Amina Aslam

McLAB: Compiler Tools Toheedasiam
for MATLAB

Maxime Chevalier- Boisvert
Jesse Doherty

Anton Dubrau

Rahul Garg

Maja Frydrychowicz
Nurudeen Lameed

JunlLi

Soroush Radpour

Olivier Savary

Laurie Hendren
McGill University

Leverhulme Visiting Professor
Department of Computer Science
University of Oxford

McLab, Laurie Hendren, Leverhulme Lecture

7/1/2011

Overview

« Why MATLAB?

* Introduction to MATLAB —
challenges

* Overview of the McLab
tools

* Resolving names in MATLAB

Nature Article: “Why Scientific Computing does

not compute” [Merali, Oct 2010]

* 38% of scientists spend at least 1/5t" of their
time programming.

* Codes often buggy, sometimes leading to papers
being retracted. Self-taught programmers.

* Monster codes, poorly documented, poorly
tested, and often used inappropriately.

e 45% say scientists spend more time
programming than 5 years ago.

Mclab, Laurie Hendren, Leverhulme Lecture

Java
Aspect)

A lot of MATLAB programmers!

* Started as an interface to standard FORTRAN
libraries for use by students.... but now

— 1 million MATLAB programmers in 2004, number
doubling every 1.5 to 2 years.

— over 1200 MATLAB/Simulink books
— used in many sciences and engineering disciplines

III

* Even more “unofficial” MATLAB programmers
including those using free systems such as
Octave or ScilLab.

Leverhulme Lecture #1

'l.!.ll:.:ll_\-r ! s
T HETTISTN " MATLAR"

qur_ LS
T

7/1/2011

Implications of choosing a

ipting”

dynamic, “scr
language like MATLAB....

Intro-8

McLab, Laurie Hendren, Leverhulme Lecture

7/1/2011

“flexible” syntax

©
c
©
(%]
]
Q
>
o
(©]

=z

http://imgs.xkcd.com/comics/fourier.jpg

Hi Dr. Ebzabeth?

fek

t;ci:rl"n'l_l:l
Ty O

'&IF Faurier transfora of

i

-

Yogh vh.. T @

ot

J&f“t—ﬁ—»

Intro-10

Mclab, Laurie Hendren, Leverhulme Lecture

7/1/2011

EEASONE WHY FEOFLE WHO WOEK

WITH

CHPUTERS SEEM To HAVE

L

MATLAB

TIME

LAT QF sPAEE

A

Taveloper

‘e

413

Ty

W

ERH

FORTRAN

\
-

=
f**:fmm*
.

-
.
-

&%
.

*:
.

-
-
-

o
.

-

-

%2
-
%*

-

. -

%:** f* 5 f

§ e
m“w"f s

4
**&M =

. =5
mi&,&,i&
-

ﬁ?%%%

=
2]
e
B
3y
-
I.

s
7/1/2011

(LT

Intro- 7

T, i T

Many run-time

decisions ...

Potentially large

runtime

overhead in
both time and

MATLAB

o
(St

No formal standa

McLAB *

Intro- 12

Mclab, Laurie Hendren, Leverhulme Lecture

7/1/2011

Most semantic {syntactic) checks made at

runtime ... No static guarantees

Leverhulme Lecture #1

Culture Gap

Programming Language /

Scientists / Engineers Compiler Researchers

* Comfortable with informal

descriptions and “how to”
documentation.

* Prefer more formal language
specifications.

* Prefer well-defined types
(even if dynamic) and well-
defined scoping and
modularization mechanisms.

* Don’t really care about types
and scoping mechanisms, at
least when developing small
prototypes.

¢ Appreciate

“harder/deeper/more
beautiful” programming
language/compiler research
problems.

* Appreciate libraries,
convenient syntax, simple
tool support, and interactive
development tools.

McLab, Laurie Hendren, Leverhulme Lecture

7/1/2011

Goals of the McLab Project

* Improve the understanding and documentation
of the semantics of MATLAB.

* Provide front-end compiler tools suitable for
MATLAB and language extensions of MATLAB.

* Provide a flow-analysis framework and a suite of
analyses suitable for a wide range of
compiler/soft. eng. applications.

* Provide back-ends that enable experimentation
with JIT and ahead-of-time compilation.

