
A Framework for Optimizing Java Using
Attributes

Patrice Pominville, Feng Qian, Raja Vallée-Rai, Laurie Hendren, and Clark
Verbrugge

{patrice,fqian,kor,hendren}@cs.mcgill.ca
clarkv@ca.ibm.com

Sable Research Group, School of Computer Science, McGill University
IBM Toronto Lab

Abstract. This paper presents a framework for supporting the opti-
mization of Java programs using attributes in Java class files. We show
how class file attributes may be used to convey both optimization op-
portunities and profile information to a variety of Java virtual machines
including ahead-of-time compilers and just-in-time compilers. We present
our work in the context of Soot, a framework that supports the analysis
and transformation of Java bytecode (class files)[21,25,26]. We demon-
strate the framework with attributes for elimination of array bounds and
null pointer checks, and we provide experimental results for the Kaffe
just-in-time compiler, and IBM’s High Performance Compiler for Java
ahead-of-time compiler.

1 Introduction

Java is a portable, object-oriented language that is gaining widespread accep-
tance. The target language for Java compilers is Java bytecode which is a
platform-independent, stack-based intermediate representation. The bytecode
is stored in Java class files, and these files can be be executed by Java virtual
machines (JVMs) such as interpreters, just-in-time (JIT) compilers, or adaptive
engines that may combine interpretation and compilation techniques, or they
can be compiled to native code by ahead-of-time compilers. The widespread
availability of JVMs means that Java class files (bytecode) have become a pop-
ular intermediate form, and there now exists a wide variety of compilers for
other languages that generate Java class files as their output. One of the key
challenges over the last few years has been the efficient execution/compilation
of Java class files. Most of the work in this area has focused on providing bet-
ter JVMs and the best performing JVMs now include relatively sophisticated
static and dynamic optimization techniques that are performed on the fly, at
runtime. However, another source of performance improvement is to optimize
the class files before they are executed/compiled. This approach is attractive for
the following reasons:

(1) Class files are the target for many compilers, and class files are portable
across all JVMs and ahead-of-time compilers. Thus, by optimizing class files,

R. Wilhelm (Ed.): CC 2001, LNCS 2027, pp. 334–354, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Framework for Optimizing Java Using Attributes 335

there is potential for a common optimizer that can give performance improve-
ment over a wide variety of source language and target VM combinations.

(2) Class file optimization can be performed statically and only needs to be
performed once. By performing the class file optimization statically we can po-
tentially reduce the burden on JIT optimizers, and can allow for more expensive
optimizations than can be reasonably performed at run-time. In general, one
would want the combined effect of class file optimization and on-the-fly opti-
mization.

Although optimizing class files is beneficial, there are limits to what can be
expressed in bytecode instructions. Some bytecode instructions are relatively
high-level, thus they hide details that may be optimizable at lower-level repre-
sentations. For example, an access into an array is expressed as one bytecode
instruction, but at run-time the array reference must be checked to ensure it is
not null, the array bounds must be checked to ensure the index is in range, and
appropriate exceptions must be raised if these checks fail. Clearly, one would like
to avoid generating native code for the checks if a static analysis can guarantee
that they are not needed.

We have developed a general mechanism for using class file attributes to
encode optimization information that can be determined by static analysis of
bytecode, but cannot be expressed directly in bytecode. The basic idea is that
a static analysis of Java bytecode is used to determine some program property
(such as the fact that an array index expression is in range), and this infor-
mation is encoded using class file attributes. Any JVM/compiler that is aware
of these attributes can use the information to produce better native code. In
addition to array bound checks, such optimization attributes could be used for:
register allocation[1,13], eliminating useless null pointer checks, stack allocation
of non-escaping objects, devirtualization based on run-time conditions, specify-
ing regions of potentially parallel code, or to indicate the expected behaviour of
exceptions.

Attributes can also be used to convey profile information. Currently, ad-
vanced JVMs use on-the-fly profiling to detect hot methods, which may be
optimized or recompiled on the fly. However, ahead-of-time compilers cannot
necessarily make use of such dynamic information, and even for dynamic JVMs
it may also be beneficial to use static information. For example, one could gather
profile information from many executions, use information gathered from trace-
based studies, or estimate profile information using static analysis. In these cases,
the profile information could be conveyed via attributes.

In this paper we provide on overview of our general approach to supporting
attributes in the Soot framework. We provide an infrastructure to support a very
general notion of attributes that could be used for both optimization attributes
and profile-based attributes. The paper is organized as follows. In Section 2, we
briefly summarize the Soot framework, and outline our support for attributes.
To demonstrate our approach we show how we applied it to the problem of
eliminating array bounds checks, and we show how these attributes are expressed
in our framework in Section 3. In order to take advantage of the optimization

336 P. Pominville et al.

attributes, the JVM/compiler processing the attributed class files must be aware
of the attributes. We have modified both the Kaffe JIT and the IBM HPCJ (High
Performance Compiler for Java) ahead-of-time compiler to take advantage of the
array bound attributes, and we report experimental results for these two systems
in Section 4. A discussion of related work is given in Section 5, and conclusions
and future work are given in Section 6.

2 Attributes and Soot

Our work has been done in the context of the Soot optimizing framework[21,25,
26]. Soot is a general and extensible framework to inspect, optimize and trans-
form Java bytecode. It exposes a powerful API that lets users easily implement
high-level program analyses and whole program transformations. At its core are
three intermediate representations that enable one to perform code transforma-
tions at various abstraction levels, from stack code to typed three-address code.
In Figure 1 we show the general overview of Soot. Any compiler can be used
to generate the Java class files, and the Soot framework reads these as input
and produces optimized class files as output. The Soot framework has been suc-
cessfully used to implement many well known analyses and optimizations on
Java bytecode such as common subexpression elimination, virtual method reso-
lution and inlining[23]. All of these transformations can be performed statically
and expressed directly in optimized Java bytecode. Until recently, the scope of
these transformations was limited by the semantics and expressiveness of the
bytecodes themselves. Hence, optimizations such as register allocation and ar-
ray bounds check elimination could not be performed. The objective of the work
in this paper was to extend the framework to support the embedding of custom,
user-defined attributes in class files.

