scale”; thus, helping scientific
programmers make better use of high performance computing systems.

There is a large semantic gap between the array-based dynamically-typed nature of Matlab
and the object-oriented, statically-typed, and high-level array abstractions of X10. This paper
addresses the major challenges that must be overcome to produce sequential X10 code that is
competitive with state-of-the-art static compilers for Matlab which target more conventional
imperative languages such as C and Fortran. Given that efficient basis, the paper then provides a
translation for the Matlab parfor construct that leverages the powerful concurrency constructs
in X10.

The MiX10 compiler has been implemented using the McLab compiler tools, is open source,
and is available both for compiler researchers and end-user Matlab programmers. We have
used the implementation to perform many empirical measurements on a set of 17 Matlab
benchmarks. We show that our best MiX10-generated code is significantly faster than the de
facto Mathworks’ Matlab system, and that our results are competitive with state-of-the-art
static compilers that target C and Fortran. We also show the importance of finding the correct
approach to representing the arrays in X10, and the necessity of an IntegerOkay analysis that
determines which double variables can be safely represented as integers. Finally, we show that
our X10-based handling of the Matlab parfor greatly outperforms the de facto Matlab
implementation.

1 Getting started guide

The artifact is provided as a zipped tar archive(.tar.gz) of a directory named MiX10. The README.txt
file provided in the MiX10 directory gives a list of the various components of our artifact.

The main component of our artifact is the MiX10 compiler itself, provided as an executable jar
file. It is a command-line only tool. It takes an input Matlab file and compiles it to X10. In
this section we first list the prerequisites required to run the jar file and then give step-by-step
instructions to run the compiler. We also give a description of various command-line switches
available with the compiler.

1.1 Prerequisites

The following list gives the various prerequisites in order to successfully run the MiX10 compiler:

Operating System: In its current version MiX10 is available only for Unix and Unix-like oper-
ating systems only. In particular, we have tested the MiX10 compiler on Ubuntu Linux 12.04
(kernel version: 3.8.0-35-generic #52 precise1-Ubuntu SMP Thu Jan 30 17:24:40 UTC 2014)
and Mac OS X 10.9 (Darwin Kernel Version 13.2.0: Thu Apr 17 23:03:13 PDT 2014).

Java: The MiX10 compiler requires the Java Runtime Environment 1.8.0 (Java 8). It is incom-
patible with the previous versions of the Java Runtime Environment.

2

X10 compiler: In order to run the MiX10 compiler, one does not need to have an X10 compiler.
However, to compile and run the X10 files generated by the MiX10 compiler, it is required
to have a compatible version of the X10 compiler. The X10 code generated by the MiX10
compiler requires at least version 2.4 of the X10 compiler, available freely from the X10
website1. Details about the different variations of the X10 compiler used for our experiments
are discussed in Section 2

1.2 Availability

The latest version of the MiX10 artifact, its md5 hash and this getting started guide can be
downloaded from the following links:

The artifact packages as tar.gz: http://www.sable.mcgill.ca/mclab/mix10/MiX10.tar.gz

The md5 hash of the artifact: http://www.sable.mcgill.ca/mclab/mix10/md5sum_mix10.txt

Getting started guide: http://www.sable.mcgill.ca/mclab/mix10/getting_started.pdf.

1.3 Setup and usage

Once the prerequisites are satisfied, download the artifact (MiX10.tar.gz) and follow the following
step-by-step guide to run the MiX10 compiler with the various command-line switches. We will
use bubble sort implementation in Matlab, as an example input file.

1.3.1 Step 1: Extract the archive

Once you have downloaded the file MiX10.tar.gz, open a terminal and cd to the directory where
the MiX10.tar.gz file is located. To extract the archive, run the following command:

1 $ tar −xvf MiX10.tar.gz

This will create a directory named MiX10, which will contain a README.txt file with a description
of the contents of the directory.

