McLab Tutorial
www.sable.mcgill.ca/mclab

Laurie Hendren, Rahul Garg and
Nurudeen Lameed

Other Melab team members;

Andrew Casey, Jesse Doherty, Anton Dubrau, Jun Li,
Amina Aslam, Toheed Aslam, Maxime Chevalier-
Boisvert, Soroush Radpour, Oliver Savary , Maja

Frydrychowicz, Clark Verbrugge

Sable Research Group
School of Computer Science
McGill University, Montreal, Canada

June 4th, 2011

This tutorial is intended to provide an overview of the challenges of compiling MATLAB and

the tools provided by McGill's McLab project. Please feel free to reuse these slides,
however please make sure you credit the authors of the slides and that you indicate the

source of the original slides.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1

June 4th, 2011

Tutorial Overview

Why MATLAB?
Introduction to MATLAB — challenges
Overview of the McLab tools

— Introduction to the front-end and extensions
— IRs, Flow analysis framework and examples
— Back-ends including the McVM virtual machine

* Wrap-up

This tutorial starts with an exploration of why it is important for compiler/PL researchers to
work on MATLAB and languages like MATLAB.

We then proceed to an introduction to the MATLAB language, and we illustrate some of
the challenges of dealing with MATLAB.

The main body of the tutorial is composed of an introduction to the McLab toolset. We
will give an introduction to the front-end and how it can be used to build MATLAB
extensions, then we introduce our two IRs, McAST a high-level AST and McLAST a lower-
level AST. We then move to an overview of our back-ends, with a particular focus on
McVM and MdJIT. Finally, we will give a short wrap-up.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 2

June 4th, 2011

Nature Article: “Why Scientific Computing does

not compute

38% of scientists spend at least 1/5% of their
time programming.

Codes often buggy, sometimes leading to papers
being retracted. Self-taught programmers.

Monster codes, poorly documented, poorly
tested, and often used inappropriately.

45% say scientists spend more time
programming than 5 years ago.

VicLab Tuto e Hendre ahul G nd Nurudee meed, Par

October 2010 article in Nature, by Zeeya Merali. Survey of 2000 scientists.

It is important that compiler/PL researchers aim to provide programming languages and
systems that both provide:

* programming environments in which scientists can program easily

* systems that lead to solid and extensible code.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 3

June 4th, 2011

6/4/2011 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed, Part 1 Intro - 4

Scientist in upper right ... Many different applications to program, which language to pick?
Increasingly picking dynamic or scripting languages. Many scientific and engineering
computations use MATLAB.

Computer Scientist, Compiler writer, lower left. Has worked on compilers and tools for
object-oriented and aspect-oriented languages ... But scientists are not interested in these
languages.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 4

June 4th, 2011

A lot of MATLAB programmers!

 Started as an interface to standard FORTRAN
libraries for use by students.... but now

— 1 million MATLAB programmers in 2004, number
doubling every 1.5 to 2 years.

— over 1200 MATLAB/Simulink books
— used in many sciences and engineering disciplines
* Even more “unofficial” MATLAB programmers

including those using free systems such as
Octave or Scilab.

There are a lot of MATLAB users, shouldn't we be doing something for them?

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 5

June 4th, 2011

."vi.1r].'|!* _ﬁ.l." Blgiin B Triaill
Menrosciennsns |

Cormmur
wiih MATLAE

Check out the number and variety of disciplines

Books are often "how to" in terms of using MATLAB. We also need some books that
describe MATLAB in way that both uses solid PL terminology and foundations, but also
talks about the domain-specific applications.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1

EEASONS WHY PEOPLE WHO WORK

o - [i LATIL V=1 FrkAd =1 [1 i
Wil COMPFUTERS SEEM 70 HAVE

A LOT OF SPARE TIME.

__—._._._-—-_'—-_
Web TDeveloper Syzacimin

K | w %
~ L o L
|

‘s uploading® *1tc rebooting’

47 Artist 1T Comnsultant
_ f
— oy Al
L} ¥, s ._1'5_*,
|
oy M| ALY

Why do Scientists choose MATLAB?

s venaeringt RS your. probian s0w g TiE oo piling

Why do scientists choose MATLAB?

June 4th, 2011

Why not something like FORTRAN? - advantages are good compilers, efficient execution.

But programmers are choosing MATAB — faster prototyping — no types, lots of toolboxes,

interactive development style...

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1

June 4th, 2011

Implications of choosing a
dynamic, “scripting”
language like MATLAB....

6/4/2011 MclLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed, Part 1 Intro- 8

Although Scientists like the interactive and "wild west" development style of MATLAB,
what are the implications of choosing a dynamic "scripting" language like MATLAB?

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 8

June 4th, 2011

Interpreted ...

Potentially large
runtime
overhead in
both time and
space

Original implementation by MATHWORKs interpreted, their system now contains a JIT
(which they call an "accelerater"). Open implementations like Octave and Scilab are
interepreted.

MclLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 9

June 4th, 2011

No types and “flexible” syntax

Hi, Dr. Elzabeth?
Yesh, vh... T accidntally 120K
the Furier transform of Ay cat .. .

|
;‘El a;‘lfc?w :
M

6/4/2011 McLab Tutoria aurie Hendren, Rahul Garg and Nurudeen Lameed, Part 1 Intro -10

MATLAB often computes something, even if it was not was intended.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 10

June 4th, 2011

Most semantic (syntactic) checks made at
runtime ... No static guarantees

MATLAB programmers get very few static guarantees, but quite often program in some
dynamic checks.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 11

No formal standards for MATLAB

N MATLAB® ™~

'i,‘}'.dl'“ 2 .-‘_.-' ; -:-_I-:l-:_':l:-l-l LT PEN
i 1
.:aﬁm - o
LA Tha Kivea ||p¥;uul|{|l i
= SpeeciRcation, = :_“{r
Thand FilGaii

[)
T

Pk

¥ 1
Ly L R

;!
x
<Y

McLAB [
v

Lameed, Part 1 Intro - 12

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen

Lack of a standard — the semantics can change in a new release from Mathworks.

If the research community can help distill out a proper specification, it will enhance
research opportunities and perhaps encourage some standardization.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1

June 4th, 2011

12

June 4th, 2011

Culture Clash

Programming Language /

Scientists / Engineers Compiler Researchers
* Comfortable with informal * Prefer more formal language
. . o" ” .o .
descriptions and “how to specifications.

documentation.

* Don't really care about

types and scoping * Prefer well-defined types

mechanisms, at least (even if dynamic) and well-

when developing small defined scoping and

prototypes. modaularization mechanisms.
* Appreciate libraries, * Appreciate

simple tool support, and “harder/deeper/more

interactive development

beautiful” research problems.
tools.

PL and compiler researchers need to consider the scientific community and their
perspective.

What can we do to enhance their programming experience, while still doing interesting
research from a CS perspective?

Does the PL/compiler community need to broaden their perspective of what is useful/good
research?

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1 13

June 4th, 2011

Goals of the McLab Project

* Improve the understanding and
documentation of the semantics of MATLAB.

* Provide front-end compiler tools suitable for
MATLAB and language extensions of MATLAB.

* Provide a flow-analysis framework and a suite
of analyses suitable for a wide range of
compiler/soft. eng. applications.

* Provide back-ends that enable
experimentation with JIT and ahead-of-time
compilation.

Our goals are to provide an infrastructure that supports the research for MATLAB, and to do
such research ourselves.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1

14

1

Matfai ’\\‘

7 MR

Overview of McLab/Tutorial

Agpect Matlek MriAE from-end Amaityar and

‘-’ Bl (1o Transforinstion sxgme
Domale-reecific J
pcimtifie languages

FORTRAN gengralor

6/4/2011 MclLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed, Part 1

The rest of this tutorial will:
(1) Introduce MATLAB

(2) Give an overview of the McLab front-end and a small example of an extension

(3) Give an overview of the IRs and the Analysis Framework
(4) Discuss the back-ends, concentrating on McVM/McJIT

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed, Part 1

June 4th, 2011

15

Part 2

VicLab Tuto

www.sable.mcgill.ca/mclab

* Other Tricky "Features"

MclLab Tutorial

— Introduction to MATLAB
Functions and Scripts
* Data and Variables

June 4th, 2011

Before we can understand the tools, we first need to understand the MATLAB language.
We have distilled out the important parts, and will first introduce functions and scripts,

and then introduce data and variables.
features.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

We then discuss some Matlab-specific tricky

June 4th, 2011

Functions and
Scripts in
MATLAB

There are two main ways of defining MATLAB computations, through functions which have
input and output parameters, and through scripts which have no parameters, and are
effectively just a sequence of statements. Let's look at functions first.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 2

June 4th, 2011

Basic Structure of a MATLAB function
1 function [prod, sum] = ProdSum(a, n)
2 prod = 1;
3 sum = 0;
4 for i = 1:n
5 prod = prod * a(i); >> [a,b] = ProdSum([10,20,30],3)
6 sum = sum + a(i); a = 6000
7 end; b =60
AL >> Prodsum([10,20,30],2)
ans =200
>> ProdSum(‘abc’,3)
ans =941094
>> ProdSum([97 98 99],3)
ans = 941084
) Tutori Laurie Hendren, F Garg d Nurudeen
On first click:

Here is an example of a function definition of a function called ProdSum. It has two input
parameters, "a" and "n", and two output parameters, "prod" and "sum". Thereis also a

local variable "i".

This function should be stored in a file called ProdSum.m. If it is stored in a file of another
name, say "foo.m" then the function can only be called as foo(...).

Note that there are no type declarations and no explicit declarations of variables. "i"is a
variable because it is defined (i.e. it is assigned to in the header of the for loop.

There are no return statements for returning the values of the output parameters, the
values returned are simply the values those variables contain when the function returns.