2.1 Class File Attributes

The de facto file format for Java bytecode is the class file format [17]. Built into
this format is the notion of attributes that allows one to associate information
with certain class file structures. Some attributes are defined as part of the Java
Virtual Machine Specification and are essential to the correct interpretation of
class files. In fact, all of a class’s bytecode is contained in attributes. Attributes
can also be user-defined and Java virtual machine implementations are required
to silently ignore attributes they do not recognize.

The format of class file attributes is very simple and flexible: attributes con-
sist of a name and arbitrary data. As shown in Figure 2, attribute name index
is a 2 byte unsigned integer value corresponding to the index of the attribute’s
name in the class file’s Constant Pool, attribute length is a 4 byte unsigned
integer specifying the length of the attribute’s data and info is an array of
attribute length bytes that contains the actual uninterpreted raw attribute
data. This simplistic model conveys great freedom and flexibility to those that
wish to create custom attributes as they are unhindered by format constraints.

A Framework for Optimizing Java Using Attributes 337

source
Java

source
SML

source
Scheme

source
Eiffel

class files

javac MLJ KAWA SmallEiffel

Interpreter JIT Adaptive Engine Ahead-of-Time
 Compiler

SOOT

Optimized class files with attributes

Fig. 1. General Overview

The only binding requirement is for a custom attribute’s name not to clash with
those of standard attributes defined by the Java Virtual Machine Specification.

attribute_info {
u2 attribute_name_index;
u4 attribute_length;
u1 info[attribute_length];

}

Fig. 2. Class File Attribute Data Structure

Attributes can be associated with four different structures within a class file.
In particular class files have one class info structure as well as method info
and field info structures for each of the class’ methods and fields respectively.
Each of these three structures contains an attribute table which can hold an
arbitrary number of attribute info structures. Each non-native, non-abstract
method’s attribute table contains a unique Code attribute to hold the method’s
bytecode. This Code attribute has an attribute table of its own, which can
contain standard attributes used by debuggers and arbitrary custom attributes.

2.2 Adding Attributes to Soot

An Overview: Figure 3 provides a high-level view of the internal structure of
Soot, with support for attributes. The first phase of Soot is used to convert the
input class files into a typed three-address intermediate code called Jimple[6,25].
In Jimple, each class is represented as a SootClass, and within each SootClass

338 P. Pominville et al.

there is a collection of SootFields and SootMethods. Each method has a method
body which is represented as a collection of instructions, with each instruction
represented as a Unit.

Add Tags

Static Analysis and Transformations

Jimplify and Type

 (Tag aggregation)
Generate Jasmin Code

 Jasmin
Assemble attributed

SOOT

class files

optimized 3-addr code
with static analysis info.

optimized 3-addr code
with tags

 jasmin assembler (bytecode)
 with attribute directives

typed 3-addr code

Optimized class files with attributes

Fig. 3. Internal Structure of Soot

Jimple was designed to be a very convenient intermediate form for compiler
analyses, and the second phase of Soot, as shown in Figure 3, is to analyze
and transform the Jimple intermediate representation. There already exist many
analyses in the Soot framework, but a compiler writer can also add new analyses
to capture information that will be eventually output as class file attributes.
Soot includes an infrastructure for intraprocedural flow-sensitive analyses, and
implementing new analyses is quite straightforward. In Section 3 we discuss our
example analysis for array bounds elimination.

After the analysis has been completed, analysis information has been com-
puted, but one requires some method of transferring that information to at-
tributes. In our approach this is done by attaching tags to the Jimple represen-
tation (third phase in Figure 3).

After tagging Jimple, the fourth phase of Soot automatically translates the
tagged Jimple back to bytecode. During this phase the tags may be aggregated
using an aggregation method specified by the compiler writer. Our system does

A Framework for Optimizing Java Using Attributes 339

not directly produce class files, but rather it produces a form of assembly code
used by the Jasmin bytecode assembler[11]. We have modified the Jasmin as-
sembler language so that during this phase Jimple tags are converted to Jasmin
attribute directives.

Finally, the fifth phase is a modified Jasmin assembler that can read the
attribute directives and produce binary class files with attributes.

Hosts, Tags and Attributes: Attribute support in Soot has been achieved by
adding two key interfaces: Host and Tag. Hosts are objects that can hold Tags;
conversely, Tags are objects that can be attached to Hosts. These interfaces are
listed in Figure 4. There are five Soot classes that implement the Host interface;
these are SootClass, SootField, SootMethod, Body and Unit, the latter of
which is Soot’s abstract notion of a bytecode instruction.

public interface Host {
public List getTags(); /* gets list of tags associated with the host.*/
public Tag getTag(String aName); /* gets a tag by name. */
public void addTag(Tag t); /* adds a tag to the host. */
public void removeTag(String name); /* removes a tag by name. */
public boolean hasTag(String aName); /* checks if a tag exists.*/

}

public interface Tag {
public String getName();
public byte[] getValue();

}

Fig. 4. The Host and Tag Interfaces

Tags are meant to be a generic mechanism to associate name-value pairs to
Host objects in Soot; they are not necessarily mapped into class file attributes.
For this purpose, we have introduced the Attribute interface, which extends
the Tag interface. Soot objects that are subtypes of Attribute are meant to be
mapped into class file attributes; however, because the Soot framework uses the
Jasmin tool to output bytecode, an Attribute object must actually be an instance
of JasminAttribute for the translation to take place (see Section 2.2 for more
information).

