
Run-time Evaluation of
Opportunities for Object

Inlining in Java
Ondřej Lhoták and Laurie Hendren

Sable Research Group
McGill University

November 5th, 2002

– p. 1/30



Motivation

Java allows only references to objects as
fields, not the objects themselves.

Object Inlining has been studied as a method
to implement languages with this restriction
efficiently.

ComplexPair
x
y

Complex
re

im

Complex
re

im

ComplexPair
x_re

x_im
y_re

y_im

– p. 2/30



Motivation

Java allows only references to objects as
fields, not the objects themselves.

Object Inlining has been studied as a method
to implement languages with this restriction
efficiently.

How would Object Inlining affect
typical Java programs?

– p. 3/30



Contributions

Classification scheme for fields according to
how they can be inlined.

Empirical limit study of the potential effects of
object inlining (upper bound on improvements
achievable by object inlining optimization).

Technique for determining which inlinable
fields are important to optimize — could be
useful to programmers.

Observation of complex interactions between
object inlining and other optimizations: effect
of “pointer chasing” is minor in comparison.

– p. 4/30



Outline

Object Inlining and Related Work

Definitions

Experiments and Results

Conclusion and Future Work

– p. 5/30



Object Inlining

class Complex

�

double re, im;

�

class NormFinder

�

Complex z;

double normSq()

�

return
z.re*z.re +
z.im*z.im;

�

�

NormFinder
z

Complex
re

im

– p. 6/30



Object Inlining

class Complex

�

double re, im;

�

class NormFinder

�

Complex z;
double z re, z im;
double normSq()

�

return
z.re*z.re +
z.im*z.im;

�

�

NormFinder
z
z_re

z_im
Complex

re

im

– p. 7/30



Object Inlining

class Complex

�

double re, im;

�

class NormFinder

�

Complex z;
double z re, z im;
double normSq()

�

return
z re*z re +
z im*z im;

�

�

NormFinder
z
z_re

z_im
Complex

re

im

– p. 8/30



Object Inlining

class Complex

�

double re, im;

�

class NormFinder

�

Complex z;
double z re, z im;
double normSq()

�

return
z re*z re +
z im*z im;

�

�

NormFinder
z
z_re

z_im
Complex

re

im

– p. 9/30



Related Work

Dolby, Chien.
PLDI ’97. Automatic Inline Allocation of
Objects.
OOPSLA ’98. An Evaluation of Automatic
Object Inline Allocation Techniques.
PLDI ’00. An Automatic Object Inlining
Optimization and its Evaluation.

Laud.
JOSES ’01 (ETAPS). Analysis for Object
Inlining in Java.

– p. 10/30



Related Work

Ghemawat, Randall, Scales.
PLDI ’00. Field Analysis: Getting Useful
and Low-Cost Interprocedural Information.

Budimlić.
Ph.D. thesis, 2001. Compiling Java for
High Performance and the Internet.

– p. 11/30



Predicates

[contains-unique] Every container having f
refers to only one contained object through f.

p.f = c;
p.f = d;

d

p

c

f
f

– p. 12/30



Predicates

[unique-container-same-field] No object
stored into field f is stored into field f of any
other container.

p.f = c;
r.f = c;

r p

c

f
f

– p. 13/30



Predicates

[unique-container-different-field] No object
stored into field f is stored into any field g of
any other container.

p.f = c;
q.g = c;

q

p

c

f
g

– p. 14/30



Predicates

[not-globally-reachable] No object contained
in f is ever stored into an array or static field.

p.f = c;
Class.g = c;

a[i] = c;

Global

p

c

f

– p. 15/30



Field Classification

[contains-unique]
[unique-container-same-field]

[unique-container-different-field]
[not-globally-reachable]

Field-sensitive All 4 predicates Unique-store
one-to-one Simply
[Dolby, Chien] one-to-one [Laud]

Move fields to container Copy fields to container
Remove contained Keep contained
object object

– p. 16/30



Field Classification

[contains-unique]
[unique-container-same-field]

[unique-container-different-field]
[not-globally-reachable]

Field-sensitive All 4 predicates Unique-store
one-to-one Simply
[Dolby, Chien] one-to-one [Laud]

Move fields to container Copy fields to container
Remove contained Keep contained
object object

– p. 17/30



Field Classification

[contains-unique]
[unique-container-same-field]

[unique-container-different-field]
[not-globally-reachable]

Field-sensitive All 4 predicates Unique-store
one-to-one Simply
[Dolby, Chien] one-to-one [Laud]

Move fields to container Copy fields to container
Remove contained Keep contained
object object

– p. 18/30



Field Classification

[contains-unique]
[unique-container-same-field]

[unique-container-different-field]
[not-globally-reachable]

Field-sensitive All 4 predicates Unique-store
one-to-one Simply
[Dolby, Chien] one-to-one [Laud]

Move fields to container Copy fields to container
Remove contained Keep contained
object object

– p. 19/30



Experiments

Instrument benchmarks using Soot to record
getfield, putfield, putstatic and aastore.