On second click:

Here is an example of an interaction with the MATLAB read-eval-print loop. The user types
in the statement after the ">>" prompt and the statement is evaluated and the result
printed. If an explicit assignment is made in the statement, the values of the lhs are
printed, otherwise the result of evaluating the expression is assigned to a variable called
"ans" and its value is printed.

The first call calls ProdSum with a 1x3 array [10,20,30] as the first argument, and a 1x1
array 3 as the second argument. The first return value is assigned to "a" and the second to
Ilbll.

The second call does not give a lhs, so the first of the return values is assigned to ans and
the 2" return value is thrown away. A similar thing would happen if you explicity said

"myans = ProdSum....".
McLab PLDI 2011 Tutorial - Laurie Hendren,

Rahul GargTared Nt valeidladratee dlcbt PaostiQum works on various types. In this case the first 3

W ol -

June 4th, 2011

Basic Structure of a MATLAB function (2)

1 function [prod, sum] = ProdSum(a, n)
2 prod = 1;
3 sum = 0; >> [a,b] = ProdSum(@sin,3)
4 for i = 1:n a=0.1080
5 prod = prod * a(i); b=1.8919
6 sum = sum + a(i);
>> [a,b] = ProdSum(@(x)(x),3)
7 end;
a=6
8 end b=6
>> magic(3)
ans=8 1 6
357
4 9 2
>>ProdSum(ans,3)
ans=96

) Tutorial, Laurie Hendren, F Garg d Nurudeen

15t click: On the previous slide we saw that the first argument could be 1xn arrays of
different types. What else is allowed?

2nd click: The first statement shows a call using a function handle, @sin. This changes the
meaning of a(i) in the body, as now it means an indirect call to sin(i). Note that the syntax
of an indirect call is the same as the syntax for a direct call and an array index.

The 2"d statement illustrates an anonymous function, in this case just the identity function.

The 3™ and 4t statements illustrate what happens when you provide an array with higher
dimensions that what is required by an indexing statement. In this case we create a 3x3
magic square, using the built-in function "magic" and then provide that as the 15 argument
to "ProdSum". The indexing expression a(i) will still work, but it will automatically use 1
for all the missing dimensions. So, in this case it is effectively a(i,1), and the result is the
product of the first column of a.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 4

1

2 prod = 1;

3 sum = 0;

4 for i = 1:n

5 prod = prod * a(i);
6 sum = sum + a(i);

7 end;

8 end

Basic Structure of a MATLAB function (3)

function [prod, sum] = ProdSum(a, n)

>> ProdSum([10,20,30],'a’)
??? For colon operator with char operands, first and
last operands must be char.
Errorin ==> ProdSum at 4
fori=1:n

>> ProdSum([10,20,30],i)

Warning: Colon operands must be real scalars.
> In ProdSum at 4

ans= 1

>> ProdSum([10,20,30],[3,4,5])
ans= 6000

) Tutori Laurie Hendre

n Garg d Nurudeen

June 4th, 2011

1t click: although MATLAB tolerates many different inputs, not all inputs will result in an
answer, some will trigger errors, others will trigger warnings.

2"d click: For example, what happens when we give a character value for n, we might
expect this to work, since characters were valid for the first argument. However, this

causes a run-time error, since the colon operator only works with characters if both the left

and right operands are characters. This is unlike the * and + operators, which tolerate

arguments of different types.

mn:n

The 2"d statement using "i" as the 2"¥ argument. What does this mean. In this case, it

means the library function i, which returns the complex value 0+1i. In this case a warning

is issued at run-time saying the colon wants real scalars, but it happily continues on

assuming the real value 0.

Based on the previous error message we might expect that the colon operator only wants
scalars, however if we try giving it [3,4,5], then it happily just uses the first element, 3, and

produces the product of [10,20,30].

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

June 4th, 2011

Primary, nested and sub-functions

function { prod, sum] = NestedSubEx(2
function [2] = MyTimes(x, ¥
Z=X x 7
end
prod = 1;
sum = O;
for i = 1:n
prod = MyTimes(prod, a(i));
sum = MySum(sum, a(i));
end;
end

function [z
z=XxX+y;
end

= MySum (x, y

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Matlab - 6

Although MATLAB programmers tend to put only one function in a file, there are some
mechanisms for collecting together related functions in the same file.

The first function is called the primary function, and this one should have the same name
as the file. This is the only function which is visible outside of the file.

Subsequent functions, defined after the primary function are called sub-functions. Sub-
functions are only visible to other functions in the same file.

Function definitions can also be nested, and these follow the expected scoping rules. The
only non-obvious point is determining which function "declares" a local variable.
Effectively it is the innermost function which contains a parameter or definition of that
variable.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 6

June 4th, 2011

Basic Structure of a MATLAB script
1 /4 stored in file ProdSumScript.m
2 prod = 1;
3 sum = 0; >> clear
4 for i = 1:n >>a = [10, 20, 30];
5 prod = prod * a(i); >>n=3;
6 sum = sum + a(i); >> whos
7 end; Name Size Bytes Class
a 1x3 24 double
n 1x1 8 double
>> ProdSumScript()
>> whos
Name Size Bytes Class
a 1x3 24 double
i 1x1 8 double
n 1x1 8 double
prod 1x1 8 double
sum 1x1 8 double
201 VIC) Tutori Laurie Hendren, R Garg d Nurudeen

Now that we understand functions, let's look at something a little less structured, scripts

1t click: If a script is stored in a file foo.m, then it is called by "foo" or "foo()"
A script is neither a zero-argument function, nor a macro, but something in between.

Scripts use the workspace of their caller, which could be the read-eval-print loop, or the
last-called function.

2"d click: let's look at an example of calling a script from the read-eval-print loop. First we
have to ensure that the appropriate variables are defined (statements 1 through 3). Note
that "whos" is a built-in function that displays the current workspace. We then call
ProdSumScript, and then look in the workspace again, where we see that prod and sum
have been defined.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 7

June 4th, 2011

Directory Structure and Path

* Each directory can contain:
— .m files (which can contain a script or functions)
—aprivate/ directory
— a package directory of the form +pkg/
— a type-specialized directory of the form @int32/

* At run-time:
— current directory (implicit 1%t element of path)
— path of directories

— both the current directory and path can be changed at
runtime (cd and setpath functions)

MATLAB programmers tend to accumulate lots of functions in their current directory.
However, there are mechanisms for grouping functions together.

* First, you can put them in a /private directory. These functions will be visible to functions
in the outer directory.

* Second you can create directories starting with "+" which correspond to packages. Such
functions must be called using pkg.f(). You can have sub-packages as well.

* Third, you can have type-specialized directories, which start with "@". These will be
called when the first argument matches the type of the directory name.

At run-time a function is looked up first in the current directory, and then if not found the
directories along the path are searched. Note that both the current directory and the path
can be changed at run-time.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 8

Function/Script Lookup Order function f
call in the body of a function f

;‘;o(a);
Nested function (in scope of f)

Sub-function (in same file as f) =i

Function in /private sub-directory of directory
containing f.

15t matching function, based on function name
and type of first argument, looking in type-
specialized directories, looking first in current
directory and then along path.

15t matching function/script, based on function
name only, looking first in current directory and
then along path.

Let's look at the rules for looking up a function.
a nested, sub-function or private function takes precedence over a type-specialized

June 4th, 2011

They are as listed on the slide. Note that

function. Hence, if you want to make a function type-specialized it must be moved out a
file or private directory.

In the example, for the call of foo, first look in the body of f, then in the file of f, then in
the /private directory of the directory containing the file of f. If not found yet, then look
along the path for a type-specialized foo that matches the run-time type of "a", and then if
not found, look along the path for a function with name "foo".

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

June 4th, 2011

Function/Script Lookup Order % in s.m

call in the body of a scri

;‘;o(a);

* Function in /private sub-directory of directory of
last called function (not the /private sub-directory
of the directory containing s).

* 1t matching function/script, based on function
name, looking first in current directory and then

along path.
dirl/ dir2/
f.m S.m
g.m h.m
private/ private/
foo.m foo.m

) Tutorial, Laurie Hendren Garg d Nurudeen Lan

Now, what about a looking up a call which is the body of a script? This is not equivalent to
first macro-expanding the call. It is also different than the lookup call for functions.

*If f.m is a function definition containing a call to foo, foo will be found in
dirl/private/foo.m.

* If s.m is a script definition containing a call to foo, foo will not necessarily be found in
dir2/private/foo.m. Rather, it depends on the directory of the last function called. For
example, if g.m called s, then foo will be dirl/private/foo.m. If h.m called s, then foo will

be dir2/private/foo.m.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

10

June 4th, 2011

Copy Semantics

1 function [r] = CopyEx(a, b)
2 for i=i:length(a)
3 a(i) = sin(b(i));
4 c(i) = cos(b(i));
5 end >>m = [10, 20, 30]
6 Tr =a+c; m=10 20 30
7 end
>>n=2%*a
n=20 40 60

>> CopyEx(m,n)
ans=1.3210 0.0782 -1.2572

>>m = CopyEx(m,n)
m=1.3210 0.0782 -1.2572

The semantics of MATLAB is call and return by value. Hence when a function call is made a
copy of the input arguments are made, and then the function returns a copy of the return
parameters are made. Similarly, statements of the form a = b mean that a should be a
new copy.

In an implementation of MATLAB with reference counting (such as MathWorks' MATLAB
and Octave), the copying is actually done lazily. At the time of parameter
passing/returning or array assignments, only a reference is created, and the reference
count of the pointed-to array is incremented. Then, upon any update to an array, first the
reference count is checked. If the reference count is greater than 1, then a fresh copy is
created at this point.

McVM uses a different approach. Since McVM supports a garbage-collected system, rather
than reference counted, we use static analysis to determine when copies are needed, and
the best place to insert such copies. This is reported in the paper "Staged Static
Techniques to Efficiently Implement Array Copy Semantics in a MATLAB JIT Compiler",
published in CC 2011.

