
STEP: A Framework for the Efficient Encoding of General
Trace Data∗

Rhodes Brown, Karel Driesen, David Eng, Laurie Hendren,
John Jorgensen, Clark Verbrugge and Qin Wang

Sable Research Group, McGill University
Montréal, Québec, CANADA H3A 2A7

{rhodesb,karel,flynn,hendren,jjorge1,clump,qwang21}@cs.mcgill.ca

ABSTRACT
Traditional tracing systems are often limited to recording
a fixed set of basic program events. This limitation can
frustrate an application or compiler developer who is try-
ing to understand and characterize the complex behavior
of software systems such as a Java program running on a
Java Virtual Machine. In the past, many developers have
resorted to specialized tracing systems that target a partic-
ular type of program event. This approach often results in
an obscure and poorly documented encoding format which
can limit the reuse and sharing of potentially valuable in-
formation. To address this problem, we present Step, a
system designed to provide profiler developers with a stan-
dard method for encoding general program trace data in a
flexible and compact format. The system consists of a trace
data definition language along with a compiler and an archi-
tecture that simplifies the client interface by encapsulating
the details of encoding and interpretation.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Tracing ; D.3.4 [Programming Languages]: Processors—
Translator writing systems; E.4 [Data]: Coding and Infor-
mation Theory—Data compaction and compression

General Terms
Languages, Measurement, Performance, Standardization

Keywords
Data definition language, Program event trace, Sequential
data encoding

∗Further details and source code are available for download
at: http://www.sable.mcgill.ca/step/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’02, November 18–19, 2002, Charleston, SC, USA
Copyright 2002 ACM 1-58113-479-7/02/0011 ...$5.00.

1. INTRODUCTION & MOTIVATION
Modern high-level languages such as Java provide a wealth

of complex features such as type inheritance, integrated mem-
ory management (i.e., garbage collection), specialized con-
trol flow operations (e.g., virtual dispatch & exceptions) and
language-level support for concurrent process control. These
features, although intended to simplify the task of writing
code, often complicate a number of other development is-
sues such as software architecting, performance optimization
and debugging. In recent years, a number of sophisticated
static analyses have been developed to aide in program un-
derstanding and optimization. Blindly applied, these anal-
yses often meet with varied success. We believe that many
such analyses can be made more effective by incorporat-
ing an understanding of the run-time behavior of software
systems. To this end, we have embarked on a number of
projects to characterize the dynamic behavior of Java pro-
grams through the use of program traces. At the core of
these efforts is Step, a system designed for the efficient en-
coding of generalized program trace data.

Our approach is a departure from specialized trace for-
mats such as PDATS [14], MaStA I/O [20], POSSE [11] and
HATF [5]. The project was motivated by the observation
that for complex software systems, such as Java programs
running on top of a Java Virtual Machine, it is often unclear
which program events should be recorded to obtain a “use-
ful” characterization of the run-time behavior. Furthermore,
such event traces may be generated in a variety of ways and
may be used as input to a variety of tools and analyses.
Complicating matters further is the fact that an accurate
program characterization may require multiple large traces
which, if stored in a näıve format, would place a strain on
disk resources and limit sharing and reuse of the data. To
address these issues, we established a set of basic require-
ments for a general trace encoding system:

• Flexibility: The system should provide a flexible trace
format that is not bound to a particular set of data
records. Specifically, adding new records to a trace
should not break existing tools. Furthermore, the sys-
tem should not be bound to any particular set of en-
coding strategies.

• Integrated Documentation: The trace files should
be accompanied by a descriptive document that spec-
ifies both the form and [the] interpretation of the data
records, including information related to encoding.

Event
Consumers

Analysis
Tool

Source

JVM

Event Producers

Trace Encoding

STEP STEP
trace file

STEP−DL Definitions

Encoding
Strategies

D
at

a
O

bj
ec

ts

D
at

a
O

bj
ec

ts

EVolve

JIMPLEX

Filter
Modified

Pr
og

ra
m

JVMPI

Pr
og

ra
m

Modified

Pr
og

ra
m D

ecom
pressC

om
pr

es
s

Encoder Decoder

stepc

Figure 1: An overview of the Step framework. This depiction shows the collection and analysis of Java

program traces.