1.3.2 Step 2: Run the jar file

Inside the MiX10 directory, there is the jar file named MiX10.jar. This jar file can be run using a
command formatted as:

1 $ java −jar MiX10.jar −mix10c\
2 −arg info ”DOUBLE&1∗1&REAL”\
3 −main ”path/to/the/input matlab file.m”\
4 −od ”path/to/the/output/directory/”\
5 [Optional switches]

For example, to compile the bubble sort example located in the directory examples/bubble/, run
the following command:

1http://x10-lang.org/software/download-x10/latest-release.html

3

http://www.sable.mcgill.ca/mclab/mix10/MiX10.tar.gz
http://www.sable.mcgill.ca/mclab/mix10/md5sum_mix10.txt
http://www.sable.mcgill.ca/mclab/mix10/getting_started.pdf
http://x10-lang.org/software/download-x10/latest-release.html

1 $ java −jar MiX10.jar −mix10c\
2 −arg info ”DOUBLE&1∗1&REAL”\
3 −main ”./examples/bubble/drv bubble.m”\
4 −od ”./output/”

This should create the output x10 file, drv bubble x10.x10 under the output directory. It also
creates a package directory named simpleArrayLib which contains a file named Mix10.x10, the
library file containing the builtins. In addition to generating the output X10 file, the above com-
mand also displays some debug information on the console. If everything worked correctly, the
debug information should end with printing the X10 program on the console.

1.3.3 Understanding the switches

As seen in the above example, there are four compulsory switches that are required to run the
MiX10 compiler. They are described below:

1. -mix10c This switch is required to invoke the MiX10 compiler.

2. -arg info This switch describes the type, shape and Real/Complex nature of the input
argument that is passed to the entry point function of the Matlab program. In the above
example, the value DOUBLE&1*1&REAL describes that the input argument to the entry function
is of type Double, is scalar (matrix of size 1*1) and is a Real numerical value.

3. -main This switch reads the following string after it as the path to the entry point function
of the input Matlab program. The path can be relative or absolute.

4. -od This switch reads the following string as the path to the directory where the generated
X10 code should be placed. This path can be relative or absolute.

5. -class name This switch takes string value which is used as the name of the generated X10
program. By default, the generated class name is created by appending ” x10” to the name
of the Matlab entry point function.

6. -use region arrays This is a boolean switch that tells the compiler to explicitly use the
region arrays even if it is possible to use the simple arrays. Section 4 of the paper describes
the default behaviour, that is to generate the simple arrays whenever possible.

7. -no intok This is also a boolean switch to explicitly tell the compiler to disable the Inte-
gerOkay analysis described in section 5 of the paper.

1.3.4 Current limitations

The development of the MiX10 compiler is a work in progress and there are some limitations to
how it works. These limitations are as follows:

1. Exactly one argument can be passed to the entry point function. The entry point function to
the input MATLAB program should take exactly one argument, whose type is described by
the switch -arg info. However, there is no restriction on the type or shape of this argument.
None or more than one arguments will result in an exception and there will be no output.

4

2. All the functions is the input program must be in separate files. Each function of the input
Matlab program must be present in a separate .m file.

3. Generated Mix10.x10 library file does not contain all the library functions used by the pro-
gram. We are still in the process of building the XML file used by the builtin-handler described
in Section 2 of the paper. This means that for some builtins used in the Matlab program,
the X10 implementation is not populated automatically in the generated library file. How-
ever, we have provided a hand-written implementation of the builtin library functions in the
directory named library.

4. Add the %!parfor annotation for parfor loops The McLab frontend currently does not support
the Matlab parfor construct. However, adding the annotation ”%!parfor” just before the
parfor loop in the Matlab program will trigger the MiX10 compiler to generate the parallel
X10 code for the parfor construct.

5. Multiple definitions of a function may exist. Due to a known bug in the Tamer [2], some
functions are defined twice in the TamerIR and thus in the generated X10 code. The McLab
team is in the process of fixing it.