Compiler implementors can create application-specific subclasses of Jasmin-
Attribute and attach these to Hosts. There is a natural mapping between the
aforementioned Soot classes that implement the Host interface and the attribute
architecture present in class files as described in Section 2.1. JasminAttributes
attached to a SootClass will be compiled into an entry in the attribute ta-
ble of the corresponding class. SootMethod and SootField attributes are dealt

340 P. Pominville et al.

with similarly. Dealing with JasminAttributes attached to Soot Units is a bit
trickier and is addressed in the following section.

Mapping Unit Attributes into a Method’s Code Attribute Table: Soot
Attributes attached to Units do not map trivially to a given class file structure
as was the case for SootClass, SootMethod and SootField attributes, because
Units naturally map to bytecode instructions, which do not have associated at-
tribute tables. The obvious solution is to map all of a method’s Unit attributes
into entries in the method’s Code Attribute’s attribute table in the generated
class file. Each entry will then contain the bytecode program counter (PC) of the
specific instruction it indexes. This is what is done automatically by the Soot
framework at code generation time. However, generating one Code attribute
per Unit attribute can lead to undue class file bloat and increased processing
and memory requirements by virtual machine’s runtime attribute interpretation
module. Often different instances of identical Code Attribute attributes should
be expressed in a tabular format. For example instead of creating 10 null pointer
check attributes for a method, it is more efficient to create a single redundant
null pointer table as an attribute for these in the class file. The Soot frame-
work allows an analysis implementor to easily create this table by providing the
TagAggregator interface as outlined in Figure 5.

By implementing this interface and registering it in the class CodeAttribute-
Generator, it is possible to selectively aggregate Tags attached to different Unit
instances into a single Tag. A user can aggregate all Attributes generated by
his/her analysis by iterating over a method’s Units and calling the aggregateTag
method on each of the Tags attached to a given Unit. The produceAggregate-
Tag method is then called to produce a single aggregate attribute to be mapped
into single attribute in the method’s Code Attribute’s attribute table.

public interface TagAggregator {
public void aggregateTag(Tag t, Unit u);
public Tag produceAggregateTag();

}

Fig. 5. The TagAggregator Interface

Extending Jasmin for Attribute Support : The Soot framework does not
directly generate bytecode; instead it uses the Jasmin tool to do so. Jasmin spec-
ifies a textual assembler-like grammar for class files and transforms conforming
input into binary class files. Because the Jasmin grammar does not provide con-
structs for expressing generic class file attributes, we have augmented it to accept
and correctly process the added language constructs for attributes.

Informally, an attribute is encoded in Jasmin as a triple consisting of an
attribute directive, the attribute’s name and the attribute value in Base64.

A Framework for Optimizing Java Using Attributes 341

The attribute directive is one of .class attribute, .method attribute,
.field attribute and .code attribute. These directives must be produced
in Jasmin code at specific locations:

.class attribute: These must be found immediately before the class’ field dec-
larations.

.field attribute: These must be found immediately after the field declaration
they relate to.

.method attributes: These must be found immmediately after the method
declaration they relate to.

.code attribute: These must be found before the end of the method they relate
to. Code attributes that correspond to instructions with specific bytecode PC
values must express this symbolically. This is done by outputting a Jasmin
assembler label before each bytecode that is indexed by some attribute. This
label is then used as proxy for the PC of the bytecode it indexes in a Jasmin
.code attribute attribute. Labels are encoded inside an attribute’s Base64
value data stream by surrounding the label name with the % symbol. When
our modified Jasmin actually creates the class file attribute, it will replace
the labels found in an attribute’s data stream by the corresponding 16-bit
bigendian PC value.

Figure 6(a) gives an example of a Java method and Figure 6(b) gives an
extract of the attributed Jasmin assembler generated, showing the labeled byte-
code instructions corresponding to the two array accesses in the program. For
this example the generated class file attribute will be 6 bytes: 2 bytes for the PC
represented by label2, followed by 1 byte for the Base64 encoded value AA==(no
check needed), followed by 2 bytes for the PC represented by label3 and finally
1 byte for the Base64 encoded value Aw== (array bounds checks needed).

public void sum(int[] a) {
int total=0;
int i=0;
for (i=0; i<a.length; i++)

total += a[i];
int c = a[i];

}

(a) Java source

.method public sum([I)V
...

label2:
iaload
...

label3:
iaload
return

.code_attribute ArrayNullCheckAttribute
"%label2%AA==%label3%Aw=="

.end method

(b) attributed Jasmin

Fig. 6. Attributed Jasmin

342 P. Pominville et al.

Summary: With all of these features the Soot framework is now well endowed
with a simple-to-use, generic-attribute generation feature that is tightly inte-
grated into its overall optimization support facilities. This enables analysis im-
plementors to seamlessly augment their analysis with custom attribute support.

3 Attributes for Array Bounds Checks

In the previous section we outlined how we have integrated attributes into the
Soot optimizing framework. In this section we illustrate the framework using
an example of eliminating array bounds checks. We briefly describe the array
bounds check problem, the analyses we use to find unneeded checks, and how
to create bounds check tags and convert them into class file attributes by using
the Soot framework. Finally, we show how to modify a JVM to take advantage
of our attributes.

3.1 The Array Bounds Check Problem in Java

Java requires array reference range checks at runtime to guarantee a program’s
safe execution. If the array index exceeds the range, the runtime environment
must throw an IndexOutOfBoundsException at the precise program point where
the array reference occurs. For array-based computations, array bounds checks
may cause a heavy runtime overhead, and thus it is beneficial to eliminate all
checks which a static analysis can prove to be unneeded. In fact, several Java
virtual machines implement array bounds check elimination algorithms in their
JIT compilers[22,4]. In these systems the optimization is done at runtime as part
of the translation of bytecode to native code. However, since the optimization is
done at runtime, this approach has two limitations.

