
Before we can understand the tools, we first need to understand the MATLAB language.

We have distilled out the important parts, and will first introduce functions and scripts,

June 4th, 2011

We have distilled out the important parts, and will first introduce functions and scripts,

and then introduce data and variables. We then discuss some Matlab-specific tricky

features.

1

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2

There are two main ways of defining MATLAB computations, through functions which have

input and output parameters, and through scripts which have no parameters, and are

June 4th, 2011

input and output parameters, and through scripts which have no parameters, and are

effectively just a sequence of statements. Let's look at functions first.

2

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2

On first click:
Here is an example of a function definition of a function called ProdSum. It has two input

June 4th, 2011

Here is an example of a function definition of a function called ProdSum. It has two input
parameters, "a" and "n", and two output parameters, "prod" and "sum". There is also a
local variable "i".

This function should be stored in a file called ProdSum.m. If it is stored in a file of another
name, say "foo.m" then the function can only be called as foo(...).

Note that there are no type declarations and no explicit declarations of variables. "i" is a
variable because it is defined (i.e. it is assigned to in the header of the for loop.

There are no return statements for returning the values of the output parameters, the
values returned are simply the values those variables contain when the function returns.

On second click:
Here is an example of an interaction with the MATLAB read-eval-print loop. The user types
in the statement after the ">>" prompt and the statement is evaluated and the result
printed. If an explicit assignment is made in the statement, the values of the lhs are
printed, otherwise the result of evaluating the expression is assigned to a variable called
"ans" and its value is printed.

The first call calls ProdSum with a 1x3 array [10,20,30] as the first argument, and a 1x1
array 3 as the second argument. The first return value is assigned to "a" and the second to
"b".

The second call does not give a lhs, so the first of the return values is assigned to ans and
the 2nd return value is thrown away. A similar thing would happen if you explicity said
"myans = ProdSum....".

The third call illusrates that ProdSum works on various types. In this case the first
argument is an array of characters, which are effectively treated as an array of ASCII values.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 3

1st click: On the previous slide we saw that the first argument could be 1xn arrays of

different types. What else is allowed?

June 4th, 2011

different types. What else is allowed?

2nd click: The first statement shows a call using a function handle, @sin. This changes the

meaning of a(i) in the body, as now it means an indirect call to sin(i). Note that the syntax

of an indirect call is the same as the syntax for a direct call and an array index.

The 2nd statement illustrates an anonymous function, in this case just the identity function.

The 3rd and 4th statements illustrate what happens when you provide an array with higher

dimensions that what is required by an indexing statement. In this case we create a 3x3

magic square, using the built-in function "magic" and then provide that as the 1st argument

to "ProdSum". The indexing expression a(i) will still work, but it will automatically use 1

for all the missing dimensions. So, in this case it is effectively a(i,1), and the result is the

product of the first column of a.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 4

1st click: although MATLAB tolerates many different inputs, not all inputs will result in an

answer, some will trigger errors, others will trigger warnings.

June 4th, 2011

answer, some will trigger errors, others will trigger warnings.

2nd click: For example, what happens when we give a character value for n, we might

expect this to work, since characters were valid for the first argument. However, this

causes a run-time error, since the colon operator only works with characters if both the left

and right operands are characters. This is unlike the * and + operators, which tolerate

arguments of different types.

The 2nd statement using "i" as the 2nd argument. What does this mean. In this case, it

means the library function i, which returns the complex value 0+1i. In this case a warning

is issued at run-time saying the colon wants real scalars, but it happily continues on

assuming the real value 0.

Based on the previous error message we might expect that the colon operator only wants

scalars, however if we try giving it [3,4,5], then it happily just uses the first element, 3, and

produces the product of [10,20,30].

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 5

Although MATLAB programmers tend to put only one function in a file, there are some

mechanisms for collecting together related functions in the same file.

June 4th, 2011

mechanisms for collecting together related functions in the same file.

The first function is called the primary function, and this one should have the same name

as the file. This is the only function which is visible outside of the file.

Subsequent functions, defined after the primary function are called sub-functions. Sub-

functions are only visible to other functions in the same file.

Function definitions can also be nested, and these follow the expected scoping rules. The

only non-obvious point is determining which function "declares" a local variable.

Effectively it is the innermost function which contains a parameter or definition of that

variable.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 6

Now that we understand functions, let's look at something a little less structured, scripts

....

June 4th, 2011

....

1st click: If a script is stored in a file foo.m, then it is called by "foo" or "foo()"

A script is neither a zero-argument function, nor a macro, but something in between.