1.3.5 Before compiling and running the generated X10 code

Once the X10 program is generated by the MiX10 compiler, there are three steps that need to be
done in order to make the generated X10 code ready to run:

1. As noted in point 3 of section 1.3.4, The hand-wriiten X10 implementation of the builtin
library functions is provided in the directory named library inside the root directory (MiX10)
if the artifact. The library folder further contains two folders named simpleArrayLib

and regionArrayLib, each containing two X10 files Helper.x10 and Mix10.x10. To use
these libraries, replace the generated directory simpleArrayLib (or regionArrayLib) in the
output directory with the simpleArrayLib (or regionArrayLib) in the library directory.
For example, from within the output directory, you can give the following set of bash
commands to replace the simpleArrayLib:

1 $ rm −r ./simpleArrayLib
2 $ cp −r ../library/simpleArrayLib ./

2. The generated X10 code contains a main() method that needs to manually edited to add a
call to the entry point function with a single argument that has the type and shape specified
with the -arg info switch while compiling the Matlab code with the MiX10 compiler.
The argument should also be real/complex as specified. The main() method contains the
comment, “//Insert Call to driver function here”, indicating where the call should
be made. For example, in the bubble sort example, a call to the entry point function can
be made by adding the following line below the above mentioned comment in the main()
function:

drv_bubble(3000.0);

5

3. As noted in point 5 of section 1.3.4, due to a known bug in the Tamer, the generated X10
code may contain multiple definitions of the same function. This needs to be manually fixed
by deleting one of the duplicate copies of such a method in the generated X10 file, which
otherwise would result in an error while compiling with the X10 compiler. Note that the
bubble sort example being used in this guide will not have any duplicate method definitions.

The following section gives details on how to get the X10 compiler and how to use it to compile
and execute an X10 program both with the Java and the C++ backends.

2 Artifact evaluation

Once the X10 code is generated by folowing the steps in the previous section, it is evaluated
for performance by compiling and executing it using the X10 compiler. To evaluate the effects
on performance of the various features of the MiX10 compiler, appropriate switches are used to
generate code with a particular feature turned on/off, as described in the getting started guide in
the previous section. Similarly, different switches are used in the X10 compiler to evaluate the
generated code more elaborately.

This section covers the following three topics: (1) Instructions on how to obtain and use the X10
compiler; and (2) An overview of the combinations of the command line switches for evaluating the
artifact.

2.1 Obtaining and using the X10 compiler

The X10 compiler is freely available under the Eclipse public License. It can be obtained in the
form of executable binaries, the source code or an Eclipse-like API including the compiler. The
X10 compiler provides two backends, a Java backend and a C++ backend, effectively giving two
different compilers.

Follow the instructions below to obtain the X10 compiler and compile and run the generated X10
code using it:

1. Obtaining the X10 compiler: The easiest way to get an X10 compiler is to download it
in the form a development toolkit, called X10DT, which is an eclipse-like IDE for X10 and
includes a builtin X10 compiler. The second way (and the way we will give the usage instruc-
tions for) is to get the pre-built binary of the X10 compiler. The third way is to download the
X10 compiler source code and compile it yourself. We will also give a brief description of this
way as we need it to use the column-major indexing for the X10 arrays described in section
4.1.1 of the paper. All the three forms of the X10 compiler can be obtained from the fol-
lowing URL: http://x10-lang.org/software/download-x10/latest-release.html. We
used X10 version 2.4.0, but the latest version 2.4.3 should also work.

2. Using the X10 compiler: We will describe how to use the X10 compiler downloaded as
the pre-built binary version. For the sake of simplicity, we will assume that the downloaded
file x10-<version> <platform>.tgz is renamed to simply x10.tgz. cd into the directory where
you have downloaded x10.tgz file and use the following commands to extract it:

6

http://x10-lang.org/software/download-x10/latest-release.html

1 $ mkdir x10; mv x10.tgz x10
2 $ cd x10; tar −xvf x10.tgz

This will result in a directory named x10 (inside the directory where you downloaded the
archive) which contains a directory named bin that contains the executables to invoke the
X10 Java and C++ compilers. We recommend that you add this bin directory to your
system’s PATH environment variable (The following examples to invoke the X10 compiler
assume that the PATH contains this bin directory).