(1) Only relatively simple algorithms can be applied because of time constraints.
(2) They lack global information, such as field information and whole-program

information. Usually a JIT compiler can not afford the expense of these
analyses.

We have developed an algorithm that works at the bytecode level. By stat-
ically proving that some array references are safe and annotating these using
class file attributes, an attribute-aware JIT can avoid generating instructions
for array bounds checks without performing the analysis itself. The attributed
class files can also be used by an ahead-of-time compiler, such as IBM’s High
Performance Compiler for Java.

Java requires two bounds checks, a lower bound check and upper bound
check. The lower bound of an array is always a constant zero. The upper bound
check compares the index with the array length. On popular architectures, such
as IA-32 and PowerPC, both checks can be implemented by just doing an upper
bound check with an unsigned compare instruction, since a negative integer is
always larger than a positive one when it is interpreted as an unsigned integer.

A Framework for Optimizing Java Using Attributes 343

Thus, in order to be really beneficial, one must eliminate both the upper and
lower bound checks.

Another subtle point is that eliminating array bounds checks is often also
related to eliminating null pointer accesses. Each array access, for example x[i],
must first check that the array x is not-null. In many modern compilers null
pointer checks are performed by handling the associated hardware trap if a
null pointer is dereferenced. In this case the machine architecture guarantees
a hardware exception if any very low memory addresses are read or written.
In order to do the upper array bounds check the length of the array must be
accessed, and since the length of the array is usually stored at a small offset
from x, this access will trap if x is null. Thus, the array bounds check gives a
null pointer check for free. If the array bounds check is eliminated, then it may
be necessary to insert an explicit null pointer check (since the address of x[i]
may be sufficiently large to avoid the null pointer trap, even if x is null).

3.2 Static Analyses

We have developed two static analyses, nullness analysis and array bounds check
analysis, using the Soot framework. Each of these analyses are implemented using
the Jimple typed 3-address representation.

Nullness Analysis: Our nullness analysis is a fairly straightforward flow-
sensitive intraprocedural analysis that is implemented as an extension of the
BranchedForwardFlowAnalysis class that is part of the Soot API. The basic
idea is that variable x is non-null after statements of the form x = new(); and
statements that refer to x.f or x[i]. We also infer nullness information from
condition checks of the form if (x == null). Since the nullness analysis is in-
traprocedural, we make conservative assumptions about the effect of method
calls.

Array Bounds Check Analysis: The core of the array bounds check algo-
rithm is an intraprocedural analysis. For each method, it constructs an inequality
constraint graph of local variables, integer constants, and other symbolic nodes
(i.e. class fields, array references, and common subexpressions) similar in spirit
to the work by Bodik et. al. [2]. The algorithm collects constraints of nodes and
propagates them along the control flow paths until a fixed point is reached. For
each array reference, the shortest distance from an array variable to the index
indicates whether the upper bound check is safe or not, and the shortest distance
from the index to the constant 0 determines the safety of lower bound check.

We have extended this basic analysis in two ways. The first handles the case
where an array is assigned to a field in a class. Fields with final or private
modifiers are analyzed first. Often these fields can be summarized by simply
scanning all methods within the current class. Using these simple techniques we
can determine whether a field is assigned a constant length array object that
never changes and never escapes.

344 P. Pominville et al.

The second extension is used to find rectangular arrays. Multidimensional
arrays in Java can be ragged (i.e. different rows in an array may have different
lengths), and this makes it more difficult to get good array bounds analysis.
However, in scientific programs arrays are most often rectangular. Thus, we
have also developed a whole-program analysis using the call graph to identify
rectangular arrays that are passed to methods as parameters. Rectangular arrays
can have two different meanings, shape rectangular (each dimension has the
same size, but subdimensions can be sparse in memory or aliased), or memory-
shape rectangular (the object is created by ’multianewarray’ bytecode and no
subdimensions are ever assigned other array objects). The second type is stricter
than the first. For bounds check analysis, shape rectangular is good enough.

3.3 From Analysis to Attributes

After the analysis phase the flow information is associated with Jimple state-
ments. The next step is to propagate this information so that it will be embedded
in the class file attributes. This is done by first tagging the Jimple statements,
and then specifying a tag aggregator which packs all the tags for a method into
one aggregated tag.

Format of Attribute: We first outline the attribute as it eventually appears
in the generated class file. The structure of the array bounds attribute is quite
straightforward. It has the name "ArrayNullCheckAttribute". Figure 7 shows
the format of the array bounds check attribute as it will be generated for the
class files.

array_null_check_attribute {
u2 attribute_name_index;
u4 attribute_length;
u3 attribute[attribute_length/3];

}

Fig. 7. Array Bounds Check Attribute

The value of attribute name index is an index into the class file’s constant
pool. The corresponding entry at that index is a CONSTANT Utf8 string represent-
ing the name "ArrayNullCheckAttribute". The value of attribute length is
the length of the attribute data, excluding the initial 6 bytes. The attribute[]
field is the table that holds the array bound check information. The attribute-
length is 3 times larger than the table size. Each entry consists of a PC (the
first 2 bytes) and the attribute data (last 1 byte), totalling 3 bytes. These pairs
are sorted in the table by ascending PC value.

The least 2 bits of the attribute data are used to flag the safety for the two
array bounds checks. The bit is set to 1 if the check is needed. The null check

A Framework for Optimizing Java Using Attributes 345

information is incorporated into the array bounds check attribute. The third
lowest bit is used to represent the null check information. Other bits are unused
and are set to zero. The array reference is non-null and the bounds checks are
safe only when the value of the attribute is zero.