Enable PL, Compiler and SE Researchers to work on MATLAB

MclLab, Laurie Hendren, Leverhulme Lectus

Brief Introduction to MATLAB

Functions and
Scripts in
MATLAB

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

Basic Structure of a MATLAB function

1 function [prod, sum] = ProdSum(a, n)

2 prod = 1;

3 sum = 0;

4 for i =1:n

5 prod = prod * a(i); >>[a,b] = ProdSum([10,20,30],3)
6 sum = sum + a(i); a =6000

7 end; b=60

8 end

>> ProdSum([10,20,30],2)
ans =200

>> ProdSum(‘abc’,3)
ans =941094

>> ProdSum([97 98 99],3)
ans = 941084

7/1/2011 Mclab, Laurie Hendren, Leverhulme Lecture

function [z] = MyTimes(x, y)
zZ=x *7y;
end
prod = 1;
sum = 0;
for i = 1:n
prod = MyTimes(prod, a(i));
sum = MySum(sum, a(i));
end;
end

function [z] = MySum (x, y
z2=x+y;
end

9 o
(oo
i

McLab, Laurie Hendren, Leverhulme Le

Leverhulme Lecture #1

Basic Structure of a MATLAB script

1 % stored in file ProdSumScript.m
2 prod = 1;
3 sum o 0; >> clear
4fori=im >>a=[10, 20, 30);
5 prod = prod * a(i); >>n=3;
6 sum = sum + a(i); >> whos
7 end; Name Size Bytes Class
a 1x3 24 double
n 1x1 8 double
>> ProdSumScript()
>>whos
Name Size Bytes Class
a 1x3 24 double
i 1x1 8 double
n 1x1 8 double
prod 1x1 8 double
sum 1x1 8 double

McLab, Laurie Hendren, Le

Directory Structure and Path

* Each directory can contain:
— .mfiles (which can contain a script or functions)
—aprivate/ directory
— a package directory of the form +pkg/
— a type-specialized directory of the form @int32/

e Atrun-time:
— current directory (implicit 1t element of path)
— directory of last called function
— path of directories

— both the current directory and path can be changed at
runtime (cd and setpath functions)

7/1/2011

Function/Script Lookup Order function f
call in the body of a function f
foo(a);
* Nested function (in scope of f)
end

* Sub-function (in same file as f)

* Function in /private sub-directory of directory
containing f.

¢ 1st matching function, based on function name
and type of first argument, looking in type-
specialized directories, looking first in current
directory and then along path.

15t matching function/script, based on function
name only, looking first in current directory and
then along path.

Function/Script Lookup Order % in s.m

call in the body of a script s
foo(a);

* Function in /private sub-directory of directory of
last called function (not the /private sub-directory
of the directory containing s).

* 1t matching function/script, based on function
name, looking first in current directory and then
along path.

dirl/

Variables and
Data in MATLAB

MATLAB types: high-level

any
/\
data fnhandle

array cellarray struct

Leverhulme Lecture #1

* Variables are not explicitly declared.

* Local variables are allocated in the current
workspace. Global and persistent variables in a
special workspace.

e Allinput and output parameters are local.

* Local variables are allocated upon their first
definition or via a load statement.

—X = ...
-x(i) = ...
—load (‘£f.mat’, 'x’)

* Local variables can hold data with different types
at different places in a function/script.

Variable Workspaces

* There is a workspace for global and persistent
variables.

* There is a workspace associated with the read-
eval-print loop.

* Each function call creates a new workspace
(stack frame).

* Ascript uses the workspace of its caller (either

a function workspace or the read-eval-print
workspace).

7/1/2011

Variable Lookup

* If the variable has been declared global or
persistent in the function body, look it up in
the global/persistent workspace.

* Otherwise, lookup in the current workspace
(either the read-eval-print workspace or the
top-most function call workspace).

* For nested functions, use the standard
scoping mechanisms.

(i Other Tricky
A | "features" in
o 4 ‘ MATLAB

= —

AR

- .—':-l."": ..h.::_:-"ﬂ
o T
|
| L

e
T ST O AR - RART

McLab, Laurie

Irritating Front-end "Features"

* keyword end not always required at the end of a function (often
missing in files with only one function).

* command syntax
— length('x') or length x
— cd('mydirname') or cd mydirname

* arrays can be defined with or without commas:
[10, 20, 30] or [10 20 30]

* sometimes newlines have meaning:
— a=[102030
4050 60]; // defines a 2x3 matrix
— a=[102030405060]; // defines a 1x6 matrix
— a=[102030;
4050 60]; // defines a 2x3 matrix
— a=[102030; 4050 60]; // defines a 2x3 matrix

7/1/2011 Mclab, Laurie Hendren, Leverhulme Lecture Matlab- 28

“Evil” Dynamic Features

* not all input arguments required
1 function [prod, sum] = ProdSumNargs(a, n)

2 if nargin == 1 n = 1; end;

3 .

4 end

* do not need to use all output arguments
* eval, evalin, assignin

* cd, addpath

* |oad

Leverhulme Lecture #1

Evil Feature of the Day - Looking up an identifier

Old style general lookup - interpreter

¢ First lookup as a variable.
* If a variable not found, then look up as a function.