Also note that fresh copies of arrays may need to be allocated if an element is assigned
outside of the current range. Thus, in CopyEx, line 4, on each iteration of the for loop it
will cause a fresh copy to be created, which is one element larger.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 11

6/4/2011 Mc

ab Tutorial, Laurie Hendren, Rahul Ga

Variables and
Data in MATLAB

rg and Nurudeen Lameec 12

Ok, now we understand functions.... what about variables in MATLAB.

We already know they are not explicitly declared.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

June 4th, 2011

12

June 4th, 2011

Examples of base types

>> clear >>whos
<~~~ =10 920 201 Name Size Bytes Class Attributes
Z7d= |41V, cU, JU]
10 20 30 a 1x3 24 double
as= b 1x3 12 int32
€ 1x1 1 logical
>>b =int32(a) d 1x1 8 int32 complex

b=10 20 30
>> isinteger(c)

>> ¢ = isinteger(b) ans =0

c=1

>> isnumeric(a)
ans=1

>> isnumeric(c)
>>d = complex(int32(4),int32(3)) | | ;ps=0
d=4+3i >> isreal(d)
ans=0

201 VicLab Tutoria urie Hendren, Rahul Garg and Nurudeen Lameec

Let's first look at the base types.

If the programmer doesn't say anything different, then the base type is double — even if
syntactically it looks like an integer.

To create an integer, one has to explicitly convert it, using a library function like "int32".
There are a number of built-in functions for testing the type, for example "isinteger",
which return a variable with type "logical", although when printed out, they also look like
integers.

There are also complex values, which have two components. These components need not
be represented as doubles.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

13

char
/ logical

float:comp <

201 VicLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen

MATLAB base data types

Z int8

signed <

signed:comp

unsxgned
real
single
float
numeric
int:comp
complex

unsign:comp

single:comp

double:comp

neec

int16
int32
int64
uint8
u1nt16
uint32
uint64

int8:comp
int16:comp
int32:comp
int64:comp
uint8:comp
uint16:comp
uint32:comp

uint64:comp

Here is our organization of the base types.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

June 4th, 2011

14

June 4th, 2011

Data Conversions

* doubie + doubie = double

* single + double = double

* double:complex + double = double:complex
* int32 + double 2 int32

* logical + double = error, not allowed

* intl6 +int32 = error, not allowed
* int32:complex + int32:complex = error, not defined

Operations dynamically check the type of their arguments and then determine the type of
their return value. Not all of these conversions are as you might expect.

The first three bullet points are as you would expect, but the fourth one shows that adding
an int32 to a double results in an int32.

Although doubles can be combined with other types quite easily, other combinations are
not allowed, as illustrated by the final three bullet points.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 15

June 4th, 2011

MATLAB types: high-level

any

/\

data fnhandle

T

array cellarray struct

) Tutorial, Laurie Hendren Garg d Nurudeen Lan

Now let's look at the high-level data types. A variable can be either data or a function
handle. Ifitis data, then it could be an array, which is homogenous, a cellarray which is
effectively an array of cells, where each cell can contain a different type, or it can be a

struct with named fields.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

16

Cell array and struct example

>> students = {'Nurudeen', 'Rahul’, 'Jesse'}
students = 'Nurudeen' 'Rahul' 'Jesse'

>> cell = students(1)
cell= 'Nurudeen'

>> contents = students{1}
contents =Nurudeen

>> whos
Name Size Bytes Class
cell 1 128 cell
contents 1x8 16 char
students 1x3 372 cell

>> s = struct('name’, 'Laurie’,
'student’, students)
s = 1x3 struct array with fields:
name
student

>>a=5(1)
a = name: 'Laurie'
student: 'Nurudeen'

>>a.age =21

a =name: 'Laurie’
students: 'Nurudeen'
age: 21

201 VicLab Tutorial, Laurie Hendren, R

d Nurudeen

June 4th, 2011

Cell arrays can contain any type of data. Cell arrays are created using the { } syntax, rather
than [] for normal arrays. Indexing into a cell array is done using x(i) to get the i'th cell,

and x{i} to get the contents of the i'th cell.

Structs are created using the struct function, as shown at the top of the 2" column. Note
that in this example, since students has shape 1x3 the created struct is a 1x3 struct array
with each struct containing a name field with 'Laurie' and the i'th struct containing the i'th

element of students.

If we take out the first struct, and assign to a, then we have a single struct. We can add
more fields to this struct by assigning to a field which doesn't yet exist, for example a.age

= 21 causes a new field to be added.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

17

June 4th, 2011

Local variables

* Variables are not explicitly declared.

Local variables are allocated in the current
workspace.

All input and output parameters are local.

Local variables are allocated upon their first
definition or via a load statement.
— X p—l

—-x (i) =

—load ("f.mat’, ’"x")

Local variables can hold data with different types
at different places in a function/script.

) Tutorial, Laurie Hendren Garg d Nurudeen Lameec Viatlab - 18

Variables are by default local. They are implicitly declared through assignments, or
through load statements. Variables can hold different types at different places in the body
of a function/script.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 18

June 4th, 2011

Global and Persistent Variables

 Variables can be declared to be global.
—global x;

* Persistent declarations are allowed within
function bodies only (not allowed in scripts or
read-eval-print loop).

—persistent y;
* A persistent or global declaration of x should

cover all defs and uses of x in the body of the
function/script.

It is possible to explicitly declare a variable to be global or persistent.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 19

June 4th, 2011

Variable Workspaces

* There is a workspace for global and persistent
variables.

* There is a workspace associated with the read-
eval-print loop.

* Each function call creates a new workspace
(stack frame).

* A script uses the workspace of its caller (either
a function workspace or the read-eval-print
workspace).

) Tutorial, Laurie Hendren Garg d Nurudeen Lameec Viatlab - 2(

We can think of the environment as being a collection of workspace, one for globals and
persistents, one for the read-eval-print-loop and one for each function call.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 20

June 4th, 2011

Variable Lookup

* If the variable has been declared global or
persistent in the function body, look it up in
the global/persistent workspace.

e Otherwise, lookup in the current workspace
(either the read-eval-print workspace or the
top-most function call workspace).

* For nested functions, use the standard
scoping mechanisms.

) Tutorial, Laurie Hendren Garg d Nurudeen Lameec Viatlab - 2

How are variables looked up? If global/persistent, look in the global/persistent
workspace, otherwise lookup in the current workspace. If not found, then may trigger a
run-time error.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

21

June 4th, 2011

Local/Global Example

1 function [prod] = ProdSumGlobal(a, n)
2 global sum;
>> clear
3 prod = 1;
4 for i = 1:n
. >> global sum
5 prod = prod * a(i);
6 sum = sum + a(i);
(1); >>sum = 0;
7 end;
8 end;
’ >> ProdSumGlobal([10,20,30],3)
ans = 6000
>>sum
sum = 60
>> whos
Name Size Bytes Class Attributes
ans 1x1 8 double
sum 1x1 8 double global

201 VicLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen eec Viatlab - 22

1t click: Let's look at a variation of our example where sum is a global variable instead of

an input parameter.

2"d click: In the calling context we must also declare sum to be global and give it an intitial

value. The default value is the the empty array, so in this case we initialize it to 0.

After calling the function, the global now has accumulated the sum of a. We can see that
globals have a global attribute, when displayed with "whos".

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 22

June 4th, 2011

Other Tricky
5 "features” in
MATLAB

THE ART GF PROGRAMMNG = PART & EI5S

There are some tricky and non-obvious features in MATLAB.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 23

June 4th, 2011

Looking up an identifier

Old style general lookup - interpreter

* First lookup as a variable.

* If a variable not found, then look up as a function.

MATLAB 7 lookup - JIT

* When function/script first loaded, assign a "kind"
to each identifier. VAR — only lookup as a
variable, FN — only lookup as a function, ID — use
the old style general lookup.

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Matlab - 24

There are two styles of looking up an identifier, the old style interpreter based lookup, and
a new lookup implemented in MATLAB 7, which has a JIT. This change in lookup has
effectively changed the semantics of MATLAB, and so all tools that handle modern MATLAB
must implement the new semantics.

In the new semantics, at first load time each identifier is assigned a kind. This is,
presumably, to allow for more efficient code generation. The kinds are VAR, FN and ID.

We cannot find any documentation on this, but have written a paper on this topic,
submitted to OOPSLA.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 24

June 4th, 2011

Kind Example

function [r] = KindEx(a)

X =a + i + sum' PN >> K|ndEX (3)
: S X = 3.0000 + 2.0000i
f = O@sin :
f= @sin

r=1.5808 + 3.2912i

r=f(x + s) ans= 1.5808 + 3.2912

1

2

3

4 eval(’s = 10;°)
5

6

* VAR:1,a,x, f
* FN: i, j, sum, sin
* [D:s

Let's take a quick look at the kind assignment algorithm. Effectively it must visit all
statements in the body of the function and assign a kind. The algorithm implemented by
MATHWORKSs is neither flow-sensitive nor flow-insensitive, but traversal-sensitive. In this
example, "a" and "r" are parameters, so they are variables. "x" and "f" are assigned-to, so
they are variables. "sin" has its handle taken, soitisa FN. "i","j", "sum" are also FN
because: (a) they are not VAR, and (b) they can be found when looked in the current

fn/file/directory/path. Identifier "s" is not directly definded, nor can it be found upon a

function lookup, so its kind is left as ID, and a fully dynamic lookup will be used at runtime.

In this case when you run the program, "s" will be found in the workspace.

2nd click: trace of running, note that the statements in the body of KindEx are not
terminated by ";", so the results of the statements are echoed at run-time.

2

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

25

missing in files with only one function).