• Compact Encoding: The standard trace encoding
should be based on an expectation that traces will be
very large yet exhibit a high degree of sequential regu-
larity. Strategies for trace reduction should be integral
to the system, and consider both the average size of
individual records as well as aggregate compression.1

The default reduction scheme should be lossless, al-
though lossy approaches should not be prohibited.

• Encapsulation: The basic client interface should be
kept as simple as possible by isolating and encapsu-
lating features such as encoding and other forms of
translation.

• Reuse: The system should support reuse and exten-
sion of existing trace definitions and encoding strate-
gies.

Based on these requirements, we set out to design a stan-
dardized yet flexible and compact trace encoding system.
The result, depicted in Figure 1, has been dubbed Step.
The system acts as a bridge, connecting a variety of trace
producers with a variety of trace consumers through the
same uniform interface. Events are passed, as objects, from
a producer to an encoding engine which serializes the data
using a number of adaptive strategies to reduce the aver-
age event record size. Consumers use a symmetric decoding
engine to reconstitute the event stream from a trace file.
Clients do not implement the event definitions or encoding
strategies directly. Instead, the definitions and strategies are

1To achieve the best overall compression, it is important to
choose an approach that ensures a complementary interac-
tion of these methods.

specified with a definition language called Step-DL. A com-
piler, stepc, reads the Step-DL definitions and generates
the necessary components for a particular target implemen-
tation (e.g., Java).

In the following sections we relate our experiences design-
ing, implementing and using the Step system. First, we
focus on the design and features of our data definition lan-
guage, Step-DL. We then proceed to an overview of the en-
coding system and highlight some of the important design
and implementation issues. We used Step to collect trace
data from Java programs using a variety of source agents
and adapted several tools to analyze the resulting traces.
In section 4, we relate some of our experiences using the
system and briefly discuss the compression of some example
traces. Section 5 presents a brief review of work related to
this project. Finally, we provide some concluding remarks
and discuss possible future work.

2. THE STEP DEFINITION LANGUAGE
The Step system was inspired primarily by the work of

Chilimbi, Jones & Zorn [5, 15] who developed a similar ap-
proach dubbed Meta-TF. It was clear to us that a specialized
trace definition language, like Meta-TF, provided an effec-
tive way to satisfy our documentation criteria. However, our
data sets were not particularly compatible with the initial
version of Meta-TF. Additionally, we believed that a some-
what different choice of language features would support a
solution that satisfied our other basic requirements. Thus,
we began to develop a new approach which we referred to
as the Step Definition Language (Step-DL).

We considered basing Step traces on an existing mark-up
approach, such as XML [26] or SGML [13], however such an

approach is inappropriate for two reasons: First, as noted by
Chilimbi et al., the verbose data tagging present in mark-
up formats is incompatible with the key compactness re-
quirement for traces. Second, the syntax for document type
definitions (DTDs) in such languages is cumbersome and
excessive for the task at hand. On the other hand, a spe-
cialized language can provide a concise, easily interpreted
specification with an intuitive mapping from definitions to
the data objects used by a client of the system.

Briefly recapping the development history of Step-DL,
the initial version resembled Meta-TF with a number of ex-
tensions. The language was then modified to include type
inheritance, influenced initially by the DAFT language [10].
The current version of Step-DL includes a distinct syntax
with a number of important features:

• Records defined with Step-DL are composed of a set
of fields. Each field may be either a singular or array
type. Initially, the records are defined in terms of basic
field types such as int, string and data.2 Once a
record is defined, it may be used as a field type for
subsequent records.

• A list of interpretation attributes, including encoding
strategies, may be attached to any record or field struc-
ture. Attributes are grouped according to a particu-
lar function or application. For example, the current
groups include “encoding”, which specifies parame-
ters for the default encoding format; “map”, which in-
dicates a method for converting one record into an-
other (often useful when one event implies another);
and “property”, which indicates some inherent fea-
ture of the possible values.

• Record and field structures may be annotated with
descriptive labels, intended for use with automated vi-
sualization and analysis tools.

• Step-DL promotes the reuse of existing record defini-
tions by providing an object-oriented style single inher-
itance mechanism. The key feature of this approach is
the ability to inherit, extend or override the attribute
values of fields inherited from a parent record.

