
A compiler toolkit for array-based
languages targeting mixed

CPU/GPU systems

Rahul Garg
PhD student, McGill

Supervisor: Prof Laurie Hendren

Outline

2

• Two important trends:

– Emergence of general purpose GPUs (GPGPUs)

– Popularity of array-based languages

• Enable development of compilers that bring
the two trends together

• Challenges

• Proposal: Reusable, shared infrastructure
including compiler, library and runtime

3

Xeon E5 FirePro W9000

Cores 8 32

Threads 16 Thousands

Peak FP64 perf (Gflops/s) ~200 ~1000

General Purpose GPUs (GPGPUs)

5x FP peak
compared
to latest
server CPU

CPU + (GPU/Many-core) everywhere

4

• Supercomputers

• Workstations

• Laptops

• Tablets

Programming GPGPUs

5

• Two dominant APIs: CUDA and
OpenCL

• Both of them are low-level:

– Require management of GPU
resources

– Require GPU-specific optimization

• Nvidia CUDA : Mature but
proprietary

• OpenCL is an industry standard

6

Dynamic array-based languages

a = zeros(1000);
b = zeros(1000);
c = a(1 , :)*b(: , 1);

• No explicit type declarations

• Builtin high-level array operators

• Very flexible indexing schemes

• Both vectorized operations as well as explicit
loops

• Interpreter + JIT compiler for parts of programs

• Language runtime with automatic memory
management

7

Typical dynamic array-based
languages

• Approach 1: Provide library:

– D = gpu_mult(A,B)

• Approach 2: Mark GPU sections. Ask language
implementation for assistance

8

Using GPUs

gpu_begin()
D = A*B
for ….
gpu_end()

9

Scenario:

• You have an existing CPU-based language

implementation for an array-based
language.

• Evil boss heard about GPUs. Comes up
with GPU sections.

• Now boss has asked you to write a GPU
backend for GPU sections

Type inference

Frontend

More analysis

Source
CPU codegen

Compiling for CPUs

CPU code

Language Runtime

Type inference

Frontend

More analysis

Source + GPU
annotations CPU codegen

Compiling for CPUs + GPUs

CPU code

Language Runtime

GPU codegen

GPU code

GPU
runtime

GPU numerics

• Not everything runs on GPUs

• Programs can be broadly classified into
numerical and non-numerical parts

• Some of the numerical parts will run on GPU

• Complex data structures, file IO etc. still on
CPU

• Hence, a GPU compiler need only deal with
numerical things, mostly involving arrays

12

High level idea

Frontend +
Analysis

CPU codegen

Source + GPU
annotations

Language Runtime

Identify numerical
sections

Glue

Non-numeric
CPU code

Velociraptor

Proposed overall design
New IR

Frontend +
Analysis

CPU codegen

Source + GPU
annotations CPU + GPU codegen

CPU code

Language Runtime

GPU code

GPU runtime

Identify numerical
sections

Glue

Non-numeric
CPU code

Velociraptor

Proposed overall design

GPU numerics

New IR

• VRIR (Velociraptor IR) is the input
representation for Velociraptor

• Typed attributed abstract syntax tree (AST)

• Flexible built-in array operators and indexing

• Flexible array layout schemes

• Optionally indicate which statements to
execute on GPU

• Not tied to any one source language

15

VRIR

• First implementation is
now done

• Generates LLVM +
pthreads for CPUs
– Tested on x86-64, plans

to port to ARM

16

Velociraptor: Codegen

• Generates OpenCL for GPUs

• Tested on AMD and Nvidia GPU targets

• Handles data transfers between CPU & GPU

• Tries to avoid unneeded data transfers

• Tries to perform data transfers in parallel with
computation

17

GPU Runtime: VRuntime

• Abstract out OpenCL API

• Provides a dispatch queue
for to all GPU kernel calls

• Non-blocking

• CPU and GPU can work in
parallel

• GPU architectures are
quite diverse

• Not all vendors provide
OpenCL libraries

• Thus, I wrote an
autotuning library
(RaijinCL)

18

GPU numerics: RaijinCL

• Search parameters such as tile size, SIMD
length, loop unrolling, work group size etc.

• Implements operations such as matrix
multiplication, trigonometric functions,
reductions

• In your code generator

– Identify and outline numerical sections

– Compile numerical sections to VRIR

– Either provide VRIR as XML, or use C++ APIs

• Provide glue code for language runtime

– Tell Velociraptor the structure of your array objects

– Routines to do object allocation, integrate with
memory management

– Integrate with error reporting

19

Integrating Velociraptor

• McVM:
– A virtual machine for MATLAB built at our lab

– Integrating Velociraptor only for parfor loops and
GPU sections

• Python:
– Proof-of-concept compiler for a numeric subset of

Python+NumPy

– Requires manual type annotations

– All codegen being done by Velociraptor

20

Integration with multiple languages

21

RaijinCL DGEMM: AMD Radeon 7970

22

RaijinCL DGEMM: Nvidia Tesla C2050

0

1

2

3

4

5

6

7

8

9

Matrix add Matrix mult

CPU parallel

GPU

23

Benchmarks
Sp

e
ed

u
p

s

• Finish described stuff (about 99% done)

• Loop optimization

• Scheduling for optimal use of CPU+ multiple
GPUs

• Automatically identifying parts which should
be executed on GPU

• Look into CUDA support

• Graduate. Make money.

24

Future work

• Group website:
http://www.sable.mcgill.ca/mclab

• Email: rahul.garg@mail.mcgill.ca

• Compiler writer? Alpha builds available end of
November

• Hardware vendor? We want to test on your
hardware!

• MATLAB/Python user? We want your
benchmarks!

25

Thanks!

http://www.sable.mcgill.ca/mclab
mailto:rahul.garg@mail.mcgill.ca