* command syntax
— length('x"'") or length x
— cd('mydirname') or cd mydirname

* arrays can be defined with or without commas:
[10, 20, 30] or [10 20 30]

* sometimes newlines have meaning:
— a=[102030
405060 |; // defines a 2x3 matrix
— a=[102030405060]; //defines a 1x6 matrix
— a=[102030;
405060 |; // defines a 2x3 matrix
— a=[102030; 4050 60]; // defines a 2x3 matrix

201 VicLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen

Irritating Front-end "Features"

* keyword end not always required at the end of a function (often

June 4th, 2011

There are quite a few irritating issues with the MATLAB syntax that are hard to handle with

standard parsing tools.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2

26

June 4th, 2011

“Evil” Dynamic Features

* not all input arguments required

1 function [prod, sum] = ProdSumNargs(a, n)
2 if nargin == 1 n = 1; end;

3

4 end

* do not need to use all output arguments
* eval, evalin, assignin

* cd, addpath

* |load

There are also several potentially evil dynamic features.

First, when a function is called, not all arguments need to be provided. In the body of the
function one can check to see how many arguments were provided, and then assign a
default value to the missing ones (as in line 2 of ProdSumNargs).

Similarly a call to a function need not capture all of the output arguments.
There are several kinds of eval, including the ordinary one, evalin—which is used to eval
an expression is a different context (such as the calling functions context) and assignin

which is used to assign to a variable in the calling context.

Cd and addpath can be used to dynamically change the current directory or modify the
path, which causes a change in function lookup.

Load can be used to load stored variables from a file, and so may cause new variables to be
created in the current workspace.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 2 27

June 4th, 2011

McLab Tutorial
www.sable.mcgill.ca/mclab

Part 3 — McLab Frontend
* Frontend organization
* Introduction to Beaver
* Introduction to JastAdd

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 1

June 4th, 2011

McLab Frontend

* Tools to parse MATLAB-type languages
— Quickly experiment with language extensions
— Tested on a lot of real-world Matlab code

* Parser generates ASTs
e Some tools for computing attributes of ASTs

* A number of static analyses and utilities
— Example: Printing XML representation of AST

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 2

June 4th, 2011

Tools used

e Written in Java (JDK 6)
MetalLexer and JFlex for scanner

Beaver parser generator

JastAdd “compiler-generator” for
computations of AST attributes

Ant based builds

We typically use Eclipse for development
— OrVim ©

Look! Notes!

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 3

June 4th, 2011

Frontend organization

(MetaLexer and JFlex)

Parser
(Beaver)

AST attributes, rewrites
(JastAdd)

Attributed
AST

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Frontend-4

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 4

June 4th, 2011

* Natlab is a clean subset of MATLAB
— Not a trivial subset though
— Covers a lot of “sane” MATLAB code
* MATLAB to Natlab translation tool available
— Written using ANTLR
— Outside the scope of this tutorial

* Forms the basis of much of our semantics and
static analysis research

Derivatives such as AspectMatlab use the work done in Natlab.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 5

Frontend with MATLAB-to-Natlab

(MetaLexer and JFlex)

Parser
(Beaver)

AST attributes, rewrites
(JastAdd)

Attributed
AST

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed

Frontend-6

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

June 4th, 2011

June 4th, 2011

How is Natlab organized?

* Scanner specifications
— src/metalexer/shared_keywords.mlc
e Grammar files
— src/parser/natlab.parser
e AST computations based on JastAdd
— src/natlab.ast
— src/*jadd, src/*jrag
* Other Java files
— src/*java

¢ 201 VicLab Tutorial, Laurie Hendren, R Garg and Nurudeen Lameec rontend

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 7

June 4th, 2011

* A system for writing extensible scanner
specifications

* Scanner specifications can be modularized,
reused and extended
* Generates JFlex code
— Which then generates Java code for the lexer/scanner
* Syntax is similar to most other lexers

* Reference: “Metalexer: A Modular Lexical
Specification Language. Andrew Casey, Laurie
Hendren” by Casey, Hendren at AOSD 2011.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 8

June 4th, 2011

If you already know
Beaver and JastAdd...

Then take a break.
Play Angry Birds.
Or Fruit Ninja.

Frontend-9

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 9

Beaver

* Beaveris a LALR parser generator

* Familiar syntax (EBNF based)

* Allows embedding of Java code for semantic
actions

* Usage in Natlab: Simply generate appropriate
AST node as semantic action

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

June 4th, 2011

10

June 4th, 2011

Beaver Example

Stmt stmt =
expr.e {: return new ExprStmt(e); :}
| BREAK {: return new BreakStmt(); :}
| FOR for_assign.a stmt_seq.s END
{: return new ForStmt(a,s); :}

Example is a simplified grammar

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 11

June 4th, 2011

Beaver Example

—_——

Stmt stmt =
expr.e {: return new ExprStmt(e); :}
| BREAK {: return new BreakStmt(); :}
| FOR for_assign.a stmt_seq.s END
{: return new ForStmt(a,s); :}

€ 201 VIC) Tutori Laurie Hendren, Rahul Garg and Nurudeen neec ontend-12

The Java types must be declared/defined/imported by the programmer.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 12

June 4th, 2011

Beaver Example

Node name in grammar

Stmt stmt =

expr.e {: return new ExprStmt(e); :}
| BREAK {: return new BreakStmt(); :}
| FOR for_assign.a stmt_seq.s END

{: return new ForStmt(a,s); :}

6/4/2011 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Frontend-13

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 13

Beaver Example

>tm S
expr.e {: return new ExprStmt(e); :}

| BREAK {: return new BreakStmt(); :}
| FOR for_assign.a stmt_seq.s END

{: return new ForStmt(a,s); :}

6/4/201 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Frontend

The name given to a node can then be used inside the semantic action.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

June 4th, 2011

14

June 4th, 2011

Beaver Example
Java code for semantic

expr.e {: return new ExprStmt(e); :}

| BREAK {: return new BreakStmt(); :}

| FOR for_assign.a stmt_seq.s END
{: return new ForStmt(a,s); :}

6/4/2011 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Frontend-15

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 15

June 4th, 2011

JastAdd: Motivation

* You have an AST
* Each AST node type represented by a class
* Want to compute attributes of the AST

— Example: String representation of a node
* Attributes might be either:

— Inherited from parents

— Synthesized from children

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 16

June 4th, 2011

JastAdd

* JastAdd is a system for specifying:
— Each attribute computation specified as an aspect
— Attributes can be inherited or synthesized
— Can also rewrite trees
— Declarative philosophy
— Java-like syntax with added keywords

* Generates Java code
* Based upon “Reference attribute grammars”

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 17

June 4th, 2011

How does everything fit?

* JastAdd requires two types of files:
— .ast file which specifies an AST grammar

— .jrag/.jadd files which specify attribute
computations

* For each node type specified in AST grammar:
— JastAdd generates a class derived from ASTNode

* For each aspect:

— JastAdd adds a method to the relevant node
classes

[201 VicLab Tutorial, Laurie Hendren, R Garg d Nurudeen Lameec ontend-18

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 18

June 4th, 2011

JastAdd AST File example

abstract BinaryExpr: Expr ::=
LHS:Expr RHS:Expr
PlusExpr: BinaryExpr;
MinusExpr: BinaryExpr;
MTimesExpr: BinaryExpr;

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 19

June 4th, 2011

JastAdd XML generation aspect

aspect AST2XML{

eq BinaryExpr.getXML(Document d, Element e){
Element v = d.getElement(nameOfExpr);
getRHS().getXML(d,v);
getLHS().getXML(d,v);
e.add(v);
return true;

Code has been simplified to suit the purposes of the tutorial. Actual code will do a little
more bookkeeping of line numbers etc.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

20

June 4th, 2011

Aspect

declaration

aspect AST2XML{

eq BinaryExpr.getXML(Document d, Element e){
Element v = d.getElement(nameOfExpr);
getRHS().getXML(d,v);
getLHS().getXML(d,v);
e.add(v);
return true;

6/4/2011 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Frontend-21

Code has been simplified to suit the purposes of the tutorial. Actual code will do a little
more bookkeeping of line numbers etc.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

21

6/4/2011

aspect AST2XML{

Equation” for an

attribute

eq BinaryExpr.getXML(Document d, Element e){

Element v = d.getElement(nameOfExpr);
getRHS().getXML(d,v);
getLHS().getXML(d,v);

e.add(v);

return true;

Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed

Frontend-22

June 4th, 2011

Code has been simplified to suit the purposes of the tutorial. Actual code will do a little
more bookkeeping of line numbers etc.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

22

6/4/2011

aspect AST2XML{
I

Add to this AST class

eq BinaryExpr.getXML(Document d, Element e){

Element v = d.getElement(nameOfExpr);
getRHS().getXML(d,v);
getLHS().getXML(d,v);

e.add(v);

return true;

McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed

Frontend-23

June 4th, 2011

Code has been simplified to suit the purposes of the tutorial. Actual code will do a little

more bookkeepi

McLab PLDI 2011 Tutoria
Rahul Garg and Nurudee

ng of line numbers etc.

| - Laurie Hendren,
n Lameed - Part 3

23

June 4th, 2011

aspect AST2XML{

.. added
eq BinaryExpr.getXML(Document d, Element e){

Element v = d.getElement(nameOfExpr);
getRHS().getXML(d,v);
getLHS().getXML(d,v);

e.add(v);

return true;

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed

Code has been simplified to suit the purposes of the tutorial. Actual code will do a little
more bookkeeping of line numbers etc.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

24

June 4th, 2011

aspect AST2XML{

eq BinaryExpr.getXML(Document d, Element e){
Element v = d.getElement(nameOfExpr);
getRHS().getXML(d,v);
getLHS().getXML(d,v);
e.add(v);
return true;

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Frontend-25

Code has been simplified to suit the purposes of the tutorial. Actual code will do a little
more bookkeeping of line numbers etc.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

25

June 4th, 2011

aspect AST2XML{

eq Binaocument d, Element e){
Ele lement(nameOfExpr);
getRHS().getXML(d,v);
getLHS().getXML(d,v);
e.add(v);
return true;

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Frontend-26

Code has been simplified to suit the purposes of the tutorial. Actual code will do a little
more bookkeeping of line numbers etc.