Scripts use the workspace of their caller, which could be the read-eval-print loop, or the

last-called function.

2nd click: let's look at an example of calling a script from the read-eval-print loop. First we

have to ensure that the appropriate variables are defined (statements 1 through 3). Note

that "whos" is a built-in function that displays the current workspace. We then call

ProdSumScript, and then look in the workspace again, where we see that prod and sum

have been defined.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 7

MATLAB programmers tend to accumulate lots of functions in their current directory.

However, there are mechanisms for grouping functions together.

June 4th, 2011

However, there are mechanisms for grouping functions together.

• First, you can put them in a /private directory. These functions will be visible to functions

in the outer directory.

• Second you can create directories starting with "+" which correspond to packages. Such

functions must be called using pkg.f(). You can have sub-packages as well.

• Third, you can have type-specialized directories, which start with "@". These will be

called when the first argument matches the type of the directory name.

At run-time a function is looked up first in the current directory, and then if not found the

directories along the path are searched. Note that both the current directory and the path

can be changed at run-time.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 8

Let's look at the rules for looking up a function. They are as listed on the slide. Note that

a nested, sub-function or private function takes precedence over a type-specialized

June 4th, 2011

a nested, sub-function or private function takes precedence over a type-specialized

function. Hence, if you want to make a function type-specialized it must be moved out a

file or private directory.

In the example, for the call of foo, first look in the body of f, then in the file of f, then in

the /private directory of the directory containing the file of f. If not found yet, then look

along the path for a type-specialized foo that matches the run-time type of "a", and then if

not found, look along the path for a function with name "foo".

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 9

Now, what about a looking up a call which is the body of a script? This is not equivalent to

first macro-expanding the call. It is also different than the lookup call for functions.

June 4th, 2011

first macro-expanding the call. It is also different than the lookup call for functions.

•If f.m is a function definition containing a call to foo, foo will be found in

dir1/private/foo.m.

• If s.m is a script definition containing a call to foo, foo will not necessarily be found in

dir2/private/foo.m. Rather, it depends on the directory of the last function called. For

example, if g.m called s, then foo will be dir1/private/foo.m. If h.m called s, then foo will

be dir2/private/foo.m.

10

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2

The semantics of MATLAB is call and return by value. Hence when a function call is made a

copy of the input arguments are made, and then the function returns a copy of the return

June 4th, 2011

copy of the input arguments are made, and then the function returns a copy of the return

parameters are made. Similarly, statements of the form a = b mean that a should be a

new copy.

In an implementation of MATLAB with reference counting (such as MathWorks' MATLAB

and Octave), the copying is actually done lazily. At the time of parameter

passing/returning or array assignments, only a reference is created, and the reference

count of the pointed-to array is incremented. Then, upon any update to an array, first the

reference count is checked. If the reference count is greater than 1, then a fresh copy is

created at this point.

McVM uses a different approach. Since McVM supports a garbage-collected system, rather

than reference counted, we use static analysis to determine when copies are needed, and

the best place to insert such copies. This is reported in the paper "Staged Static

Techniques to Efficiently Implement Array Copy Semantics in a MATLAB JIT Compiler",

published in CC 2011.

Also note that fresh copies of arrays may need to be allocated if an element is assigned

outside of the current range. Thus, in CopyEx, line 4, on each iteration of the for loop it

will cause a fresh copy to be created, which is one element larger.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 11

Ok, now we understand functions.... what about variables in MATLAB.

June 4th, 2011

We already know they are not explicitly declared.

12

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2

Let's first look at the base types.

If the programmer doesn't say anything different, then the base type is double – even if

June 4th, 2011

If the programmer doesn't say anything different, then the base type is double – even if

syntactically it looks like an integer.

To create an integer, one has to explicitly convert it, using a library function like "int32".

There are a number of built-in functions for testing the type, for example "isinteger",

which return a variable with type "logical", although when printed out, they also look like

integers.

There are also complex values, which have two components. These components need not

be represented as doubles.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 13

Here is our organization of the base types.

June 4th, 2011

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 14

Operations dynamically check the type of their arguments and then determine the type of

their return value. Not all of these conversions are as you might expect.

June 4th, 2011

their return value. Not all of these conversions are as you might expect.

The first three bullet points are as you would expect, but the fourth one shows that adding

an int32 to a double results in an int32.