• Since some users may choose to create their own par-
ticular definitions for common events (e.g., allocations,
invokes, etc.), Step-DL allows similar definitions to
coexist through the use of packages.

To illustrate the features of Step-DL, Figure 2 shows an
excerpt from a definition hierarchy for JVMPI data. JVMPI -

Event records are marked with the property attribute “event”
to distinguish them as event records (vs. other, auxiliary
record types). All JVMPI events have an envId field that in-
dicates the thread in which the event occurred. The encoding
attributes indicate that such values should be encoded with
the “default” strategy (i.e., assume most values are the same,
default value). The following line (currently commented
out) indicates that such fields could also use the “identi-
fier” strategy (see section 3.3) for multi-threaded applica-
tions.3 OBJECT ALLOC events are derived from the common

2The data type is used to contain arbitrary binary data.
3The ~ operator is used to extend a field’s attributes. It is
most commonly used to extend the attributes of inherited
fields.

record JVMPI_Event
{

<property:"event">

int envId <property:"address">
<encoding:"size=4,default">;

// ~envId <encoding:"identifier">;
}

record OBJECT_ALLOC extends JVMPI_Event
{

int arenaId <property:"address">
<encoding:"size=4,identifier">;

// -> there should be a limited (small)
// number of these

int classId <property:"address">
<encoding:"size=4,identifier">;

// -> clearly an ID

int isArray <property:"unsigned">
<encoding:"size=1">;

// -> T/F only needs 1 byte

int size <property:"unsigned">;

int objId <property:"address">
<encoding:"size=4,delta=32768">;

// -> assume allocated address is within
// +/-32768 of last

}

Figure 2: A Step-DL definition

JVMPI Event type, inheriting the envId field and “event”
property attribute. The fields of an allocation record are
attributed to indicate various encoding approaches. One no-
table approach is the “delta” strategy used for objId fields,
which assumes that allocation addresses occur within 32768
of the last value and only transmits the difference (see Sam-
ples [19]).

2.1 Language Choices
Some of our design choices for Step-DL warrant a brief

explanation. We chose to allow inheritance of type defini-
tions because it is a well established and familiar means of
promoting reuse and extensibility. Our particular variant
considers the inheritance of data and attributes (as opposed
to data and functionality). Anticipating the wide variety
of possible uses for attributes as “interpretive directives,”
our approach was to avoid a particular syntax for attribute
values and instead separate the values into various groups
where each group defines the exact syntax and semantics of
the possible values. Users are free to add their own attribute
groups, and we are currently investigating the addition of
several tool-specific groups which could be used to further
automate the integration with various trace consumers.

3. ENCODING ARCHITECTURE
Our definition language provides a means for satisfying

the trace documentation requirement and a method for en-
couraging reuse. The architecture that accompanies Step

provides solutions for the compact encoding, encapsulation,
and flexibility requirements.

StepRecordOutput stepOut = new StepEncodedOutput(file);
stepOut.write(new OBJECT_ALLOCATION(...));

(a) Producer

StepRecordInput stepIn = new StepEncodedInput(file);
StepRecord record = stepIn.read();

(b) Consumer

Figure 3: The basic Step client interface

Figure 3 illustrates the basic client interface to a Step

stream. We present this rather trivial example to demon-
strate the simplicity of the basic interface. Once the records
have been defined, users need only concern themselves with
the data in object format. Encoding details such as the
byte ordering of integer values are completely hidden from
the client.

3.1 The Encoding Process
One of the key differences between Step and other trace

encoding systems is its use of an adaptive encoding process.
Instead of using a fixed encoding policy (or a dynamic pol-
icy with explicit changes, as is possible with Meta-TF), the
system monitors various characteristics of the input data
and, when appropriate, makes adjustments to the encoding
policy automatically. The process is implemented by as-
sociating each record type with a separate encoder object.
Each encoder encapsulates a policy for translating values of
the given type to and from the binary representation. Some
encoders implement a direct translation, while others imple-
ment a more sophisticated transformation based on proper-
ties of the underlying values. Encoders are arranged to form
a tree- or DAG-like hierarchy, with record encoders deferring
to sub-encoders to handle their various fields. The encoders
(represented in figure 1 by the “Encoding Strategies”) are
assembled, as needed at run-time, by querying a definition
object for the encoding attributes of a particular type. The
definition objects are constructed from the Step-DL defi-
nition for the given type. As records are received by the
system, the encoders adjust their internal policy based on
the parameters of their particular strategy, communicating
their state changes in the form of meta-events. When the
trace is decoded, the meta-events are applied so as to recre-
ate the same sequence of policy adjustments made by the
encoding process.