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 26

June 4th, 2011

JastAdd weaving

Natlab.ast AST2XML.jrag

JastAdd

BinaryExpr.java PlusExpr.java MinusExpr.java

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Frontend-27

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 27

June 4th, 2011

Overall picture recap

* Scanner converts text into a stream of tokens
* Tokens consumed by Beaver-generated parser
* Parser constructs an AST

* AST classes were generated by JastAdd

» AST classes already contain code for
computing attributes as methods

e Code for computing attributes was weaved
into classes by JastAdd from aspect files

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 28

June 4th, 2011

Adding a node

* Let’s assume you want to experiment with a
new language construct:

* Example: parallel-for loop construct
— parfori=1:10 a(i) = f(i) end;

* How do you extend Natlab to handle this?

* You can either:
— Choose to add to Natlab source itself

— (Preferred) Setup a project that inherits code from
Natlab source directory

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3 29

* Write the following in your project:
— Lexer rule for “parfor”
— Beaver grammar rule for parfor statement type
— AST grammar rule for PforStmt

— attributes for PforStmt according to your
requirement

— eg. getXML() for PforStmt in a JastAdd aspect

— Buildfile that correctly passes the Natlab source
files and your own source files to tools

— Custom main method and jar entrypoints

McLab PLDI 2011 Tutorial - Laurie Hendren,
Rahul Garg and Nurudeen Lameed - Part 3

June 4th, 2011

30

June 4th, 2011

McLab Tutorial
www.sable.mcgill.ca/mclab

Part 4 = MclLab Intermediate Representations

« High-level McAST
* Lower-level McLAST
* Transforming MIcAST to McLAST

) Tutori Laurie Hendren

Now that we have explained the front-end, we need to explain our IRs. We will start with
the high-level AST, McAST, which is produced by the front-end, then we will describe our
lower-level IR, McLAST, which is still tree-based, but is simplified and more suitable for
flow analysis. Then we will describe how we transform McAST into McLAST.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4

June 4th, 2011

Big Picture

MATLAB-to-
Natlab Translator

e

McLab Front-End

v

MCcAST Analyses

McLab Simplifier

\

MCcLAST Analyses

6/4/201 VicLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed, Part 4 R-2

We have already shown you the top two light blue boxes in this figure. The front-end
produces McAST. Now, we must do some analysis on this AST to determine the kind of
each identifier (VAR, FN or ID), and then simplify the McAST yielding a lower level
representation called McLAST. Various analyses can then be applied to McLAST. Both the
MCcAST and McLAST analyses can be implemented using our flow analysis framework,
which will be introduced in the next part of this tutorial.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 2

McAST

* High-level AST as produced from the front-end.

* AST is impiemented via a coiiection of Java
classes generated from the JastAdd specification
file.

* Fairly complex to write a flow analysis for McAST
because of:

— arbitarly complex expressions, especially Ivalues

— ambiguous meaning of parenthesized expressions
such as a(i)

— control-flow embedded in expressions (&&, &, ||, |)

— MATLAB-specific issues such as the "end" expression
and returning multiple values.

201 VicLab Tutori e Hendre Rahul Garg and Nurudeen Lameed, Part

June 4th, 2011

Best source of further documentation — Chapters 3 and 4 of Jesse Doherty's M.Sc. thesis.

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 4

June 4th, 2011

MCcLAST

* Lower-level AST which:
— has simpler and explicit control-flow;

— simplifies expressions so that each expression has
a minimal amount of complexity and fewer
ambiguities; and
— handles MATLAB-specific issues such as "end" and
comma-separated lists in a simple fashion.
* Provides a good platform for more complex
flow analyses.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 4

June 4th, 2011

Simplification Process

Simplification Phase

Simplifier

McAST|| Kind AST + . MOLAST
Front- End Analysis kind info T~ 12 . i

201 VicLab Tutori e Hendre Rahul Garg and Nurudeen Lameed, Part

The simplificatin proceeds by getting the McAST from the front-end, and then applying the
kind analysis to that AST, then given the AST and the kind analysis info a sequence of
simplifying transformations are applied, finally yielding the lower-level McLAST.

The default behaviour is that all the simplifications are run, but there may be situations
where a framework user only wants to apply some of the simplifications. However, some
simplifications depend on others having already been performed, so how do we deal with
this?

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 5

June 4th, 2011

Dependences between simplifications

CSL Simple
left IF
Simple Multi Short- Circuit
Assign Assign arrays

Left FOR COND

VicLab Tuto e Hendre ahul G nd N

Each simplification specifies which other simplifications it depends on, giving us a DAG of
dependences. Now, if only some simplifications are desired, the system will run only those
simplifications, plus those that it depends on. If a user adds a new simplification to the
framework, they must also specify which simplifications it depends on.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4

Expression Simplification

Aim: create simple expressions with at most

one operator and simple variable references.

t1 = foo(x);

foo(x) + a(y(i)) HEEE) t2 = y(i);
t3 = a(t2);
tl + t3

Aim: specialize parameterized expression
nodes to array indexing or function call.

201 VicLab Tutoria urie Hendren, Rahul Garg and Nurudeen Lameed, Part 4

June 4th, 2011

One of the main simplifications is to simplify expressions, so that each expression has at
most one operation. In addition we need to resolve the meaning of expressions like a(i)
which in the high-level AST are stored as parameterized expressions. In the simplification
we can to encode these as either array indexing or function calls.

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 4

June 4th, 2011

Short-circuit simplifications

* && and || are always short-circuit

e & and | are sometimes short-circuit
—if (expl & exp2) is short-circuit
—t=expl & exp2 is not short-circuit

* replace short-circuit expressions with explicit
control-flow

In order to simplify program analysis, we want to remove any control-flow from
expressions. The && and | | operators are always short-circuit, and so do involve control
flow. Thus these are always converted to equivalent nested conditional statements.
However, in MATLAB the itemwise operators & and | are also sometimes short-circuit. If
the appear in the condition of an if or while they are short-circuit, otherwise they are not.
Thus, only the short-circuit occurances are simplified.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4

June 4th, 2011

"end" expression simplification

Aim: make "end" expressions explicit,
extract from complex expressions.

A(2,f(end)) mEEE)A(2,f(EndCall(4,2,2)))

N

t1 = EndCall(A,2,2);
t2 = £(t1);
A(2,t2)

VicLab Tuto e Hendre ahul G nd Nurudee meed, Par

MATLAB includes and "end" expression which is used to capture the last index of
the closest enclosing array. So for example,

A(2,f(end)) could mean two things. If fis a variable, then it means the last index of
f. If fis a function and A is a variable, then it means the last index of the 2nd
dimension of A, where A is being indexed using 2 dimensions. We use the kind
analysis to determine the closest enclosing variable, and then convert the end
expression into and explicit EndCall.

In this new expression, EndCall(A,2,2) is the explicit end. It is specifying that the end
binds to

the array A interpreted as two dimensional where the end is used in the second
dimension.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 9

June 4th, 2011

L-value Simplification

Aim: create simple |-values.

tl = a+b;
A(a+b,2) .e(foo()) = value; ‘ t2 = foo();
A(t1,2).e(t2) = value;

Note: no mechanism for taking the address of
location in MATLAB. Further simplification not
possible, while still remaining as valid MATLAB.

201 VicLab Tutoria urie Hendren, Rahul Garg and Nurudeen Lameed, Part 4 IR-10

Simplifying I-values is a bit tricky in MATLAB. We want to break down the computation of
I-values as much as possible However, MATLAB has no way of taking the address of
variables, so we can only simplify these expressions to a limited extent.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 10

June 4th, 2011

if statement simplification

Aim: create if statements with only two
control flow paths.

if E1
if E1 o body1() ;
body1 () ; allee
elseif E2 ‘ if E2
body2() ; body2() ;
else else
body3() ; body3() ;
end end
end

6/4/201 VicLab Tutoria urie Hendren, Rahul Garg and Nurudeen Lameed, Part 4 IR-1

MATLAB if statements have multiple possible elseif branches. To simplify subsequent flow
analysis, we convert these into if-then-else which have at most two branches.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 11

June 4th, 2011

for loop simplification

Aim: create for loops that iterate over a
variable incremented by a fixed constant.

1 for i = 1:2:n

2 /4 BODY
3 end
t1=E;
P t2=size(t1);
. - t3=prod (t2(2:end));
{;BUDY for t4 = 1:t3
en i = t1(t4);
/, BODY
end

201 VicLab Tutori e Hendre Rahul Garg and Nurudeen Lameed, Part IR-12

The semantics of a for loop are that the rhs expression of the header is evaluated to form a
vector, and then the body of the loop is executed is executed over each of the elements of
this vector. If it is higher-dimensional array, then it loops through the columns. When the
rhs expression is very simple, generated by the colon operator, then the values of i are
quite simple to reason about and will behave like an ordinary induction variable. However,
when the rhs is some arbitrary other expression E, then we convert the loop to something
that does use a simple colon expression in the head of the loop.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 12

McLab Tutorial
www.sable.mcgill.ca/mclab

Part 5 = Introduction to the Mclab
Analysis Framework

*Exploring the Main Components
*Creating a Simple Analysis
*Depth-first and Structural Analyses
*Example: Reaching Definition Analysis

6/4/201 VicLab Tutoria qurie Hendren, Rahul Garg and Nurudeen Lameec

McLab Analysis Framework

* A simple static flow analysis framework for
MATLAB-like languages

e Supports the development of intra-procedural
forward and backward flow analyses

* Extensible to new language extensions

* Facilitates easy adaptation of old analyses to
new language extensions

* Works with McAST and McLAST (a simplified
MCcAST)

The Mclab analysis framework is designed to be simple to use. It is easily extensible for
developing analyses for new language extensions. It is written in Java programming
language

MCcAST & Basic Traversal Mechanism

ASTNode

* Traversal Mechanism:

— Depth-first traversal
— Repeated depth-first traversal

201 VicLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lan

A simplified and incomplete McLab Abstract Syntax Tree; ASTNode class is the root node of
MCcAST. With Repeated depth-first traversal, some nodes are visited repeatedly to compute
a fixed point for an analysis.

