
7/1/2011

Leverhulme Lecture #1 1

McLAB: Compiler Tools

for MATLAB

Amina Aslam

Toheed Aslam

Andrew Casey

Maxime Chevalier- Boisvert

Jesse Doherty

Anton Dubrau

Rahul Garg

Maja Frydrychowicz

Nurudeen Lameed

Jun Li

Soroush Radpour

Olivier Savary

7/1/2011 Intro - 1McLab, Laurie Hendren, Leverhulme Lecture

Overview

• Why MATLAB?

• Introduction to MATLAB –

challenges

• Overview of the McLab

tools

• Resolving names in MATLAB

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Intro - 2

Nature Article: “Why Scientific Computing does

not compute” [Merali, Oct 2010]

• 38% of scientists spend at least 1/5th of their
time programming.

• Codes often buggy, sometimes leading to papers
being retracted. Self-taught programmers.

• Monster codes, poorly documented, poorly
tested, and often used inappropriately.

• 45% say scientists spend more time
programming than 5 years ago.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Intro - 3

MATLAB

PERL

Python

Domain-specific

Intro - 4

FORTRAN

C/C++

Java

AspectJ

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

A lot of MATLAB programmers!

• Started as an interface to standard FORTRAN

libraries for use by students.... but now

– 1 million MATLAB programmers in 2004, number

doubling every 1.5 to 2 years.

– over 1200 MATLAB/Simulink books

– used in many sciences and engineering disciplines

• Even more “unofficial” MATLAB programmers

including those using free systems such as

Octave or SciLab.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Intro - 5 Intro -67/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

7/1/2011

Leverhulme Lecture #1 2

Why do Scientists choose MATLAB?

Intro - 7

MATLAB

FORTRAN

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Intro - 87/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

97/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

No types and “flexible” syntax

Intro -107/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

http://imgs.xkcd.com/comics/fourier.jpg

Intro - 117/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Intro - 12

No formal standards for MATLAB

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

7/1/2011

Leverhulme Lecture #1 3

Scientists / Engineers

• Comfortable with informal

descriptions and “how to”

documentation.

• Don’t really care about types

and scoping mechanisms, at

least when developing small

prototypes.

• Appreciate libraries,

convenient syntax, simple

tool support, and interactive

development tools.

Programming Language /
Compiler Researchers

• Prefer more formal language

specifications.

• Prefer well-defined types

(even if dynamic) and well-

defined scoping and

modularization mechanisms.

• Appreciate

“harder/deeper/more

beautiful” programming

language/compiler research

problems.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Intro - 13

Culture Gap Goals of the McLab Project

• Improve the understanding and documentation

of the semantics of MATLAB.

• Provide front-end compiler tools suitable for

MATLAB and language extensions of MATLAB.

• Provide a flow-analysis framework and a suite of

analyses suitable for a wide range of

compiler/soft. eng. applications.

• Provide back-ends that enable experimentation

with JIT and ahead-of-time compilation.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Intro - 14

Enable PL, Compiler and SE Researchers to work on MATLAB

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 15

Brief Introduction to MATLAB
Basic Structure of a MATLAB function

1 function [prod, sum] = ProdSum(a, n)

2 prod = 1;

3 sum = 0;

4 for i = 1:n

5 prod = prod * a(i);

6 sum = sum + a(i);

7 end;

8 end

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 16

>> [a,b] = ProdSum([10,20,30],3)

a = 6000

b = 60

>> ProdSum([10,20,30],2)

ans = 200

>> ProdSum(‘abc’,3)

ans =941094

>> ProdSum([97 98 99],3)

ans = 941084

Primary, nested and sub-functions

% should be in file NestedSubEx.m

function [prod, sum] = NestedSubEx(a, n)

function [z] = MyTimes(x, y)

z = x * y;

end

prod = 1;

sum = 0;

for i = 1:n

prod = MyTimes(prod, a(i));

sum = MySum(sum, a(i));

end;

end

function [z] = MySum (x, y)

z = x + y;

end

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 17

Basic Structure of a MATLAB script

1 % stored in file ProdSumScript.m

2 prod = 1;

3 sum = 0;

4 for i = 1:n

5 prod = prod * a(i);

6 sum = sum + a(i);

7 end;

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 18

>> clear

>> a = [10, 20, 30];

>> n = 3;

>> whos
Name Size Bytes Class

a 1x3 24 double

n 1x1 8 double

>> ProdSumScript()

>> whos
Name Size Bytes Class

a 1x3 24 double

i 1x1 8 double

n 1x1 8 double

prod 1x1 8 double

sum 1x1 8 double

7/1/2011

Leverhulme Lecture #1 4

Directory Structure and Path

• Each directory can contain:
– .m files (which can contain a script or functions)

– a private/ directory

– a package directory of the form +pkg/

– a type-specialized directory of the form @int32/

• At run-time:
– current directory (implicit 1st element of path)

– directory of last called function

– path of directories

– both the current directory and path can be changed at
runtime (cd and setpath functions)

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 19

Function/Script Lookup Order

(call in the body of a function f)

• Nested function (in scope of f)

• Sub-function (in same file as f)

• Function in /private sub-directory of directory
containing f.