Although doubles can be combined with other types quite easily, other combinations are

not allowed, as illustrated by the final three bullet points.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 15

Now let's look at the high-level data types. A variable can be either data or a function

handle. If it is data, then it could be an array, which is homogenous, a cellarray which is

June 4th, 2011

handle. If it is data, then it could be an array, which is homogenous, a cellarray which is

effectively an array of cells, where each cell can contain a different type, or it can be a

struct with named fields.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 16

Cell arrays can contain any type of data. Cell arrays are created using the { } syntax, rather

than [] for normal arrays. Indexing into a cell array is done using x(i) to get the i'th cell,

June 4th, 2011

than [] for normal arrays. Indexing into a cell array is done using x(i) to get the i'th cell,

and x{i} to get the contents of the i'th cell.

Structs are created using the struct function, as shown at the top of the 2nd column. Note

that in this example, since students has shape 1x3 the created struct is a 1x3 struct array

with each struct containing a name field with 'Laurie' and the i'th struct containing the i'th

element of students.

If we take out the first struct, and assign to a, then we have a single struct. We can add

more fields to this struct by assigning to a field which doesn't yet exist, for example a.age

= 21 causes a new field to be added.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 17

Variables are by default local. They are implicitly declared through assignments, or

through load statements. Variables can hold different types at different places in the body

June 4th, 2011

through load statements. Variables can hold different types at different places in the body

of a function/script.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 18

It is possible to explicitly declare a variable to be global or persistent.

June 4th, 2011

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 19

We can think of the environment as being a collection of workspace, one for globals and

persistents, one for the read-eval-print-loop and one for each function call.

June 4th, 2011

persistents, one for the read-eval-print-loop and one for each function call.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 20

How are variables looked up? If global/persistent, look in the global/persistent

workspace, otherwise lookup in the current workspace. If not found, then may trigger a

June 4th, 2011

workspace, otherwise lookup in the current workspace. If not found, then may trigger a

run-time error.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 21

1st click: Let's look at a variation of our example where sum is a global variable instead of

an input parameter.

June 4th, 2011

an input parameter.

2nd click: In the calling context we must also declare sum to be global and give it an intitial

value. The default value is the the empty array, so in this case we initialize it to 0.

After calling the function, the global now has accumulated the sum of a. We can see that

globals have a global attribute, when displayed with "whos".

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 22

There are some tricky and non-obvious features in MATLAB.

June 4th, 2011

23

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2

There are two styles of looking up an identifier, the old style interpreter based lookup, and

a new lookup implemented in MATLAB 7, which has a JIT. This change in lookup has

June 4th, 2011

a new lookup implemented in MATLAB 7, which has a JIT. This change in lookup has

effectively changed the semantics of MATLAB, and so all tools that handle modern MATLAB

must implement the new semantics.

In the new semantics, at first load time each identifier is assigned a kind. This is,

presumably, to allow for more efficient code generation. The kinds are VAR, FN and ID.

We cannot find any documentation on this, but have written a paper on this topic,

submitted to OOPSLA.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 24

Let's take a quick look at the kind assignment algorithm. Effectively it must visit all

statements in the body of the function and assign a kind. The algorithm implemented by

June 4th, 2011

statements in the body of the function and assign a kind. The algorithm implemented by

MATHWORKs is neither flow-sensitive nor flow-insensitive, but traversal-sensitive. In this

example, "a" and "r" are parameters, so they are variables. "x" and "f" are assigned-to, so

they are variables. "sin" has its handle taken, so it is a FN. "i", "j", "sum" are also FN

because: (a) they are not VAR, and (b) they can be found when looked in the current

fn/file/directory/path. Identifier "s" is not directly definded, nor can it be found upon a

function lookup, so its kind is left as ID, and a fully dynamic lookup will be used at runtime.

In this case when you run the program, "s" will be found in the workspace.

2nd click: trace of running, note that the statements in the body of KindEx are not

terminated by ";", so the results of the statements are echoed at run-time.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 25

There are quite a few irritating issues with the MATLAB syntax that are hard to handle with

standard parsing tools.

June 4th, 2011

standard parsing tools.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 26

There are also several potentially evil dynamic features.

June 4th, 2011

First, when a function is called, not all arguments need to be provided. In the body of the

function one can check to see how many arguments were provided, and then assign a

default value to the missing ones (as in line 2 of ProdSumNargs).

Similarly a call to a function need not capture all of the output arguments.

There are several kinds of eval, including the ordinary one, evalin – which is used to eval

an expression is a different context (such as the calling functions context) and assignin

which is used to assign to a variable in the calling context.

Cd and addpath can be used to dynamically change the current directory or modify the

path, which causes a change in function lookup.

Load can be used to load stored variables from a file, and so may cause new variables to be

created in the current workspace.

McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul Garg and Nurudeen Lameed - Part 2 27