Exploring the main
components for
developing analyses

The interface NodeCaseHandler

* Declares all methods for the action to be
performed when a node of the AST is visited:

public interface NodeCaseHandler {
void caseStmt(Stmt node);
void caseForStmt(ForStmt node);
void caseWhileStmt(WhileStmt node);

The class AbstractNodeCaseHandler

public class AbstractNodeCaseHandler implements
nNuUuUucTuLasciialivici \

void caseStmt(Stmt node) {
caseASTNode(node);

}
* Implements the interface NodeCaseHandler

* Provides default behaviour for each AST node
type except for the root node (ASTNode)

¢ 201 VIC) Tutori Laurie He

AbstractNodeCaseHandler provides default implementation for all node types except the
root node. The default behaviour of a node case hander is to forward to the node case
handler of its parent.

The analyze method

* Each AST node also implements the method
analyze that performs an analysis on the
node:

public void analyze(NodeCaseHandler handler)
handler.caseAssignStmt(this);

Creating a Traversal/Analysis:

* Involves 3 simple steps:

1. Create a concrete class by extending the
class AbstractNodeCaseHandler

2. Provide an implementation for
caseASTNode

3. Override the relevant methods of
AbstractNodeCaseHandler

An Example: StmtCounter

* Counts the number of statements in an AST

Analysis development Steps:

1. Create a concrete class by extending the
class AbstractNodeCaseHandler

2. Provide an implementation for
caseASTNode

3. Override the relevant methods of
AbstractNodeCaseHandler

10

An Example: StmtCounter

1. Create a concrete class by extending the
class AbstractNodeCaseHandler

public class StmtCounter extends
AbstractNodeCaseHandler {

private int count = 0;
... // defines other internal methods

11

An Example: StmtCounter --- Cont’d

2. Provide an implementation for
caseASTNode

public void caseASTNode(ASTNode node){
for(int i=0; i<node.getNumChild(); ++i) {
node.getChild(i).analyze(this);

12

An Example: StmtCounter --- Cont’d

3. Override the relevant methods of
AbstractNodeCaseHandler

public void caseStmt(Stmt node) {
++count;
caseASTNode(node);

13

An Example: StmtCounter --- Cont’d

public class StmtCounter extends AbstractNodeCaseHandler {

nrivinta int rAnt = N
PI IvaLlc it Lvuuiiv - v,

private StmtCounter() { super(); }
public static int countStmts(ASTNode tree) {
tree.analyze(new StmtCounter());

}
public void caseASTNode(ASTNode node){

for(int i=0; i<node.getNumChild(); ++i) {
node.getChild(i).analyze(this);}
}

public void caseStmt(Stmt node) {
++count; caseASTNode(node);

}

6/4/201 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed

14

Tips: Skipping Irrelevant Nodes

For many analyses, not all nodes in the AST are
relevant; to skip unnecessary nodes override
the handler methods for the nodes. For
Example:

public void caseExpr(Expr node) {
return;

Ensures that all the children of Expr are skipped

6/4/201 McLab Tutori aurie Hendren, Rahul Garg and Nuru n

15

16

Flow Facts: The interface FlowSet

* Theinterface FlowSet provides a generic
interface for common operations on flow data

public interface FlowSet<D> {
public FlowSet<D> clone();
public void copy(FlowSet<? super D> dest);
public void union(FlowSet<? extends D> other);
public void intersection(FlowSet<? extends D> other);

6/4/201 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameec

A typical analysis computes a set of flow facts or data

The Analysis interface

* Provides a common API for all analyses
* Declares additional methods for setting up an
analysis:

public interface Analysis<A extends FlowSet> extends
NodeCaseHandler {

public void analyze();

public ASTNode getTree();
public boolean isAnalyzed();
public A newlnitialFlow();

201 VicLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameec Analysis- 18

The method analyze executes the analysis; getTree returns the AST that is being analysed;
isAnalyzed tests whether the analysis has been performed; newlnitialFlow gives the initial
approximation for flow facts.

18

Depth-First Analysis

Traverses the tree structure of the AST by
visiting each node in a depth-first order

Suitable for developing flow-insensitive analyses

Default behavior implemented in the class
AbstractDepthFirstAnalysis:

<<interface>>

AbstractNodeCaseHandler Analysis

AbstractDepthFirstAnalysis

) Tutorial, Laurie Hendren, Rahul Garg and Nurt

19

Creating a Depth-First Analysis:

* Involves 2 steps:

1. Create a concrete class by extending the
class AbstractDepthFirstAnalysis
a) Select a type for the analysis’s data
b) Implement the method newinitialFlow
c) Implement a constructor for the class

2. Override the relevant methods of
AbstractDepthFirstAnalysis

20

Depth-First Analysis: NameCollector

* Associates all names that are assigned to by
an assignment statement to the statement.

* Collects in one set, all names that are
assigned to

* Names are stored as strings; we use
HashSetFlowSet<String> for the analysis’s
flow facts.

* Implements newlnitialFlow to return an
empty HashSetFlowSet<String> object.

Depth-First Analysis: NameCollector --- Cont’d

1. Create a concrete class by extending the class
AhctraortDonthFirctAnnlcic

IV ILd u\-l.l/\- Crir 11 ous II'MI,JIJ

public class NameCollector extends
AbstractDepthFirstAnalysis

<HashSetFlowSet<String>> {
private int HashSetFlowSet<String> fullSet;

public NameCollector(ASTNode tree) {
super(tree); fullSet = newlnitialFlow();

}

... // defines other internal methods

6/4/201 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameec

22

Depth-First Analysis: NameCollector --- Cont’d

2. Override the relevant methods of
AbstractDepthFirstAnalysis

private boolean inLHS = false;

public void caseName(Name node) {
if (inLHS)
currentSet.add(node.getID());

23

Depth-First Analysis: NameCollector --- Cont’d

2. Override the relevant methods of
AbstractDepthFirstAnalysis

public void caseAssignStmt(AssignStmt node) {
inLHS = true;
currentSet = newlnitialFlowSet();
analyze(node.getLHS());
flowSets.put(node, currentSet);
fullSet.addAll(currentSet);
inLHS = false;

24

Depth-First Analysis: NameCollector --- Cont’d

2. Override the relevant methods of
AbstractDepthFirstAnalysis

public void caseParameterizedExpr
(ParameterizedExpr node) {
analyze(node.getTarget());

25

Structural Analysis

» Suitable for developing flow-sensitive analyses

* Computes information to approximate the
runtime behavior of a program.

* Provides mechanism for:

— analyzing control structures such as if-else, while
and for statements;

— handling break and continue statements

Provides default implementations for relevant
methods

May be forward or backward analysis

¢ 201 VIC) Tutori Laurie He

Structural Analysis Class Hierarchy

<<interface>>
Anag H

<<interface>>
AbstractNodeCaseHandler StructuralAnalysis

AbstractStructuralForwardAnalysis AbstractStructuralBackwardAnalysis

AbstractSimpleStructuralForwardAnalysis AbstractSimpleStructuralBackwardAnalysis

6/4/201 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameec Analysis- 27

27

The interface StructuralAnalysis

* Extends the Analysis interface

* Declares more methods for structural type
analysis:

public interface StructuralAnalysis<A extends
FlowSet> extends Analysis<A> {

public Map<ASTNode, A> getOutFlowSets();
public Map<ASTNode, A> getIinFlowSets();
public void merge(A inl, Ain2, A out);
public void copy(A source, A dest);

28

Developing a Structural Analysis

* Involves the following steps:
1. Select a representation for the analysis’s data

2. Create a concrete class by extending the class:
AbstractSimpleStructuralForwardAnalysis for a
forward analysis and
AbstractSimpleStructuralBackwardAnalysis for a
backward analysis

3. Implement a suitable constructor for the analysis
and the method newlnitialFlow

4. Implement the methods merge and copy

5. Override the relevant node case handler methods
and other methods

€ 201 VIC) Tutori Laurie Hendren, Rahul Garg and Nuru n Y

29

30

Example: Reaching Definition Analysis

For every statement s, for every variable v
defined by the program, compute the set of all
definitions or assignment statements that
assign to v and that may reach the statement s

A definition d for a variable v reaches a
statement s, if there exists a path fromdto s
and v is not re-defined along that path.

31

Reach Def Analysis: An Implementation Step 1

Select a representation for the analysis’s data:

HashMapFlowSet<String, Set<ASTNode>>

We use a map for the flow data: An entryis an
ordered pair (v, defs)
where v denotes a variable and

defs denotes the set of definitions for v that may
reach a given statement.