Encapsulating the encoding policies inside independent
objects provides a great deal of flexibility. Encoders may
be nested, chained or shared in a variety of ways and their
interface makes few assumptions about the data being en-
coded. The design facilitates experimentation with encoding
techniques, as new strategies can be added with only minor
modifications. Furthermore, if the definition for a particu-
lar trace record is not available during the decoding process,
the record is simply skipped with no effect on the other en-
coders.

3.2 Meta Records
The method of embedding policy changes directly in the

data stream presents a unique challenge. Consider a record
with an array field where one of the array values is irreg-
ular (thus requiring a meta-event). The meta-event can-
not simply be inserted before the encoded record since the

change to the decoder would be applied too early and the
first several array elements would be incorrectly decoded.
To address this problem, we use a special meta-record type,
which contains of the change information (i.e., an encoded
meta-event) along with partitioned record segments to be
read before and after the change is reflected in the decoder’s
policy. Meta-records provide a fully general solution to the
problem, allowing several meta-events to be applied at dif-
ferent points during the decoding of a record. Meta-records
may even contain other meta-records. This is often use-
ful as the meta-events are themselves implemented as Step

records and thus encoding them may generate meta-meta-
events. The result is a potentially recursive encoding process
Our implementation of the process attempts to address this
requirement while preserving the efficiency of normal record
encoding.

3.3 Identifier Data
One encoding strategy, in particular, has a significant ef-

fect on the compactness and compressibility of Step traces,
and warrants further discussion. The strategy arose from
an early observation that our traces often contained fields
that are limited to a certain fixed set of values. In our
examples, the fields were strings which we termed identi-
fiers. Clearly it is wasteful to store the full representation of
such values (e.g. “spec.benchmarks. 213 javac.Unsigned-

ShiftRightExpression” for a type field) in each record.
Instead, the identifier strategy encodes the values using a
compact integer ID, signalling the mapping of value to ID
with meta-events. The current version of Step, extends this
idea beyond string values to include arbitrary field data that
exhibit an identifier distribution. For example, the classId

field shown in Figure 2 encodes integer (address) values us-
ing the identifier strategy.

Experience has shown that a careful use of identifiers can
significantly reduce the average record size. In fact, prelim-
inary results indicate that the average field size can often
be reduced to just over 1 byte—a nearly optimal byte-level
encoding. This approach has important consequences with
regards to aggregate compression, in that it allows more
records to fit in a compressor’s pattern space while preserv-
ing the sequential regularity of the record data.

3.4 Additional Design Factors
Like the approach of Haines et al. [10], the Step system is

designed to embody the major elements of Booch’s [1] defi-
nition of an object model : abstraction (data objects appear
uniform, while they exhibit variable encoding), encapsula-
tion (clients are isolated from the encoding process), mod-
ularity and hierarchy (interpretation strategies are modular
and composable; record types are extensible). The system
also embodies some minor elements including typing, and
persistence.

4. EXPERIMENTS & EXPERIENCE
In an effort to examine the utility of Step, we considered

three distinct tests of the system: 1) expressing a complex
set of trace data with Step-DL, 2) adapting several tools
to read Step traces and 3) evaluating the compressibility of
the encoding format.

4.1 Using STEP-DL
To test the expressiveness of Step-DL, we proceeded to

define a reasonably complete set of events generated by a
Java Virtual Machine. Our definition included common Java
entities such as classes, methods and fields; VM entities such
as bytecode addresses, and events such as allocations and in-
vocations; and a complete hierarchy of bytecode events. We
also defined a hierarchy for JVMPI event data, a portion of
which is illustrated in Figure 2. The result was a successful
exercise that produced over 300 record types and explored
virtually every feature in the language.