Add Attributes: It takes two steps to add attributes to class files when using
the Soot annotation scheme. The attribute is represented as a Tag in the Soot
framework. For the array bounds check problem we proceed as follows:

Step 1: Create an ArrayCheckTag class which implements the Tag interface.
The new class has its own internal representation of the attribute data. In our
implementation the ArrayCheckTag uses 1 byte to represent bounds checks
as explained above. For each array reference, we create an ArrayCheckTag
object. The tag is attached to a Jimple statement which acts as a Host for
the array check tag.

Step 2: Create a class called ArrayCheckTagAggregator which implements the
TagAggregator interface.
The aggregator will aggregate all array check tags for one method body.
We then register the aggregator to the CodeAttributeGenerator class, and
specify the aggregator as active. The aggregator generates a CodeAttribute
tag when it is required to produce the aggregated tag. The CodeAttribute
tag has the name "ArrayNullCheckAttribute", which is the attribute name
in the class file.

Soot manages all CodeAttribute tags and produces a Jasmin file with the
appropriate attribute directives, and finally Soot calls the extended Jasmin as-
sembler to generate the class file with attributes.

3.4 Making a JVM Aware of Attributes

After generating the annotated class file, we need to make a JVM aware of at-
tributes and have it use them to improve its generated native code. We modified
both Kaffe’s OpenVM 1.0.5 JIT and the IBM HPCJ ahead-of-time compiler to
take advantage of the array bound attributes. Below we describe the modifica-
tions needed for Kaffe; the modifications to HPCJ are similar.

The KaffeVM JIT reads in class files, verifies them, and produces native
code on demand. It uses the methods structure to hold method information.
We added a field to the methods structure to hold the array bounds check
attribute. Figure 8 shows the data structure.

When the VM reads in the array bounds check attribute of the Code at-
tribute, it allocates memory for the attribute. The <PC, data> pairs are then
stored in the attribute table. The pairs were already sorted by PC when written
into the class file, so no sorting has to be done now.

The Kaffe JIT uses a large switch statement to generate native code for
bytecodes. It goes through the bytecodes sequentially. We use the current PC as
the key to look up the array bounds check attribute in the table before generating

346 P. Pominville et al.

typedef struct _methods
{

soot_attr attrTable;
} methods;

typedef struct _soot_attr
{ u2 size;

soot_attr_entry *entries;
} soot_attr;

typedef struct
_soot_attr_entry

{ u2 pc;
u1 attribute;

} soot_attr_entry;

Fig. 8. Modified Kaffe Internal Structure

code for array references. Because attribute pairs are sorted by ascending PC,
and bytecodes are processed sequentially, we can use an index to keep the current
entry in the attribute table and use it to find the next entry instead of searching
the whole table. Figure 9 gives the pseudocode.

idx = 0;
...
case IALOAD:

...
if (attr_table_size > 0) { /* attributes exist. */

attr = entries[idx].attribute;
idx++;
if (attr & 0x03) /* generates bounds checks. */

check_array_index(..);
else
if (attr & 0x04) /* generates null pointer check. */

explicit_check_null(..);
} else /* normal path */

check_array_index(..);

Fig. 9. Using attributes in KaffeVM

Here, we turn off bounds check instructions when the array reference is non-
null and both bounds are safe. We also insert null check instructions at the
place where bounds check instructions can be removed but the null check is still
needed.

4 Experimental Results

We measured four array-intensive benchmarks to show the effectiveness of the
array bounds check attribute. The benchmarks are characterized by their ar-
ray reference density, and the results of bounds check and null check analysis.
These data are runtime measurements from the application programs, and do
not include JDK libraries. We also measured the class file size increase due to
attributes. Finally we report the performance improvement of benchmarks on

A Framework for Optimizing Java Using Attributes 347

attribute-aware versions of KaffeVM and the IBM High Performance Compiler
for Java.

4.1 Benchmarks

Table 1(1) shows benchmark characteristics.1 The third column describes the
array type used in the benchmark: s represents single dimensional and m repre-
sents multidimensional.2 The last column shows array reference density of the
benchmark, which is a count of how many array references per second occur in
the benchmark. It is a rough estimate of the potential benefit of array bounds
check elimination.

Table 1. Benchmarks

(1) Benchmarks (2) Analysis results (3) File size increase
Name Source Type Density low up both not all Soot -W with incr.

null attr.
mpeg specJVM98 s/m 19966466/s 89% 51% 50% 58% 26% 256349 276874 8.0%
FFT scimark2 s 10262085/s 77% 61% 59% 97% 59% 2380 2556 7.4%
LU scimark2 m 14718027/s 97% 64% 64% 68% 31% 1641 1907 16.2%
SOR scimark2 m 13683052/s 99% 99% 99% 51% 50% 445 507 13.9%

4.2 Result of Analysis

Table 1(2) shows the percentage of checks that can be eliminated. This is mea-
sured by instrumenting the benchmark class file and getting dynamic numbers.

The first and second columns show the percentages of lower and upper bounds
checks that could be safely removed. Usually we see that a much higher percent-
age of lower bounds can be proved safe than upper bounds. The third column
shows the percentage of bounds checks where both upper and lower can be safely
removed. The forth column shows the percentage of safe null pointer checks, and
the fifth column shows the percentage of array references that are not null and
with both bounds checks safe. Clearly we are most interested in the last column,
when we determine that we can eliminate both bounds and we know the array
is not null.

4.3 Class File Increase

The increase in file size due to adding attribute information is shown in Ta-
ble 1(3).
1 Note that we use the abbreviation mpeg for the benchmark mpegaudio.
2 Multidimensional arrays are harder to analyze due to their more complex aliasing,

as well as the possibility of being non-rectangular.

348 P. Pominville et al.

The first column shows the file size in bytes after Soot whole program opti-
mization. The second column shows file size of the optimized class file including
array bounds check attributes, and the relative increase in file size is listed in
the last column. The file size increase depends primarily on the static count
of array references—each array reference needs 3 bytes of attribute information,
and the class itself needs a constant pool entry to store the attribute name. Note
that in this prototype work we have made no effort to reduce or compress this
information; significant improvements should be possible.