MATLAB 7 lookup - JIT

* When function/script first loaded, assign a "kind"
to each identifier. VAR —only lookup as a
variable, FN —only lookup as a function, ID — use
the old style general lookup.

* How is the kind assignment done. What impact
does it have on the semantics?

7/1/2011

McLab — Overall Structure

7/1/2011

AspectMatlab
.m MATLAB-

source to-Natlab

Scanner
(MetalLexer)

AspectMatlab
Parser

(Beaver)

AspectMatlab
AST attributes, rewrites

(JastAdd)

Attributed
AST

7/1/2011 Mclab, Laurie Hendren, Leverhulme Lecture

Analyses are
written using
an Analysis
Framework
that supports
forward and
backward flow
analysis over
MCcAST and
MCLAST.

7/1/2011

Analysis Engine

MATLAB

MATLAB-to-Natlab
Translator

Natlab

McLab Front-End

MCcAST Analyses

McLab Simplifier

T MCLAST Analyses

Mclab, Laurie Hendren, Leverhulme Lecture

Back-ends, McVM and McFor

® McVM

A specializing virtual machine and JIT
Written in C++

Uses McLab front-end, LLVM JIT toolkit, Boehm gc, ATLAS,
BLAS, LAPACK

Test-bed for dynamic techniques

@ McFor

A MATLAB-to-FORTRAN 90 translator
Written in Java

15t prototype sh d
on smallish subset.

2" yersion under development

could potentially by used to generate code for different
back-ends.

lient perfor but worked

Mclab, Laurie Hendren, Leverhulme Lecture

How does
MATLAB
resolve
Names?

* No official
specification
* Motivating example

Leverhulme Lecture #1

Y g ——

LTl b

7/1/2011

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

Read-Eval-Print Loop

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

Evil Feature of the Day - Recap

Old style general lookup - interpreter

* First lookup as a variable.
* If a variable not found, then look up as a function.

MATLAB 7 lookup - JIT

* When function/script first loaded, statically assign a
"kind" to each identifier. VAR —only lookup as a
variable, FN — only lookup as a function, ID — use the
old style general lookup.

¢ Compile-time error if, within the body of a function or
script, an identifier has kind VAR in one place and FN in
another.

7/1/2011 Mclab, Laurie Hendren, Leverhulme Lecture Kind - 39

Does the kind analysis change the semantics?

Yes, in two ways!

1. New compile-time errors, so programs that
would previously execute will not.

2. Different binding at run-time for some
identifiers which are assigned a kind of VAR
or FN.

7/1/2011 Mclab, Laurie Hendren, Leverhulme Lecture

Compile-time kind error

1/2011 Mclab, Laurie Hendren, Leverhulme Lecture

Different lookup with old vs MATLAB 7 semantics

1 function [r] = KindEx(a)
2 x=a+ sum(j);

3 eval(’sum = ones(10);’);

14 r = sum(x);

5 end

¢ Old interpreter semantics:
— sum, line 2, named function
— sum, line 4, local variable

* MATLAB 7 semantics gives a static kind of FN to sum
— sum, line 2, named function
— sum, line 4, named function

7/1/2011 Mclab, Laurie Hendren, Leverhulme Lecture Kind - 42

Leverhulme Lecture #1

7/1/2011

Our approach to the Kind Analysis Problem Kind Abstraction

* |dentify that a kind analysis is needed to match
MATLAB 7 semantics.

* Specify and implement a kind assignment
algorithm that matches the observed behaviour
of MATLAB 7. (both for functions and for scripts)

* ldentify any weaknesses in the MATLAB 7 MAYVAR
approach and suggest two more clearly defined
alternatives, one flow-sensitive and one flow-
insensitive.

* Determine if the alternatives could be used
without significant change to the behaviour of
existing MATLAB programs.

1/2011 MclLab, Laurie Hendren, Leverhulme Lectus

Kind Analysis Step 2: Kind Analysis Rules

1. Collect all identifiers used in function/script and set
initial kind approximations for each identifier.

2. Traverse AST applying analysis rules to identifiers.

3. Traverse AST making final kind assignment. Use of identifier x:

if ((kind[z] € {ID, UNDEF})&existslib(x,lib))

kind|z] < FN
Steps 1 and 3 are different for scripts and functions,
step 2 uses the same rules. else