4.2 Client Integration
One of the primary motivations in developing Step was

our need for a general interface to trace data that could be
used by a variety of different trace generators, visualizers
and analysis tools. We created Step traces using several
data sources, including JVMPI data, instrumented byte-
code and an instrumented JVM. The resulting traces were
used as input for two significantly different trace consumers:
EVolve [27], an extensible tool for graphically analyzing
event-based data, and JIMPLEX/JIL [6], a system for brows-
ing intermediate Java code representations augmented with
static and dynamic properties. Using the simple Step in-
terface, we were able to quickly and easily adapt these tools
to read the same traces. In fact, the process of adapting
the tools was so simple that it motivated our refactoring
of Step-DL attributes to support supplemental methods of
interpretation and translation.

4.3 Trace Compression
We applied Step to a series of allocation traces (includ-

ing frees and GC events) obtained from a JVMPI profiling
agent. The results are summarized in table 1. The traces
were initially recorded in a “raw” binary format, using a
single byte to mark the event type. The raw format used
roughly 17 bytes per record (BPR) on average, whereas the
Step encoding often used 1/3 the number of bytes (with cer-
tain anomalies, believed to be the result of multi-threading).
Furthermore the Step traces were more compressible than
the raw format using standard tools such as gzip [8] and
bzip2 [21]. Overall, the compressed Step traces reduced the
raw data to roughly 5% of its original size; and even better
compression was possible when the traces were restricted to
only allocation events. This appears to be a significant im-
provement over comparable results presented by Chilimbi et
al..

As Samples [19] points out in his work on address trace
compression, the choice of record encoding strategy can have
a dramatic effect on the overall reduction achieved by apply-
ing sequential compression algorithms such as those of Ziv
& Lempel [28] and Burrows & Wheeler [4]. We attribute
the compactness and compressibility of our heterogeneous,
example traces to two factors: 1) The appropriate use of en-
coding strategies reduced the average field size to a nearly
optimal byte-level encoding. 2) Secondary patterns in the
Step format (such as identifier values) resulted in a fur-
ther skewing of the byte value distribution, thus artificially
increasing the probability of certain byte sequences.

5. RELATED WORK
There is a large body of work devoted to the collection,

compression and analysis of program trace data. We do not

attempt to present a complete overview of this work.
Shende et al. developed TAU [22] for profiling C++ ap-

plications, and Reiss & Renieris [18] developed a system for
profiling C, C++ and Java. While these systems bear re-
semblance to Step and present several novel approaches to
encoding, they focus primarily on invocation data and do
not document their format or suggest how it might be ex-
tended.

The majority of work on program tracing relates to the
collection and use of address traces. Uhlig and Mudge [25]
survey much of this work and review a number of the lossy
and lossless reduction techniques for address traces. The
best lossless methods are based on variants of Samples’ dif-
ference technique [19]. Fox & Grün [7] suggest a novel ex-
tension of this approach based on dynamic discovery of a
program’s structure, although it is unclear whether the tech-
nique could be generalized to other types of trace data.

A number of “standard” trace formats have been pro-
posed; examples include: PDATS [14], MaStA I/O [20],
POSSE [11] and HATF [5]. These formats each focus on a
particular domain, and are not compatible with each other.

It is important to contrast Step from program instrumen-
tation systems such as ATOM [24] or EEL [16]. Step is a
trace encoding system. And although our experiments have
focused on Java programs, the system does not make any
assumptions about the data source, other than the regular-
ity characteristic common to program traces. Also, Step is
not designed as a replacement for existing profile tools such
as OptimizeIt [2], JProbe [23] or Jinsight [12]. Our goal is to
provide a standard trace representation, so that a variety of
tools can analyze the same trace, thus reducing development
overhead and providing a means for meaningful comparison
of results.