For each field, look for violations of each
predicate in the traces.

eg.
...

p.f = c;
...

p.f = d;
...

� [contains-unique](f)

– p. 20/30



Experiments

Instrument benchmarks using Soot to record
getfield, putfield, putstatic and aastore.

For each field, look for violations of each
predicate in the traces.

eg.
...

p.f = c;
...

q.f = c;
...

� [unique-container-same-field](f)

– p. 21/30



Benchmarks

compress javasrc-p (Java to HTML)

db kawa-c (Scheme compiler)

jack rhino-a (Javascript interp.)

javac sablecc-j (Parser generator)

jess sablecc-w
mpegaudio schroeder-m (Audio editor)

mtrt schroeder-s
raytrace soot-c (Bytecode optimizer)

toba-s (Java native compiler)

– p. 22/30



Fraction of Field Reads Inlinable

 0

 20

 40

 60

 80

 100

compress
db

jack

javac
jess
mpegaudio

mtrt
raytrace

javasrc-p

kawa-c
rhino-a

sablecc-j

sablecc-w
schroeder-m

schroeder-s

soot-c
toba-s

P
er

ce
nt

Field-spec. one-to-one Unique-store Simply one-to-one

– p. 23/30



How Many Inlinable Fields are Important?

Fields accounting for 90% of inlinable field reads

compress 6 javasrc-p 6
db 1 kawa-c 20
jack 7 rhino-a 3
javac 8 sablecc-j 12
jess 5 sablecc-w 8
mpegaudio 4 schroeder-m 4
mtrt 5 schroeder-s 4
raytrace 5 soot-c 20

toba-s 6

– p. 24/30



Inlinable Field Reads per Second

 0

 200000

 400000

 600000

 800000

 1e+06

compress
db

jack

javac
jess
mpegaudio

mtrt
raytrace

javasrc-p

kawa-c
rhino-a

sablecc-j

sablecc-w
schroeder-m

schroeder-s

soot-c
toba-s

N
um

be
r 

of
 r

ea
ds

 p
er

 s
ec

on
d

8.3e+06

Field-spec. one-to-one Unique-store Simply one-to-one

– p. 25/30



Speedup from Hand-Inlining

compress
Speedup 7.8% to 10.8%

db
Speedup up to 10.6% from one field

javasrc-p
No significant change

– p. 26/30



Loop Invariant Hoisting

Fields satisfying [contains-unique] predicate
are loop invariant.

Hoisting loop invariants should give similar
benefit.

In compress, benefit from loop invariant
hoisting is about half the benefit of object
inlining.

– p. 27/30



Bytes of Allocations Saved

 0

 2

 4

 6

 8

 10

compress
db

jack

javac
jess
mpegaudio

mtrt
raytrace

javasrc-p

kawa-c
rhino-a

sablecc-j

sablecc-w
schroeder-m

schroeder-s

soot-c
toba-s

P
er

ce
nt

Field-spec. one-to-one Simply one-to-one

– p. 28/30



Object Allocations Saved

 0

 5

 10

 15

 20

 25

compress
db

jack

javac
jess
mpegaudio

mtrt
raytrace

javasrc-p

kawa-c
rhino-a

sablecc-j

sablecc-w
schroeder-m

schroeder-s

soot-c
toba-s

P
er

ce
nt

Field-spec. one-to-one Simply one-to-one

– p. 29/30



Conclusions

Object inlining can produce speedups of up
to 10%, but highly dependent on individual
benchmark.

Complex interactions with other
optimizations; cost of “pointer chasing”
insignificant in comparison.

Inlining field-specific one-to-one fields can
yield savings of up to 7% of bytes, 21.6% of
objects allocated.

Small number of fields are important
could be hand-optimized.

– p. 30/30


	Motivation
	Motivation
	Contributions
	Outline
	Object Inlining
	Object Inlining
	Object Inlining
	Object Inlining
	Related Work
	Related Work
	Predicates
	Predicates
	Predicates
	Predicates
	Field Classification
	Field Classification
	Field Classification
	Field Classification
	Experiments
	Experiments
	Benchmarks
	Fraction of Field Reads Inlinable
	How Many Inlinable Fields are Important?
	Inlinable Field Reads per Second
	Speedup from Hand-Inlining
	Loop Invariant Hoisting
	Bytes of Allocations Saved
	Object Allocations Saved
	Conclusions

