McLab Tutorial www.sable.mcgill.ca/mclab

Part 4 – McLab Intermediate Representations

- High-level McAST
- Lower-level McLAST
- Transforming McAST to McLAST

Big Picture

McAST

- High-level AST as produced from the front-end.
- AST is implemented via a collection of Java classes generated from the JastAdd specification file.
- Fairly complex to write a flow analysis for McAST because of:
 - arbitarly complex expressions, especially Ivalues
 - ambiguous meaning of parenthesized expressions such as a(i)
 - control-flow embedded in expressions (&&, &, ||, |)
 - MATLAB-specific issues such as the "end" expression and returning multiple values.

McLAST

- Lower-level AST which:
 - has simpler and explicit control-flow;
 - simplifies expressions so that each expression has a minimal amount of complexity and fewer ambiguities; and
 - handles MATLAB-specific issues such as "end" and comma-separated lists in a simple fashion.
- Provides a good platform for more complex flow analyses.

Simplification Process

Simplification Phase Simplifier Simplifier AST + T1 T2 Tn McLAST McLAST

Dependences between simplifications

Expression Simplification

Aim: create simple expressions with at most one operator and simple variable references.

foo(x) + a(y(i))

$$t1 = foo(x);$$
 $t2 = y(i);$
 $t3 = a(t2);$
 $t1 + t3$

Aim: specialize parameterized expression nodes to array indexing or function call.

Short-circuit simplifications

&& and || are always short-circuit

- & and I are sometimes short-circuit
 - if (exp1 & exp2) is short-circuit
 - -t = exp1 & exp2 is not short-circuit
- replace short-circuit expressions with explicit control-flow

"end" expression simplification

Aim: make "end" expressions explicit, extract from complex expressions.

L-value Simplification

Aim: create simple I-values.

```
t1 = a+b;
A(a+b,2).e(foo()) = value;
t2 = foo();
A(t1,2).e(t2) = value;
```

Note: no mechanism for taking the address of location in MATLAB. Further simplification not possible, while still remaining as valid MATLAB.

if statement simplification

Aim: create if statements with only two control flow paths.

```
if E1
if E1
                             body1();
 body1();
                           else
elseif E2
                             if E2
  body2();
                               body2();
else
                             else
 body3();
                               body3();
end
                             end
                           end
```

for loop simplification

Aim: create for loops that iterate over a variable incremented by a fixed constant.

```
t1=E;
t2=size(t1);
t3=prod(t2(2:end));
end

i = t1(t4);
% BODY
end
```