Tailored languages for the automated generation of file
manipulation tools have been in use for many years (see,
for example [17]). Our particular use of an object-oriented
approach was inspired by the SmartFile system [10], used
to encode scientific data files. Our approach differs, how-
ever, in that we focus on records as extensible objects in-
stead of the entire file format. The Meta-TF system (first
presented in [5], later refined in [15] and used to instanti-
ate the HATF standard) bears a close resemblance to Step

and, in fact, was the primary inspiration for our overall ap-
proach. However, Step differs from Meta-TF in its more
general and extensible approach to data types and encod-
ing strategies. Some of the particular differences include
inheritance of record types, generalized identifier encoding,
and extended support for interpretation attributes. Further-
more, by associating the encoding strategies with individual
record types (as opposed to the system as a whole), the same
interface may be used by all clients of the system—thus en-
abling a more general approach to visualization and analysis
of arbitrary trace data.

6. SUMMARY
We have presented Step, a system designed to facilitate

the definition, encoding and sharing of arbitrary program
trace data. The system was motivated by the need to cap-
ture the rich variety of events and behaviors exhibited by
modern software systems such as Java programs running on
a Java Virtual Machine.

The system includes a powerful data definition language,
Step-DL, which includes features such as type inheritance

Benchmark Raw Size Raw BPR Raw.gz Size Step Size Step BPR Step.gz Size % of raw size

sablecc 1083.42 MB 17.12 175.80 MB 417.11 MB 6.59 45.41 MB 4.19%
soot∗ 2048.00 MB 17.05 367.10 MB 1508.52 MB 12.56 108.80 MB 5.31%
compress 0.38 MB 19.64 0.08 MB 0.13 MB 7.05 0.03 MB 8.23%
jess 257.57 MB 17.00 46.70 MB 99.45 MB 6.56 12.21 MB 4.74%
db 104.27 MB 17.01 14.60 MB 36.78 MB 6.00 3.69 MB 3.54%
javac 205.55 MB 16.93 39.38 MB 79.20 MB 6.53 11.56 MB 5.62%
mpegaudio 0.49 MB 19.99 0.10 MB 0.17 MB 6.98 0.04 MB 7.22%
mtrt 215.55 MB 17.00 36.25 MB 226.16 MB 17.83 12.02 MB 5.58%
jack 194.01 MB 17.01 34.94 MB 68.62 MB 6.02 8.79 MB 4.53%

∗Truncated at file size limit.

Table 1: Compression of Step trace files.

and generalized attribute support. The stepc compiler uses
the record and attribute definitions to generate a client in-
terface with a set of encoding strategies. The system pro-
vides a complete encoding architecture, including a number
of default encoding strategies.

The design of the system addresses a number of require-
ments including: a flexible and compact encoding format,
integrated documentation, encapsulation of the encoding de-
tails and support for inheritance-based reuse. The features
of the system build on a number of existing approaches to
provide an effective and general solution.

We have tested the expressiveness of the definition lan-
guage, the ease of integration with other tools, and the ef-
fectiveness of the default reduction strategies. Overall, we
are pleased with the resulting utility of the system.

7. FUTURE WORK
We are currently exploring a number of uses and exten-

sions of the Step system. As mentioned in section 5, there is
a wide range of literature regarding trace reduction strate-
gies. Based on this work, we hope to expand the set of
default Step encoding strategies to provide a wider range
of support for common data elements. Section 2 mentions
that the stepc compiler may be extended to recognize var-
ious Step-DL attributes. Using this mechanism, we are
currently working on extensions to automate the generation
of interface code for tools such as EVolve [27]. We also hope
to develop automated filtering and augmenting tools, which
either remove or supplement the records in a trace. Efforts
are underway to develop other analysis tools that read Step

traces—including tools for statistical and pattern analysis.
Also, we plan to use Step as the basis for a comprehensive
study of Java benchmark programs.

Acknowledgements
This work was funded by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). Many thanks to
members of McGill’s Sable Research Group for their con-
tinued support of the project and instrumental help in es-
tablishing the objectives of the system, and designing the
syntax and semantics of Step-DL.

8. REFERENCES
[1] G. Booch. Object-Oriented Analysis and Design with

Applications. Addison-Wesley Object Technology
Series. Addison-Wesley, Reading, MA, USA, 2nd
edition, 1994.

[2] Borland Software Corp. OptimizeItTM suite.
<http://www.borland.com/optimizeit/>.