• 1st matching function, based on function name
and type of first argument, looking in type-
specialized directories, looking first in current
directory and then along path.

• 1st matching function/script, based on function
name only, looking first in current directory and
then along path.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 20

function f

...

foo(a);

...

end

dir1/ dir2/

f.m s.m

g.m h.m

private/ private/

foo.m foo.m

Function/Script Lookup Order

(call in the body of a script s)

• Function in /private sub-directory of directory of
last called function (not the /private sub-directory
of the directory containing s).

• 1st matching function/script, based on function
name, looking first in current directory and then
along path.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 21

% in s.m

...

foo(a);

...

227/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

MATLAB types: high-level

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 23

any

fnhandledata

structcellarrayarray

Variables

• Variables are not explicitly declared.

• Local variables are allocated in the current
workspace. Global and persistent variables in a
special workspace.

• All input and output parameters are local.

• Local variables are allocated upon their first
definition or via a load statement.
– x = ...

– x(i) = ...

– load (’f.mat’, ’x’)

• Local variables can hold data with different types
at different places in a function/script.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 24

7/1/2011

Leverhulme Lecture #1 5

Variable Workspaces

• There is a workspace for global and persistent

variables.

• There is a workspace associated with the read-

eval-print loop.

• Each function call creates a new workspace

(stack frame).

• A script uses the workspace of its caller (either

a function workspace or the read-eval-print

workspace).

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 25

Variable Lookup

• If the variable has been declared global or

persistent in the function body, look it up in

the global/persistent workspace.

• Otherwise, lookup in the current workspace

(either the read-eval-print workspace or the

top-most function call workspace).

• For nested functions, use the standard

scoping mechanisms.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 26

277/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

Irritating Front-end "Features"
• keyword end not always required at the end of a function (often

missing in files with only one function).

• command syntax
– length('x') or length x

– cd('mydirname') or cd mydirname

• arrays can be defined with or without commas:

[10, 20, 30] or [10 20 30]

• sometimes newlines have meaning:

– a = [10 20 30

40 50 60]; // defines a 2x3 matrix

– a = [10 20 30 40 50 60]; // defines a 1x6 matrix

– a = [10 20 30;

40 50 60]; // defines a 2x3 matrix

– a = [10 20 30; 40 50 60]; // defines a 2x3 matrix

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 28

“Evil” Dynamic Features

• not all input arguments required

• do not need to use all output arguments

• eval, evalin, assignin

• cd, addpath

• load

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 29

1 function [prod, sum] = ProdSumNargs(a, n)

2 if nargin == 1 n = 1; end;

3 ...

4 end

Evil Feature of the Day - Looking up an identifier

• First lookup as a variable.

• If a variable not found, then look up as a function.

• When function/script first loaded, assign a "kind"
to each identifier. VAR – only lookup as a
variable, FN – only lookup as a function, ID – use
the old style general lookup.

• How is the kind assignment done. What impact
does it have on the semantics?

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Matlab - 30

Old style general lookup - interpreter

MATLAB 7 lookup - JIT

7/1/2011

Leverhulme Lecture #1 6

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 31

McLab – Overall Structure

32

McLab Extensible Front-end

Scanner

(MetaLexer)

Parser

(Beaver)

AST attributes, rewrites

(JastAdd)

Attributed

AST

XML Other

AspectMatlab

AspectMatlab

AspectMatlab

.m

source
.m

source
.m

source

MATLAB-

to-Natlab

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 33

Analysis Engine

McLab Front-End

McLab Simplifier

MATLAB-to-Natlab

Translator

McAST Analyses

MATLAB

Natlab

McAST

McLAST
McLAST Analyses

Analyses are

written using

an Analysis

Framework

that supports

forward and

backward flow

analysis over

McAST and

McLAST.

Back-ends, McVM and McFor

347/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

35

• No official

specification

•Motivating example

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 367/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

7/1/2011

Leverhulme Lecture #1 7

377/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 38

Read-Eval-Print Loop
7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

Evil Feature of the Day - Recap

• First lookup as a variable.

• If a variable not found, then look up as a function.

• When function/script first loaded, statically assign a
"kind" to each identifier. VAR – only lookup as a
variable, FN – only lookup as a function, ID – use the
old style general lookup.

• Compile-time error if, within the body of a function or
script, an identifier has kind VAR in one place and FN in
another.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Kind - 39

Old style general lookup - interpreter

MATLAB 7 lookup - JIT

Does the kind analysis change the semantics?

1. New compile-time errors, so programs that

would previously execute will not.

2. Different binding at run-time for some

identifiers which are assigned a kind of VAR

or FN.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 40

Yes, in two ways!

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 41

Compile-time kind error
Different lookup with old vs MATLAB 7 semantics

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Kind - 42

1 function [r] = KindEx(a)

2 x = a + sum(j);

3 eval(’sum = ones(10);’);

4 r = sum(x);

5 end

• Old interpreter semantics:
– sum, line 2, named function

– sum, line 4, local variable

• MATLAB 7 semantics gives a static kind of FN to sum
– sum, line 2, named function

– sum, line 4, named function

7/1/2011

Leverhulme Lecture #1 8

Our approach to the Kind Analysis Problem

• Identify that a kind analysis is needed to match
MATLAB 7 semantics.