32

Reach Def Analysis: An Implementation Step 2

Create a concrete class by extending the class:

AbstractSimpleStructuralForwardAnalysis for a
forward analysis:

public class ReachingDefs extends
AbstractSimpleStructuralForwardAnalysis

<HashMapFlowSet<String, Set<ASTNode>>> {

The analysis is a forward analysis so we extend
AbstractSimpleStructuralForwardAnalysis

33

Reach Def Analysis: An Implementation Step 3

Implement a suitable constructor and the

[N N IR B R f ol [N oS T P . S

mewnoa riewinitairiow 101 tne drndlysis.
public ReachingDefs(ASTNode tree) {

super(tree);

currentOutSet = newlnitialFlow(); }

public HashMapFlowSet<String, Set<ASTNode>>
newlnitialFlow() {

return new
HashMapFlowSet<String,Set<ASTNode>>(); }

34

Reach Def Analysis: An Implementation Step 4a

Implement the methods merge and copy:

public void merge

(HashMapFlowSet<String, Set<ASTNode>> in1,
HashMapFlowSet<String, Set<ASTNode>> in2,
HashMapFlowSet<String, Set<ASTNode>> out) {

union(inl, in2, out);
}
public void
copy(HashMapFlowSet<String, Set<ASTNode>> src,
HashMapFlowSet<String, Set<ASTNode>> dest) {
src.copy(dest);

6/4/201 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameec

35

Reach Def Analysis: An Implementation Step 4b

public void
union (HashMapFlowSet<String, Set<ASTNode>> in1,
HashMapFlowSet<String, Set<ASTNode>> in2,
HashMapFlowSet<String, Set<ASTNode>> out) {
Set<String> keys = new HashSet<String>();
keys.addAll(in1.keySet()); keys.addAll(in2.keySet());
for (String v: keys) {
Set<ASTNode> defs = new HashSet<ASTNode>();
if (inl.containsKey(v)) defs.addAll(in1.get(v));

if (in2.containsKey(v)) defs.addAll(in2.get(v));
out.add(v, defs);

The helper method union is shown on the next slide.

36

Reach Def Analysis: An Implementation Step 5a

Override the relevant node case handler methods

and nthar meathndc -
UliTA wiiliwli 1THICULI IV .

override caseAssignStmt(AssignStmt node)

public void caseAssignStmt(AssignStmt node) {
inFlowSets.put(node, currentinSet.clone());
currentOutSet =
new HashMapFlowSet<String, Set<ASTNode> > ();

copy(currentInSet, currentOutSet);
HashMapFlowSet<String, Set<ASTNode>> gen =

new HashMapFlowSet<String, Set<ASTNode>> ();
HashMapFlowSet<String, Set<ASTNode> > kill =

new HashMapFlowSet<String, Set<ASTNode>> ();

6/4/201 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameec

37

Reach Def Analysis: An Implementation Step 5b

// compute out = (in - kill) + gen
// compute kil

for(String s : node.getlLValues())

if (currentOutSet.containsKey(s))
kill.add(s, currentOutSet.get(s));

// compute gen

for(String s : node.getLValues()){
Set<ASTNode> defs = new HashSet<ASTNode>();
defs.add(node);
gen.add(s, defs);

}

38

Reach Def Analysis: An Implementation Step 5c¢

// compute (in - kill)

Set<String> keys = kill.keySet();

for (String s: keys)
currentOutSet.removeByKey(s);

// compute (in - kill) + gen

currentOutSet = union(currentOutSet, gen);

// associate the current out set to the node
outFlowSets.put(node, currentOutSet.clone());

39

MclLab Tutorial

www.sable.mcgill.ca/mclab

Part 6 — Introduction to the McLab Backends

* MATLAB-to-MATLAB

* MATLAB-to-Fortran90 (McFor)

VicLab Tuto

* McVM with JIT

June 4th, 2011

So far in the tutorial we have concentrated on the front-end and the analysis framework.
Now we turn out attention to possible backends. We support three kinds of backends, first

just producing MATLAB, second a more static compiler that translates MATLAB to
Fortran90, and third a Virtutal machine for executing MATLAB which contains a JIT

compiler.

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 6

June 4th, 2011

MATLAB-to-MATLAB

VAT~ ool L i .l e e

We wish to support high-level
transformations, as well as refactoring tools.

e Keep comments in the AST.

e Can produce .xml or .m files from MCcAST or
MCcLAST.

* Design of McLAST such that it remains valid
MATLAB, although simplified.

We think that one important use of our front-end and analysis framework is for supporting
high-level transformations and refactoring tools. Keeping this in mind, our AST keeps the
comments from the original input program, so that we can pretty-print the transformed
source, as well as the comments. Mclab can generate both .xml and .m files from McAST
or McLAST. We use the .xml format as a way of conveying the AST to McVM. Since we
wanted to be able to generate valid MATLAB from our ASTs, we have designed the ASTs to
use only valid MATLAB constructs.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6 2

MATLAB-to-Fortran90

201 VicLab Tutorial, Laurie Hendren, Rahul Garg

MATLAB programmers often want to develop their

immmd ot zimn tim AAATIAD ccn Al be i Al acn -~ CNADTNDANI
ProtoLlype in IvViAI LAD dilu Liei ueveivp d runi nAiN

implementation based on the prototype.
15t version of McFOR implemented by Jun Li as M.Sc. thesis.
— handled a smallish subset of MATLAB
— gave excellent performance for the benchmarks handled
— provided good insights into the problems needed to be solved,
and some good initial solutions.
2" version of McFOR currently under development.
— fairly large subset of MATLAB, more complete solutions
— provide a set of analyses, transformations and IR simplifications
that will likely be suitable for both the FORTRAN generator, as
well as other HLL.
e-mail hendren@cs.mcgill.ca to be put on the list of those
interested in McFor.

d Nurudeen

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 6

June 4th, 2011

McVM-McJIT

VAT e . L

Whereas the other back-ends are based on
static analyses and ahead-of-time compilation,
the dynamic nature of MATLAB makes it more

suitable for a VM/JIT.

MathWorks' implementation does have a JIT,
although technical details are not known.

QL Tr

McVM/MCcJIT is an open implementation
aimed at supporting research into dynamic
optimization techniques for MATLAB.

McVM is designed for flexibility and high performance.

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 6

June 4th, 2011

June 4th, 2011

McVM Design

* A basic but fast interpreter for the MATLAB
language

* A garbage-collected JIT Compiler as an
extension to the interpreter

e Easy to add new data types and statements by
modifying only the interpreter.

* Supported by the LLVM compiler framework
and some numerical computing libraries.

» Written entirely in C++; interface with the
McLab front-end via a network port.

McVM is designed for flexibility and high performance.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6 5

June 4th, 2011

The Structure of McVM

<<parsing>> IM Commands
Front-end <<parsing>>

_anguage Core Analyses

] Interpreter Type Inference
V4
IIR Types —~
McJIT | Live Variable
ata Types
Fallback Logic) Reaching Defs

4

Functions S ;

Func Handles h Versioning Logic ’ Bounds Check
LLVM Emission

Copy Analyses

S

~. SO0

g

i

l

Boehm GC ATLAS, BLAS, LAPACK LLVM Framework

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Backends- 6

The front-end is responsible for parsing matlab commands and m files. The language core is
supported by Boehm GC, ensuring an automatic garbage collection of IIR nodes. The
operations on Matrix—type data are supported by ATLAS, BLAS and LAPACK library. McJIT is
supported for efficient code compilation by several analyses.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6 6

June 4th, 2011

Supported Types

Logical Arrays

Character Arrays

Double-precision floating points
Double-precision complex number matrices
Cell arrays

Function Handles

201 VicLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lan

These are the currently supported types in McVM.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6 7

McJIT: Executing a Function

flarg_types)
I

¥
Compiled code exists i
In the code cacne?!
Mclab no
Front-end
i- | IR exist?
: A I
1 Parse ! -
I function : Load function
1
: code; : l
I generate | _
: XML ; Send code string to
i e the front-end;
: : receive AST as XML
(IR

McLab Tutorial, Laurie Henc

Rah

Code Cache
Execuite
function
’
Generate LLVM &
Machine Code [€
Yes
Perform
analyses &
| Parse XML; 5| transformations
build AST

Garg and Nurudeen Lameec

June 4th, 2011

How does the JIT compiler execute a function? Given a function called with some argument
types; McVM checks if a compiled code exists that match the call, in terms of the types of
the arguments and proceed as shown.

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 6

June 4th, 2011

Type Inference

* |Itis a key performance driver for the JIT
Compiler:

— the type information provided are used by the JIT
compiler for function specialization.

A key analysis performed McVM is the type inference analysis ...

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6 9

Unlike other type-inference analysis that assumes that all program components can be

Type Inference

* Itis a forward flow analysis: propagates the set of
possibie types through every possibie branch of a
function.

* Assumes that:

for each input argument arg, there exist
some possible types

* At every program point p, infers the set of
possible types for each variable

* May generate different results for the same
function at different times depending on the
types of the input arguments

) Tutorial, Laurie Hendren Garg d Nurudeen Lameec 3ackends- 1(

June 4th, 2011

loaded at once and performs a whole-program analysis, our type inference analysis is intra-
procedural since dynamic loading suggests that not all program components may be loaded
at once. Variables can also have different types at different points in a function.

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 6

10

Lattice of McVM types

Top (Unknown type, could be any)

Fun tiorﬁ/yike types

Cell Array Matrlx types

Bottom (No information inferred)

6/4/201 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed

Chararray Loglcalarray Double matrix Complex Matrix

A key analysis performed McVM is the type inference analysis ...

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6

June 4th, 2011

11

June 4th, 2011

Internal Intermediate Representation

* A simplified form of the Abstract Syntax Tree
(AST) of the original source program

* It is machine independent
* AlllIR nodes are garbage collected

McVM converts source code into a form more amenable to analyses. It is similar in form to
a three address code.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6 12

June 4th, 2011

lIR: A Simple MATLAB Program

IR form

“m file function [a] = test(n)
a = zeros(1, n);
St1=1;$t0=1;

function a = test(n) $t2 = St1: $t3 = n;
a = zeros(1,n); while True
fori=1:n ot4 = (510 <= 5t3);

o if ~Sta
a(i) = i*i; |:> break;

end end
end i = $t0;
a(i) = (i *i);
St0 = (St0 + St2);
end
end

6/4/201 Mclab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameec 3ackends- 13

The box on the left-hand side shows the code of an .m file. This is transformed into the box
on the right : the corresponding function in internal IR form.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6 13

McVM Project Class Hierarchy (C++ Classes)

June 4th, 2011

The figure shows a simplified UML class diagram for the McVM project. At the root of class

hierarchy is the IIRNode. There are a number of statements and expressions as well.

