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Part 7 — McVM implementation
example: if/else construct

* Implementation in interpreter
* Implementation in JIT compiler
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Before we start

* McVM is written in C++, but “clean” C++ ©

* Nearly everything is a class

* Class names start in capital letters

* Typically one header and one implementation
file for each class

* Method names are camel cased
(getThisName)

* Members are usually private and named
m_likeThis

Before we start ...

* Makefile provided
— Handwritten, very simple to read or edit
* Scons can also be used
ATLAS/CLAPACK is not essential. Alternatives:

— Intel MKL, AMD ACML, any CBLAS + Lapacke (eg.
GotoBLAS2 + Lapacke)

* Use your favourite development tool
— | use Eclipse CDT, switched from Vim

* Virtualbox image with everything pre-installed
available on request for private use

Implementing if/else in McVM

. A new class to represent if/else
. XML parser

. Loop simplifier

. Interpreter
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. Various analysis
i. Reach-def, live variable analysis
ii. Type checking

6. Code generation

1. A class to represent If/Else

* Class IfElseStmt
* We will derive this class from “Statement”
* Form two files: ifelsestmt.h and ifelsestmt.cpp

* Need fields to represent:
— Test expression
— If body
— Else body

Ifelsestmt.h

* class IfElseStmt: public Statement
* Methods:

— copy(), toString(), getSymbolUses(),
getSymbolDefs()

— getCondition(), getlfBlock(), getElseBlock()
* Private members:

— Expression *m_pCondition;

— StmtSequence *m_plfBlock;

— StmtSequence *m_pElseBlock;




Modify statements.h

* Each statement has a field called m_type
* This contains a type tag
Tag used throughout compiler for switch/case
enum StmtType{
IF_ELSE,
SWITCH,
FOR,

b
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2. Modify XML Parser

* Look in parser.h, parser.cpp

* Before anything happens, must parse from
XML generated by frontend

* XML parser is a simple recursive descent
parser

* Add a case to parseStmt()
— Look at the element name in the XML
—If it is “IfStmt”, it is a If/Else

* Write a parselfStmt() function
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3. Modify transform loops

* McVM simplifies for-loops to a lower level
construct

* To achieve this, we need to first find loops
* Done via a depth first search in the tree

* So add a case to this search to say:
— Search in the if block
— Search in the else block
— Return

* transform_loops.cpp
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4. Add to interpreter

¢ Always implement in interpreter before
implementing in JIT compiler
* Itis a simple evaluator: no byte-code tricks, no
direct-threaded dispatch etc.
* Add a case to statement evaluation:
— Evaluate test condition
— If true, evaluate if block
— If false, evaluate else block
* interpreter.cpp :
— Case in execStatement()
— Calls evallfElseStmt()
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Moment of silence .. Or review

* At this point, if/else has been implemented in
the interpreter

* If you don’t enable JIT compilation, then you
can now run if/else

* Good checkpoint for testing and development

Flow analysis recap

* Compute program property at each program
point

Test expr

Else block

If block




Flow analysis recap

* We want to compute property at each
program point

* Typically want to compute a map of some kind
at each program point

* Program points are not inside statements, but
just before and after

Usually unions computed at join points

Can be forward or backwards depending on
the analysis
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Reaching definitions analysis

Test expr

If b‘bOCk

McVM reach-defs analysis

* Look in analysis_reachdefs (.h/.cpp)

» getReachDefs() is an overloaded function to
compute reach-defs

» ReachDefInfo class to store analysis info

* If/Else:
— Record reach-defs for test expression

— Compute reach-defs for if and else blocks by
calling getReachDefs() for StmtSequence

— Compute union at post-if/else point

McVM live vars analysis

* Look in analysis_livevars (.h/.cpp)
* getLiveVars() is an overloaded function
* LiveVarinfo is a class to store live-vars info
* If/Else:
— Information flows backwards from post-if/else
— Flow live-vars through the if and else blocks
— Compute union at post-test expression
— Record live-vars info of test expression




Type inference

* Look in analysis_typeinfer (.h/.cpp)
* inferTypes() is an overloaded function to
perform type inference for most node-types
* For If/else:
— Infer type of test expression
— Infer type of if and else blocks
— Merge information at post-if/else point
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Flow analysis tips

* We define a few typedefs for data structures
like maps, sets
— eg: VarDefSet: typedef of set of IRNode* with

appropriate comparison operators and allocator

* When trying to understand flow analysis code,
start from code for assignment statements

* Pay attention to statements like return and
break

Code generation and LLVM

* LLVM is based upon a typed SSA
representation

* LLVM can either be accessed through a C++
API, or you can generate LLVM byte-code
directly

* We use the C++ API

* Much of the complexity of the code generator
due to SSA representation required by LLVM

* However, we don’t do an explicit SSA
conversion pass

Code generation in McVM

» SSA conversion is not explicitly represented in
the IR

* SSA conversion done while doing code
generation

* Assignment instructions are usually not
generated directly if Lvalue is a symbol

* In SSA form, values of expressions are
important, not what they are assigned to

* We store mapping of symbols to values in an
execution environment

Compiling if/else

* Four steps:
— Compile test expression
— Compile if block (compStmtSeq)
— Compile else block (compStmtSeq)
— Call matchBranchPoints() to do appropriate SSA
book-keeping at merge point
* Rest of the code is book-keeping for LLVM
* Such as forming proper basic blocks when
required