4.4 Kaffe Performance Improvement

We measured the KaffeVM (ver 1.0.5 with JIT3 engine) modified to take advan-
tage of array bounds check attributes. It runs on a dual Pentium II 400MHz PC
with 384Mb memory, Linux OS kernel 2.2.8, and glibc-2.1.3. The modified JIT
compiler generates code for an array reference depending on the attribute. If no
attribute is present, it generates bounds check instructions as in Figure 10(a).
If the attribute shows safe bounds check and unsafe null check, it inserts null
check code in place of the bounds check (Figure 10(b)). If both bounds checks
and null check are safe, no instructions are added.

cmp reg1, [reg2+off]
jge outofboundserror

cmp reg1, 0
je nullpointerexception

(a) Array Bounds Check Instructions (b) Explicit Null Check Instructions

Fig. 10. Check Instructions

Table 2 gives the benchmark results for the attribute-aware KaffeVM. The
“nocheck” column shows the running time without any bounds or null checks
for the application classes, while the “with attr” and “normal” columns show
the execution times of each benchmark with and without attributes respectively.
Each benchmark gets some improvement roughly scaled according to the per-
centage of safe checks. Note that LU without checks actually has a performance
degradation; this anomaly is discussed in the next section.

Table 2. KaffeVM Runtime

name normal nocheck with attr
mpeg 80.83s 62.83s(22.3%) 72.57s(10.2%)
FFT 51.44s 48.84s(5.1%) 50.01s(2.8%)
LU 81.10s 81.88s(-0.9%) 78.15s(3.6%)
SOR 46.46s 41.23s(11.3%) 43.19s(7.0%)

A Framework for Optimizing Java Using Attributes 349

4.5 High Performance Compiler Performance Improvement

The High Performance Compiler for Java runs on a Pentium III 500MHz PC
with the Windows NT operating system. The structure of the High Performance
Compiler is such that safe checks could be removed prior to its internal optimiza-
tion phase, allowing subsequent optimizations to take advantage of the reduced
code; this has resulted in a speed increase that does not correlate as well with the
relative number of checks removed. Tables 3 and 4 show the benchmark times
with and without internal optimizations—the last two columns in each table
give the performance improvement when either just array bounds checks or just
null pointer checks are completely removed; note that as with KaffeVM, there
are some unexpected performance decreases.

Table 3. IBM High Performance Compiler without Optimizations

name normal nocheck with attr noarray nonull
mpeg 50.88s 29.96s(41.1%) 39.14s(23.1%) 30.64s(39.8%) 47.94s(5.8%)
FFT 28.22s 25.09s(11.1%) 26.59s(5.8%) 25.15s(10.9%) 28.85s(-2.2%)
LU 39.99s 28.83s(27.9%) 32.33s(19.2%) 28.92s(27.7%) 38.39s(4.0%)
SOR 24.16s 15.46s(36.0%) 15.55s(35.6%) 15.18s(37.2%) 23.96s(0.8%)

Table 4. IBM High Performance Compiler with Optimizations On

name normal nocheck with attr noarray nonull
mpeg 21.27s 15.93s(25.1%) 20.33s(4.4%) 17.12s(19.5%) 20.82s(2.1%)
FFT 17.39s 15.34s(11.8%) 19.45s(-11.8%) 16.08s(7.5%) 18.58s(-6.8%)
LU 21.50s 14.84s(30.8%) 21.27s(1.1%) 15.03s(30.1%) 21.49s(0.0%)
SOR 11.93s 8.88s(25.6%) 8.88s(25.6%) 8.88s(25.6%) 11.92s(0.1%)

Generally with the High Performance Compiler results, we see a very slight
improvement in the running time due to null pointer check elimination (“normal”
column and “nonull” column respectively), and a significantly larger improve-
ment due to array bounds check elimination (“noarray” column). This reflects
the relative cost of the two operations—where possible the High Performance
Compiler implements null pointer checks by handling the associated hardware
trap if a null pointer is dereferenced. The machine architecture guarantees a
hardware exception if any very low memory addresses (e.g. zero) are read or
written. Thus, since most null pointer checks are required because of an im-
pending dereference or write anyway, the null pointer check can be implemented
as an implicit byproduct of the subsequent code (see Figure 11(a)). The result
is that the check itself has relatively little apparent cost. Array bounds checks,

350 P. Pominville et al.

alternatively, require an explicit test and branch, and so eliminating them has a
noticeable impact on the code being executed.

Surprisingly, the combination of eliminating both kinds of checks together
is significantly more effective than the sum of eliminating both individually.
This is a consequence of both optimization and the way null pointer checks have
been implemented through the hardware exception mechanism. An array element
reference in Java needs to be guarded by both a null pointer check and an array
bounds check on the array index ([17]). In the High Performance Compiler, the
code generated for an array bounds check naturally consists of a load of the
array size followed by a comparison of the size with the index in question. The
array size field, however, is offset only a small distance in memory from the start
of the array object; the hardware supports trapping on a range of low addresses,
and so a dereference of the array size field is as effective as dereferencing the
object itself at generating the required hardware trap if the original object is
null. Subsequent optimizations easily recognize this situation and combine the
two checks into the same actual code; the code output for an array load or store
is thus often identical whether a null pointer check is performed or not (see
Figure 11(a)).

The symmetric situation, eliminating array bounds checks without also elim-
inating null pointer checks, is also not as effective as one might expect. In order
to remove the array bound check while leaving behind the implicit null pointer
check, specific code to dereference the array object must be inserted in order to
still trigger the hardware trap mechanism if the array object is null (e.g. code
in Figure 11(a) is replaced by the code in Figure 11(b)). This means that the
benefit of deleting the bounds check code is offset slightly by the code required
to explicitly dereference the object as part of a null pointer check.

mov eax,[ebx+offset]
(implicit null ptr check)

cmp eax,edx}
jge outofboundserror

test eax,[eax]
(explicit null ptr check)

(a) Array Bounds Check with (b) Null Pointer Check Inserted if
Implicit Null Pointer Check. Array Bounds Checks Eliminated.