• Specify and implement a kind assignment
algorithm that matches the observed behaviour
of MATLAB 7. (both for functions and for scripts)

• Identify any weaknesses in the MATLAB 7
approach and suggest two more clearly defined
alternatives, one flow-sensitive and one flow-
insensitive.

• Determine if the alternatives could be used
without significant change to the behaviour of
existing MATLAB programs.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 43 7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 44

Kind Abstraction

UNDEF

ID

MAYVAR

FN VAR

** error **

Kind Analysis

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Kind - 45

1. Collect all identifiers used in function/script and set

initial kind approximations for each identifier.

2. Traverse AST applying analysis rules to identifiers.

3. Traverse AST making final kind assignment.

Steps 1 and 3 are different for scripts and functions,

step 2 uses the same rules.

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 46

Step 2: Kind Analysis Rules

if ((kind[x] ∈ {Id,Undef})&exists lib(x,lib))

kind[x]← Fn

else

kind[x]← kind[x] ⊲⊳ Id

Definition of identifier x:

Use of identifier x:

Kind Analysis for Functions

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Kind - 47

• Initial values: input and output parameters are

initialized to VAR, all other identifiers are initialized

as UNDEF.

• Final values:

48

if ((kind[x] ∈ {Id,Undef})&exists lib(x,lib))

kind[x]← Fn

else

kind[x]← kind[x] ⊲⊳ Id

{(r,VAR),(i,UNDEF)}

{(r,VAR),(i,FN)}

READ RULE

WRITE RULE

{(r,VAR),(i,**error**)}

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

7/1/2011

Leverhulme Lecture #1 9

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 49

Kind Analysis for Scripts

• Initial values: all identifiers are initialized to MAYVAR

• Final values:

• Note: most identifiers will be mapped to ID

50

if ((kind[x] ∈ {Id,Undef})&exists lib(x,lib))

kind[x]← Fn

else

kind[x]← kind[x] ⊲⊳ Id

{(r,MAYVAR),(i,MAYVAR)}

{(r,MAYVAR),(i,MAYVAR)}

READ RULE

WRITE RULE

{(r,MAYVAR),(i,VAR)}

{(r,VAR),(i,VAR)}

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture

{(r,ID),(i,ID)}

{(i,ID)}

Problems with MATLAB 7 kind analysis

• apparently not clearly documented, in some

ways just a side-effect of a JIT implementation

decision

• without a clear specification, confusing for

the programmer and compiler/tool developer

• loses almost all information about variables in

scripts

• some strange anomalies due to a "traversal-

sensitive" analysis

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Kind - 51

Examples of Anomalies

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 52

if (exp)

... = sum(10); (sum,FN)

else

sum(10) = ...; *error*

if (~exp)

sum(10) = ... ; (sum,VAR)

else

... = sum(10); (sum,VAR)

size(size(10)) = ...

(size,VAR)

(size, VAR)

t = size(10); (size,FN)

size(t) = ... *error*

Flow-sensitive Analysis

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 53

if (exp)

... = sum(10); (sum,FN)

else

sum(10) = ...; (sum, VAR)

// merge, *error*

size(size(10)) =

(size,FN)

error

• Apply a flow-sensitive analysis that merges at control-

flow points.

• Consider explicit loads to be definitions -

load (’f.mat’, ’x’)

• Map final kinds for scripts using the same algorithm as

for functions.

Flow-insensitive Analysis

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 54

if (exp)

... = sum(10);

else

sum(10) = ...;

(sum,VAR)

size(size(10)) =

(size,VAR)

1. Assign VAR to identifiers that are defined on lhs, or declared

global or persistent.

2. Assign FN to identifiers which have a handle taken or used in

command syntax.

3. Assign FN to identifiers that have no assignment yet, and

which are found in the library.

error if assigned both FN and VAR

7/1/2011

Leverhulme Lecture #1 10

557/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture 56

Various-sized benchmarks from a wide variety of
application areas

Send benchmarks or links to hendren@cs.mcgill.ca

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Exper - 57

Results for Functions - number of identifiers with
each Kind

11698 functions

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Exper - 58

Results for Scripts – number of identifier
instances with each Kind

2035 scripts

Conclusions and Ongoing Work

• McLab is a toolkit to enable PL, compiler and SE
research on MATLAB (close the gap).

• Release of three main tools: front-end/analysis
framework, McVM (Virtual Machine) and McFor
(MATLAB to FORTRAN) (tbd). PLDI 2011 tutorial.

• High-level: Refactoring tools for MATLAB. How
to help programmers convert their programs to
better structured, and more efficient codes?

• Lower-level: static compilation to Fortran90 and
new dynamic techniques in McVM/McJIT.

• http://www.sable.mcgill.ca/mclab

7/1/2011 McLab, Laurie Hendren, Leverhulme Lecture Concl - 59