7/1/2011 Mclab, Laurie Hendren, Leverhulme Lecture Kind - 45 1/2011 Mclab, Laurie Hendren, Leverhulme Lecture

kind|x] < kind[z] > ID

Kind Analysis for Functions ——— o |

"] = & 4 - {(r,VAR),(i,UNDEF)}
« Initial values: input and output parameters are T 1B k=il B ul_/ .
initialized to VAR, all other identifiers are initialized ' fonct ELLIR T {mvAR,(i,Fr)}
as UNDEF. | B
il d - {(r,VAR),(i,**error**)}
e Final values: = i il
for each id occurrence in f do ' _
if fkind[id] in {Tn, MaYVar} if ((kind[z] € {ID, UNDEF})&exists lib(x,lib))
id.kind = D kind[z] + FN
else /x fkind[id] in {VAR, FN} %/ else
id.kind = tkind[id] kind[z] + kind[z] > ID READ RULE

Ik‘ind[?ﬁ] < kind[x] > VARI WRITE RULE

MclLab, Laurie Hendren, Leverhulme Lectus Kir VicLab, Laurie Hendren, Lev

Leverhulme Lecture #1 8

Kind Analysis for Scripts

* Initial values: all identifiers are initialized to MAYVAR

* Final values:

T

= i (| remsEe /
UNDEF#/

* Note: most identifiers will be mapped to ID

7/1/2011

(o)}

T

{(r,ID),(i,ID)}

Hr VAR AR

D RULE

Ik“?d\?”\ — kind|x] > VAB,I WRITE RULE

L Hendre erhulme Lecture

Problems with MATLAB 7 kind analysis

* apparently not clearly documented, in some
ways just a side-effect of a JIT implementation
decision

* without a clear specification, confusing for
the programmer and compiler/tool developer

* loses almost all information about variables in
scripts

* some strange anomalies due to a "traversal-
sensitive" analysis

Examples of Anomalies

if(exp) if (~exp)
...=sum(10); (sum,FN) sum(10) =...; (sum,VAR)
else else

sum(10) =...; *error* ...=sum(10); (sum,VAR)

size(size(10)) = ...
(size,VAR)
(size, VAR)

t =size(10); (size,FN)
size(t) = ... *error*

Flow-sensitive Analysis

if(exp) size(size(10)) =
...=sum(10); (sum,FN) (size,FN)
else *error*

sum(10) =...; (sum, VAR)
// merge, *error*

* Apply a flow-sensitive analysis that merges at control-
flow points.

* Consider explicit loads to be definitions -
load ('f.mat’, ’'x’)
* Map final kinds for scripts using the same algorithm as
for functions.

Leverhulme Lecture #1

Flow-insensitive Analysis

if (exp) size(size(10)) =
... = sum(10); (size,VAR)
else
sum(10) = ...;
(sum,VAR)

1. Assign VAR to identifiers that are defined on |hs, or declared
global or persistent.

2. Assign FN to identifiers which have a handle taken or used in
command syntax.

3. Assign FN to identifiers that have no assignment yet, and
which are found in the library.

error if assigned both FN and VAR

Mel urie Hendren, Le ne Lectu

7/1/2011

Various-sized benchmarks from a wide variety of
application areas
Results:
What is the Benchmark Category # Benchmarks
distribution of Single (1 file) 2051
ki £ Small (2-9 filcs) 848
inds for Medium (10-49 files) 113
functions/scripts Large (50-99 files) 9
in real MATLAB Very Large (> 100 files) | 2
Lotal 3024
programs?

Results for Functions - number of identifiers with Results for Scripts — number of identifier
each Kind instances with each Kind

ol MATLAB 7 | Flow-Sens Mo e Kind | MATLAB 7 | MATLAB 7 | Flow-sens. Flow-Tnsens
= = - Taw post-process

VAR 107388 107401 107406 Var | 153444 0 153051 153051
FN 75533 75533 75h33 ' 1 1 3 3
Ip 2369 2335 2335 Ip 69022 222466 68410 68410

1 . 0 error 0 0 0 0
(BIFIFOIF 3 . warn 0 0 100 100
warn 0 9 (Total 222467 222467 222467 222467
Total 185291 185291 185291

2035 scripts

fendren, Leverhulme Lecture Exper -57 7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Exper -58

11698 functions

7/1/2011 Mclab, Laurie

Conclusions and Ongoing Work

* Mclab is a toolkit to enable PL, compiler and SE
research on MATLAB (close the gap).

* Release of three main tools: front-end/analysis
framework, McVM (Virtual Machine) and McFor
(MATLAB to FORTRAN) (tbd). PLDI 2011 tutorial.

* High-level: Refactoring tools for MATLAB. How
to help programmers convert their programs to
better structured, and more efficient codes?

* Lower-level: static compilation to Fortran90 and
new dynamic techniques in McVM/McJIT.

* http://www.sable.mcgill.ca/mclab

McLab, Laurie Hendren, Leverhulme Lecture Conel -59

Leverhulme Lecture #1 10