Fig. 11. HPCJ Check Instructions

It is interesting that anomalous results occur in the FFT runs as well as
the LU run of KaffeVM. Here the benchmark runs without some or all runtime
checks are actually slower than the versions with checks. Since we are only reduc-
ing the checking overhead, and never increasing it, it seems counterintuitive that
performance would ever be less than the baseline for any of our runs. However,
in certain key benchmark functions the code changes due to eliminating some
but not all bounds checks seems to negatively impact instruction cache utiliza-

A Framework for Optimizing Java Using Attributes 351

tion, and we find our code highly sensitive to the exact sequence of bytes being
executed. For instance, if the benchmark is compiled so as to artificially ignore
the array bounds attribute information for a specific function (and thus gener-
ate normal bounds checks regardless of whether attribute information tells us
they are unnecessary), much of the performance degradation is eliminated. The
interaction of optimizing compilers with optimizing hardware is clearly a com-
plex issue with many tradeoffs, and we may not be able to benefit all programs
equally.

5 Related Work

Work related to this paper falls into three categories: (1) other tools for opti-
mizing class files; (2) related techniques for optimizing array bounds checks; and
(3) other uses of class file attributes.

5.1 Class File Tools

The only other Java tool that we are aware of that performs significant opti-
mizations on bytecode and produces new class files is Jax[24]. The main goal of
Jax is application compression where, for example, unused methods and fields
are removed, and the class hierarchy is compressed. Their system is not focused
on low-level optimization and it does not handle attributes.

There are a number of Java tools that provide frameworks for manipulat-
ing bytecode: JTrek[14], Joie[5], Bit[16] and JavaClass[12]. These tools are con-
strained to manipulating Java bytecode in their original form, however. They
do not provide convenient intermediate representations such as Baf, Jimple or
Grimp for performing analyses or transformations, they do not allow the pro-
duction of bytecode, nor do they handle attributes.

5.2 Array Bounds Checks

Array bounds check optimization has been performed for other languages for a
long time. Value range analysis has been used to remove redundant tests, verify
programs, or guide code generation [9]. Further, there are a number of algorithms
that use data flow analysis to remove partial redundant bounds checks [8,15].

More recently, the Java language has been the focus of research. Array bounds
check elimination has been implemented in JIT compilers [22,4]. Midkiff et. al.
[18,19] proposed a Java Array package and loop versioning algorithm to over-
come the bounds check overhead in Java scientific programs. An algorithm for
general applications was presented in [2]. Compared with these intraprocedu-
ral algorithms, our algorithm can take advantage of field information and our
analysis for finding rectangular arrays.

Field analysis is useful to other optimizations such as object inlining and
escape analysis [7]. Knowing an array’s shape can also help memory layout of
array objects [3].

352 P. Pominville et al.

5.3 Using Attributes

To the best of our knowledge there has been relatively little work done in inves-
tigating the possible uses of class file attributes to improve performance. We are
aware of only two research groups that have been investigating this topic and
both are focused on performance of bytecode.

Hummel et. al. gave an initial study on using attributes to improve perfor-
mance, where they showed, using hand-simulation, that performance could be
improved using attributes [10]. More recently this group has presented a system
built on guavac and kaffe [1]. Their modified guavac compiler translates from
Java source code to their own intermediate representation, and then converts
this intermediate representation to annotated bytecode, which is then executed
using their modified kaffe JIT. They have concentrated on conveying regis-
ter allocation information. This involves developing a virtual register allocation
scheme where one assumes an infinite number of registers and then proceeds to
statically minimize the number that are actually used.

The second group, Jones and Kamin, have also focused on register allocation
[13]. Their approach monotypes each virtual register, which allows for efficient
runtime verifiability of their attributes; attributes to deal with spills are also
presented. Their experimental results also exhibit significant code speedups.

Compared to these groups, our work is more focused on providing a general
purpose framework for producing attributed class files. The input to our system
can be class files produced by any compiler, and we provide the necessary in-
frastructure to convert the class files to typed 3-address intermediate code and
to perform analysis on this intermediate code. We also provide a simple mecha-
nism for converting the resulting flow analysis information to class file attributes.
In this paper we have demonstrated how this scheme can be applied to array
bounds checks; however, it can easily be applied to other problems, including
the register allocation problem.

6 Conclusions and Future Work

In this paper we have presented an approach to using class file attributes to
speed up the execution of Java bytecode. Our approach has been designed and
implemented as part of the Soot bytecode optimization framework, a system
that takes as input any Java bytecode and produces optimized and attributed
bytecode as output. In our system, the compiler writer develops the appropriate
flow analysis for the Jimple typed 3-address representation, and then uses tags
to attach attribute information to the appropriate hosts (statements, methods,
classes or fields). If the tags are attached to statements (Units), the compiler
writer can also specify a tag aggregator which combines all tags within a method.
The Soot system applies this aggregator when producing the attributed class
files. As part of our system we have produced an extended version of the Jasmin
assembler which can now support attribute directives and produces attributed
class files.

A Framework for Optimizing Java Using Attributes 353

Our system is very easy to use, and we showed how to apply it to the problem
of eliminating array bound checks. We provided an overview of our array bounds
check analysis and we showed how the results of the analysis can be propagated
to attributes. We also modified two virtual machines, the Kaffe JIT and the
IBM HPCJ ahead-of-time compiler, to take advantage of the attributes, and we
presented experimental results to show significant performance improvements
due to the array bounds check attributes.