The following set of commands show how to compile the drv_bubble_x10.x10 generated
for our example by the MiX10 compiler. We assume that you have completed the required
steps described in section 1.3.5 and your present working directory is the output directory
containing the .x10 file.

Compiling and executing the .x10 file using the Java backend:

1 #compiling
2 $ x10c −O drv bubble x10.x10
3 #executing
4 $ x10 drv bubble x10

Compiling and executing the .x10 file using the C++ backend:

1 #compiling
2 $ x10c++ −O drv bubble x10.x10 −o drv bubble x10
3 #executing
4 $./drv bubble x10

3. Using the column-major layout for the arrays: As described in the section 4.1.1 of the
paper, we made changes to the X10 source code to use column-major indexing in place of
the default row-major indexing. Note that all the X10 programs, except those that explicitly
rely on the internal row-major ordering of the arrays, would work correctly with both the
default X10 that uses row-major indexing and our modified version that uses column-major
indexing.

In order to use our modification, you need to first download the X10 compiler source code
available from the SVN repository and can be downloaded with the following command:

1 $ svn co https://svn.code.sourceforge.net/p/x10/code/trunk x10−trunk

To apply the changes to use column-major indexing, replace the Array 2.x10 and Array 3.x10
files present in the x10-trunk/x10.runtime/src-x10/x10/array directory of the X10 com-
piler source code, by our version of these files available from our website: http://www.sable.
mcgill.ca/mclab/mix10/x10_update/. Then Compile the X10 source code as per the de-
tailed instructions given on the X10 webpage: http://x10-lang.org/x10-development/

building-x10-from-source.html. After compilation, the bin directory containing the com-
piler executables is located inside the directory x10-trunk/x10.dist/. Add this bin direc-
tory to the path (in place of the previous one described above) and use the same commands
to compile and run the .x10 files as described above.

7

http://www.sable.mcgill.ca/mclab/mix10/x10_update/
http://www.sable.mcgill.ca/mclab/mix10/x10_update/
http://x10-lang.org/x10-development/building-x10-from-source.html
http://x10-lang.org/x10-development/building-x10-from-source.html

2.2 Command line switch combinations for evaluating the artifact

The optional switches provided by the MiX10 compiler can be turned on or off in combination
with the -NO CHECKS switch of the X10 compiler. For example, to evaluate the performance of
the IntegerOkay analysis, first generate the X10 code from the MiX10 compiler using the -no intok
switch, which will explicitly turn off the IntegerOkay analysis. Next, generate the X10 code without
using this switch to get X10 code with the analysis. These two sets of X10 code can be compiled
by the X10 compiler to compare their performance for different switches of the X10 compiler (both
C++ and Java). Section 5 of the paper discusses the IntegerOkay analysis and section 7.7 of the
paper gives the evaluation results for it.

Similarly, the -use region arrays switch can be toggled to generate code for explicitly generating
code with region arrays. Region arrays and Simple arrays are discussed in section 4.1 of the paper.
Their comparison is presented in section 7.6 of the paper.

Parallel X10 code can be evaluated similarly, after setting the environment variable X10 NTHREADS

to specify the number of worker threads used by the X10 runtime2

References

[1] A. Dubrau and L. Hendren. Taming MATLAB. In Proceedings of OOPSLA 2012, pages 503–
522, 2012.

2http://x10-lang.org/documentation/practical-x10-programming/performance-tuning.html

8

http://x10-lang.org/documentation/practical-x10-programming/performance-tuning.html

	Getting started guide
	Prerequisites
	Availability
	Setup and usage
	Step 1: Extract the archive
	Step 2: Run the jar file
	Understanding the switches
	Current limitations
	Before compiling and running the generated X10 code

	Artifact evaluation
	Obtaining and using the X10 compiler
	Command line switch combinations for evaluating the artifact

