McLab Tutorial
www.sable.mcgill.ca/mclab

Part 7 — McVM implementation
example: if/else construct

* Implementation in interpreter
* Implementation in JIT compiler

6/5/2011

Before we start

* McVM is written in C++, but “clean” C++ ©

* Nearly everything is a class

* Class names start in capital letters

* Typically one header and one implementation
file for each class

* Method names are camel cased
(getThisName)

* Members are usually private and named
m_likeThis

Before we start ...

* Makefile provided
— Handwritten, very simple to read or edit
* Scons can also be used
ATLAS/CLAPACK is not essential. Alternatives:

— Intel MKL, AMD ACML, any CBLAS + Lapacke (eg.
GotoBLAS2 + Lapacke)

* Use your favourite development tool
— | use Eclipse CDT, switched from Vim

* Virtualbox image with everything pre-installed
available on request for private use

Implementing if/else in McVM

. A new class to represent if/else
. XML parser

. Loop simplifier

. Interpreter

v A W N P

. Various analysis
i. Reach-def, live variable analysis
ii. Type checking

6. Code generation

1. A class to represent If/Else

* Class IfElseStmt
* We will derive this class from “Statement”
* Form two files: ifelsestmt.h and ifelsestmt.cpp

* Need fields to represent:
— Test expression
— If body
— Else body

Ifelsestmt.h

* class IfElseStmt: public Statement
* Methods:

— copy(), toString(), getSymbolUses(),
getSymbolDefs()

— getCondition(), getlfBlock(), getElseBlock()
* Private members:

— Expression *m_pCondition;

— StmtSequence *m_plfBlock;

— StmtSequence *m_pElseBlock;




Modify statements.h

* Each statement has a field called m_type
* This contains a type tag
Tag used throughout compiler for switch/case
enum StmtType{
IF_ELSE,
SWITCH,
FOR,

b

6/5/2011

2. Modify XML Parser

* Look in parser.h, parser.cpp

* Before anything happens, must parse from
XML generated by frontend

* XML parser is a simple recursive descent
parser

* Add a case to parseStmt()
— Look at the element name in the XML
—If it is “IfStmt”, it is a If/Else

* Write a parselfStmt() function

MecLab Tut Hendre

3. Modify transform loops

* McVM simplifies for-loops to a lower level
construct

* To achieve this, we need to first find loops
* Done via a depth first search in the tree

* So add a case to this search to say:
— Search in the if block
— Search in the else block
— Return

* transform_loops.cpp

MecLab Tut Laurie Hendre i Ga udeen Lameec E

4. Add to interpreter

¢ Always implement in interpreter before
implementing in JIT compiler
* Itis a simple evaluator: no byte-code tricks, no
direct-threaded dispatch etc.
* Add a case to statement evaluation:
— Evaluate test condition
— If true, evaluate if block
— If false, evaluate else block
* interpreter.cpp :
— Case in execStatement()
— Calls evallfElseStmt()

MecLab Tut Laurie Hendre i Ga udeen Lameec E

Moment of silence .. Or review

* At this point, if/else has been implemented in
the interpreter

* If you don’t enable JIT compilation, then you
can now run if/else

* Good checkpoint for testing and development

Flow analysis recap

* Compute program property at each program
point

Test expr

Else block

If block




Flow analysis recap

* We want to compute property at each
program point

* Typically want to compute a map of some kind
at each program point

* Program points are not inside statements, but
just before and after

Usually unions computed at join points

Can be forward or backwards depending on
the analysis

MecLab Tut aurie Hendren, Rahul Garg and Nurudeen Lameed

6/5/2011

Reaching definitions analysis

Test expr

If b‘bOCk

McVM reach-defs analysis

* Look in analysis_reachdefs (.h/.cpp)

» getReachDefs() is an overloaded function to
compute reach-defs

» ReachDefInfo class to store analysis info

* If/Else:
— Record reach-defs for test expression

— Compute reach-defs for if and else blocks by
calling getReachDefs() for StmtSequence

— Compute union at post-if/else point

McVM live vars analysis

* Look in analysis_livevars (.h/.cpp)
* getLiveVars() is an overloaded function
* LiveVarinfo is a class to store live-vars info
* If/Else:
— Information flows backwards from post-if/else
— Flow live-vars through the if and else blocks
— Compute union at post-test expression
— Record live-vars info of test expression




Type inference

* Look in analysis_typeinfer (.h/.cpp)
* inferTypes() is an overloaded function to
perform type inference for most node-types
* For If/else:
— Infer type of test expression
— Infer type of if and else blocks
— Merge information at post-if/else point

6/5/2011

Flow analysis tips

* We define a few typedefs for data structures
like maps, sets
— eg: VarDefSet: typedef of set of IRNode* with

appropriate comparison operators and allocator

* When trying to understand flow analysis code,
start from code for assignment statements

* Pay attention to statements like return and
break

Code generation and LLVM

* LLVM is based upon a typed SSA
representation

* LLVM can either be accessed through a C++
API, or you can generate LLVM byte-code
directly

* We use the C++ API

* Much of the complexity of the code generator
due to SSA representation required by LLVM

* However, we don’t do an explicit SSA
conversion pass

Code generation in McVM

» SSA conversion is not explicitly represented in
the IR

* SSA conversion done while doing code
generation

* Assignment instructions are usually not
generated directly if Lvalue is a symbol

* In SSA form, values of expressions are
important, not what they are assigned to

* We store mapping of symbols to values in an
execution environment

Compiling if/else

* Four steps:
— Compile test expression
— Compile if block (compStmtSeq)
— Compile else block (compStmtSeq)
— Call matchBranchPoints() to do appropriate SSA
book-keeping at merge point
* Rest of the code is book-keeping for LLVM
* Such as forming proper basic blocks when
required