In our current approach our attributes are not necessarily verifiable. Given
verifiable class files and a correct analysis, we guarantee to produce correct at-
tributes. Thus, if our system is used as a front-end to an ahead-of-time compiler,
there is no problem. However, if our attributed class files are transmitted from
our system to an external VM via an insecure link, we need a safety-checking
mechanism to ensure the attribute safety. Necula’s proof-carrying code[20] could
be one solution to this problem.

Based on our work so far, we believe that the attributes supported by our
system can be used for a wide variety of tasks as outlined in the introduction,
and we plan to work on several of these in the near future. In particular, we wish
to examine how escape analysis and side-effect information can be expressed as
attributes, and we plan to examine how some of the profile-based attributes can
be used. We also would like to see how attributes can be used with other virtual
machine implementations.

Acknowledgements. The authors would like to thank IBM CAS for supporting
Raja Vallée-Rai with a IBM CAS Fellowship. This work was also supported by
NSERC and FCAR. We would also like to thank Patrick Lam and Richard
Godard for their work in implementing the first versions of null pointer analysis,
which was the foundation for our null pointer attributes.

References

1. Ana Azevedo, Joe Hummel, and Alex Nicolau. Java annotation-aware just-in-time
(AJIT) compilation system. In Proceedings of the ACM 1999 Conference on Java
Grande, pages 142–151, June 1999.

2. R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating Array Bounds Checks on
Demand. In Proceedings of PLDI ’00, pages 321–333, June 2000.

3. M. Cierniak and W. Li. Optimizing Java bytecodes. Concurrency, Practice and
Experience, 9(6):427–444, 1997.

4. Michal Cierniak, Guei-Yuan Lueh, and James M. Stichnoth. Practicing JUDO:
Java under Dynamic Optimizations. In Proceedings of PLDI ’00, pages 13–26,
June 2000.

5. Geoff A. Cohen, Jeffrey S. Chase, and David L. Kaminsky. Automatic program
transformation with JOIE. In Proceedings of the USENIX 1998 Annual Technical
Conference, pages 167–178, Berkeley, USA, June 15–19 1998. USENIX Association.

6. Etienne M. Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference
of static types for Java bytecode. In Proceedings of SAS 2000, volume 1824 of
LNCS, pages 199–219, June 2000.

354 P. Pominville et al.

7. S. Ghemawat, K.H. Randall, and D.J. Scales. Field Analysis: Getting Useful and
Low-Cost Interprocedural Information. In Proceedings of PLDI ’00, pages 334–344,
June 2000.

8. R. Gupta. Optimizing array bound checks using flow analysis. ACM Letters on
Programming Languages and Systems, 2(1-4):135–150, 1993.

9. W. Harrison. Compiler analysis of the value ranges of variables. IEEE Transactions
on Software Engineering, 3(3):243–250, 1977.

10. Joseph Hummel, Ana Azevedo, David Kolson, and Alexandru Nicolau. Annotat-
ing the Java bytecodes in support of optimization. Concurrency: Practice and
Experience, 9(11):1003–1016, November 1997.

11. The Jasmin Bytecode Assembler. http://mrl.nyu.edu/meyer/jvm/jasmin.html.
12. JavaClass. http://www.inf.fu-berlin.de/ dahm/JavaClass/.
13. Joel Jones and Samuel Kamin. Annotating Java class files with virtual registers

for performance. Concurrency: Practice and Experience, 12(6):389–406, 2000.
14. Compaq-JTrek. http://www.digital.com/java/download/jtrek.
15. Priyadarshan Kolte and Michael Wolfe. Elimination of redundant array subscript

range checks. In Proceedings of PLDI ’95, pages 270–278, 1995.
16. Han Bok Lee and Benjamin G. Zorn. A tool for instrumenting Java bytecodes.

In The USENIX Symposium on Internet Technologies and Systems, pages 73–82,
1997.

17. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addi-
son-Wesley, Reading, MA, USA, second edition, 1999.

18. S. Midkiff, J. Moreira, and M. Snir. Optimizing bounds checking in Java programs.
IBM Systems Journal, 37(3):409–453, August 1998.

19. J.E. Moreira, S.P. Midkiff, and M. Gupta. A Standard Java Array Package for
Technical Computing. In Proceedings of the Ninth SIAM Conference on Parallel
Processing for Scientific Computing, San Antonio, TX, March 1999.

20. G. Necula. Proof-carrying code. In Proceedings of POPL ’97, pages 106–119,
January 1997.

21. Soot - a Java Optimization Framework. http://www.sable.mcgill.ca/soot/.
22. T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito, K. Ishizaki,

H. Komatsu, and T. Nakatani. Overview of the IBM Java Just-in-Time Compiler.
IBM Systems Journal, 39(1):175–193, 2000.

23. Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, and Étienne Gagnon. Practical virtual method call resolution for
Java. In Proceedings OOPSLA 2000, pages 264–280, October 2000.

24. Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical experience
with an application extractor for Java. In Proceedings OOPSLA ’99, pages 292–
305, October 1999.

25. Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a Java Bytecode Optimization Framework. In Proceedings
of CASCON ’99, pages 125–135, 1999.

26. Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-
inville, and Vijay Sundaresan. Optimizing Java bytecode using the Soot frame-
work: Is it feasible? In Proceedings of CC ’00, volume 1781 of LNCS, pages 18–34,
March 2000.

	Introduction
	Attributes and Soot
	Class File Attributes
	Adding Attributes to Soot

	Attributes for Array Bounds Checks
	The Array Bounds Check Problem in Java
	Static Analyses
	From Analysis to Attributes
	Making a JVM Aware of Attributes

	Experimental Results
	Benchmarks
	Result of Analysis
	Class File Increase
	Kaffe Performance Improvement
	High Performance Compiler Performance Improvement

	Related Work
	Class File Tools
	Array Bounds Checks
	Using Attributes

	Conclusions and Future Work