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 6

14

June 4th, 2011

Running McVM

oEMean fecwm -|LT enable tree o -startodie <fpladkl ecladtutoriayy
rtual Machire v1.8
1.ca fer mara 1afarsatio;

Here, | show how to start and execute functions McVM/MdJIT.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 6 15

McLab Tutorial
www.sable.mcgill.ca/mclab

Part 7 — McVM implementation
example: iffelse construct

* Implementation in interpreter
* Implementation in JIT compiler

Before we start

e McVM is written in C++, but “clean” C++ ©
* Nearly everything is a class
e Class names start in capital letters

e Typically one header and one implementation
file for each class

* Method names are camel cased
(getThisName)

* Members are usually private and named
m_likeThis

[201 VicLab ori aurie Hendren, R Garg d Nurudeen Lameec xample-2

Before we start ...

* Makefile provided
— Handwritten, very simple to read or edit
Scons can also be used

ATLAS/CLAPACK is not essential. Alternatives:

— Intel MKL, AMD ACML, any CBLAS + Lapacke (eg.
GotoBLAS2 + Lapacke)

Use your favourite development tool
— | use Eclipse CDT, switched from Vim

Virtualbox image with everything pre-installed
available on request for private use

[201

Implementing if/else in McVM

A new class to represent if/else
XML parser

Loop simplifier

Interpreter

L

Various analysis
i. Reach-def, live variable analysis
ii. Type checking

6. Code generation

[201 VicLab Tutorial, Laurie Hendren, R Garg and Nurudeen Lameec xample

The amount of effort required to implement each step is unequal. Step 5 is the largest most
complicated step.

1. A class to represent If/Else

* Class IfEIseStmt

* We will derive this class from “Statement”

* Form two files: ifelsestmt.h and ifelsestmt.cpp
* Need fields to represent:

— Test expression
— If body
— Else body

Ifelsestmt.h

* class IfElseStmt: public Statement

* Methods:

— copy(), toString(), getSymbolUses(),
getSymbolDefs()

— getCondition(), getlfBlock(), getElseBlock()
* Private members:

— Expression *m_pCondition;

— StmtSequence *m_plfBlock;

— StmtSequence *m_pElseBlock;

Modify statements.h

* Each statement has a field called m_type
* This contains a type tag
* Tag used throughout compiler for switch/case
* enum StmtType{
IF_ELSE,
SWITCH,
FOR,

2. Modify XML Parser

* Look in parser.h, parser.cpp

Before anything happens, must parse from
XML generated by frontend

XML parser is a simple recursive descent
parser

Add a case to parseStmt()
— Look at the element name in the XML
— If itis “IfStmt”, it is a If/Else

Write a parselfStmt() function

[201 VicLab ori aurie Hendren, R Garg d Nurudeen Lameec xample-8

3. Modify transform loops

* McVM simplifies for-loops to a lower level
construct

To achieve this, we need to first find loops

Done via a depth first search in the tree

So add a case to this search to say:
— Search in the if block

— Search in the else block

— Return

transform_loops.cpp

[201 VicLab ori aurie Hendren, R Garg d Nurudeen Lameec xample-9

4. Add to interpreter

* Always implement in interpreter before
impiementing in JiT compiier
* Itis a simple evaluator: no byte-code tricks, no
direct-threaded dispatch etc.
* Add a case to statement evaluation:
— Evaluate test condition
— If true, evaluate if block
— If false, evaluate else block
* interpreter.cpp :
— Case in execStatement()
— Calls evallfElseStmt()

[201 VicLab Tutorial, Laurie Hendren, R Garg d Nurudeen Lameec xample-1(

Moment of silence .. Or review

* At this point, if/else has been implemented in
the interpreter

* If you don’t enable JIT compilation, then you
can now run if/else

* Good checkpoint for testing and development

11

Flow analysis recap

* Compute program property at each program
point

Test expr

If block Else block

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Example-12

12

Flow analysis recap

* We want to compute property at each
program point

e Typically want to compute a map of some kind
at each program point

* Program points are not inside statements, but
just before and after

* Usually unions computed at join points

* Can be forward or backwards depending on
the analysis

13

Reaching definitions analysis

6/4/2011

v

Test expr

If block Else block

McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed

v

Example-14

14

McVM reach-defs analysis

* Look in analysis_reachdefs (.h/.cpp)

« getReachDefs() is an overloaded function to
compute reach-defs

* ReachDefInfo class to store analysis info

* If/Else:

— Record reach-defs for test expression

— Compute reach-defs for if and else blocks by
calling getReachDefs() for StmtSequence

— Compute union at post-if/else point

15

Live variable analysis

Test expr

If block Else block

6/4/2011 McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed Example-16

McVM live vars analysis

* Look in analysis_livevars (.h/.cpp)
 getliveVars() is an overloaded function
 LiveVarinfo is a class to store live-vars info

* If/Else:
— Information flows backwards from post-if/else
— Flow live-vars through the if and else blocks
— Compute union at post-test expression
— Record live-vars info of test expression

[201 VicLab Tutorial, Laurie Hendren, R Garg d Nurudeen Lameec xample-1

17

Type inference analysis

6/4/2011

v

If block

Test expr

Else block

McLab Tutorial, Laurie Hendren, Rahul Garg and Nurudeen Lameed

v

Example-18

18

Type inference

* Look in analysis_typeinfer (.h/.cpp)
* inferTypes() is an overloaded function to
perform type inference for most node-types
* For If/else:
— Infer type of test expression
— Infer type of if and else blocks
— Merge information at post-if/else point

19

Flow analysis tips

* We define a few typedefs for data structures
like maps, sets

— eg: VarDefSet: typedef of set of IRNode* with
appropriate comparison operators and allocator
* When trying to understand flow analysis code,
start from code for assignment statements

* Pay attention to statements like return and
break

20

Code generation and LLVM

* LLVM is based upon a typed SSA
representation

* LLVM can either be accessed through a C++
API, or you can generate LLVM byte-code
directly

e We use the C++ API

* Much of the complexity of the code generator
due to SSA representation required by LLVM

* However, we don’t do an explicit SSA
conversion pass

21

Code generation in McVM

* SSA conversion is not explicitly represented in
the IR

* SSA conversion done while doing code
generation

* Assignment instructions are usually not
generated directly if Lvalue is a symbol

* In SSA form, values of expressions are
important, not what they are assigned to

* We store mapping of symbols to values in an
execution environment

) Tutorial, Laurie Hendren Garg d Nurudeen Lan

A complete explaination is probably out of the scope of the tutorial. You are referred to
compAssignStmt() in jitcompiler.cpp for details.

22

Compiling if/else

* Four steps:
— Compile test expression
— Compile if block (compStmtSeq)
— Compile else block (compStmtSeq)
— Call matchBranchPoints() to do appropriate SSA
book-keeping at merge point
* Rest of the code is book-keeping for LLVM

* Such as forming proper basic blocks when
required

23

June 4th, 2011

McLab Tutorial
www.sable.mcgill.ca/mclab

Part 8 — Wrap Up

* Summary
* Ongoing and Future Work
* Further Sources

Thanks for attending the tutorial.

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 1

Tutorial Summary

 MATLAB is a popular language and an
important PLDI research area.

* Mclab aims to provide tools to support such
research.
— Front-end: extensible scanner, parser, attributes
* example extension: AspectMatlab

— IR and analysis framework:

* two levels of IR, high-level McAST and lower-level
McLAST

* structure-based flow analysis framework
— Back-ends: MATLAB, McVM with McJIT and McFor

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 4

June 4th, 2011

Ongoing and Future Work

* MATLAB refactoring tools:
— code cleanup
— refactoring towards Fortran generation

— include static call graph and interprocedural
analysis framework

* MATLAB extensions:
— AspectMatlab
— Typing Aspects

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 4

June 4th, 2011

Back-end (McVM/McJIT)

On-stack replacement

Dynamic optimizations — correct choice of
inlining and basic block positioning.

Optimizations for multicore systems

Compilation to GPUs and mixed CPU/GPU
systems

Portability and performance across multiple
CPU and GPU families

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 4

June 4th, 2011

June 4th, 2011

Where to look for more info

* www.sable.mcgill.ca

— /software
* currently have McVM and AspectMatlab on the web site
* can ask for McLab front-end and analysis framework, we will
also add to the web site soon
— /publications
* papers and thesis, in particular
* Metalexer (Andrew Casey)
* MclLab Front-end and Analysis Framework (Jesse Doherty)
* McVM (Maxime Chevalier-Boisvert)
* McFor (1t version Jun Li, 2" version Anton Dubrau)
* tutorials, starting with this one

201 VicLab Tutoria urie Hendren, Rahul Garg and Nurudeen Lameed, Part 8

Laurie Hendren, Rahul Garg and Nurudeen
Lameed, Part 4 5

Keep in Touch

* main web site:

[PRI ISR &Y AU R [
ILLpP.// WWVW.S5dIe.Il

* mailing list:
mclab-list@sable.mcgill.ca

* bug reports:
https://svn.sable.mcgill.ca/mclab-bugzilla/

* people:
hendren@cs.mcgill.ca, rahul.garg@mail.mcgill.ca,
nurudeen.lameed@mail.mcgill.ca

6/4/201 VicLab Tutoria qurie Hendren, Rahul Garg and Nurudeen Lameed, Part 8 Wrap Up - 6

Contact us!

Laurie Hendren, Rahul Garg and Nurudeen

Lameed, Part 4

June 4th, 2011