[3] R. Brown, K. Driesen, D. Eng, L. Hendren,
J. Jorgensen, C. Verbrugge, and Q. Wang. STOOP:
The Sable toolkit for object-oriented profiling. Sable
Technical Report 2001-2, Sable Research Group,
McGill University, Montréal, QC, Canada, Nov. 2001.

[4] M. Burrows and D. J. Wheeler. A block-sorting
lossless data compression algorithm. Technical Report
124, Digital SRC Research, Palo Alto, CA, USA, May
1994.

[5] T. Chilimbi, R. Jones, and B. Zorn. Designing a trace
format for heap allocation events. In Proceedings of
the ACM SIGPLAN International Symposium on
Memory Management (ISMM), pages 35–49,
Minneapolis, MN, USA, Oct. 2000. ACM Press.

[6] D. Eng. Combining static and dynamic data in code
visualization. In Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Anaylsis
for Software Tools and Engineering (PASTE),
Charleston, SC, USA, Nov. 2002. ACM Press.

[7] A. Fox and T. Grün. Compressing address trace data
for cache simulations. Technical Report SFB 124, D4,
Universität des Saarlandes, Saarbrücken, Germany,
July 1996.

[8] J.-l. Gailly, M. Adler, and t. Free Software Foundation,
Inc. The gzip (GNU zip) compression tool.
<http://www.gzip.org/>.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley,
Reading, MA, USA, 1995.

[10] M. Haines, P. Mehrotra, and J. Van Rosendale.
SmartFiles: An OO approach to data file
interoperability. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages
453–466, Austin, TX, USA, 1995. ACM Press.

[11] T. O. Humphries, A. W. Klauser, A. L. Wolf, and
B. G. Zorn. The POSSE trace format version 1.0.
Technical Report CU-CS-897-00, Department of
Computer Science, University of Colorado, Boulder,
CO, USA, Jan. 2000.

[12] IBM Research. Jinsight.
<http://www.research.ibm.com/jinsight/>.

[13] Standard Generalized Markup Language (SGML).
ISO Standard 8879, International Organization for
Standardization, 1986.

[14] E. E. Johnson, J. Ha, and M. Baqar Zaidi. Lossless
trace compression. IEEE Transactions on Computers,
50(2):158–173, Feb. 2001.

[15] R. Jones. Specifying trace formats: MetaTF 1.2.1.
Canterbury, Kent, UK, Mar. 2001.

[16] J. R. Larus and E. Schnarr. EEL:
Machine-independent executable editing. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 291–300, La Jolla, CA, USA, 1995.
ACM Press.

[17] L. M. Norton. A program generator package for
management of data files–the input language. In
Proceedings of the ACM Annual Conference, pages
217–222, Washington, DC, USA, 1978. ACM Press.

[18] S. P. Reiss and M. Renieris. Encoding program
executions. In Proceedings of the ACM
SIGSOFT-SIGPLAN/IEEE Computer Society
International Conference on Software Engineering
(ICSE), pages 221–230, Toronto, ON, Canada, 2001.
IEEE Computer Society Press.

[19] A. D. Samples. Mache: No-loss trace compaction. In
Proceedings of the ACM SIGMETRICS International
Conference on Measurement and Modeling of
Computer Systems, pages 89–97, Oakland, CA, USA,
1989. ACM Press.

[20] S. J. G. Scheuerl, R. C. H. Connor, R. Morrison,
J. E. B. Moss, and D. S. Munro. The MaStA I/O
trace format. Technical Report CS/95/4, School of
Mathematical and Computational Sciences, University
of St Andrews, North Haugh, St Andrews, Fife,
Scotland, 1995.

[21] J. R. Seward. The bzip2 compression tool.
<http://sources.redhat.com/bzip2/>.

[22] S. Shende, A. D. Malony, J. Cuny, P. Beckman,
S. Karmesin, and K. Lindlan. Portable profiling and
tracing for parallel, scientific applications using C++.
In Proceedings of the SIGMETRICS symposium on
Parallel and distributed tools, pages 134–145, Welches,
OR, USA, 1998. ACM Press.

[23] Sitraka, Inc. JProbe.
<http://www.sitraka.com/software/jprobe/>.

[24] A. Srivastava and A. Eustace. ATOM: A system for
building customized program analysis tools. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 196–205, Orlando, FL, USA, 1994.
ACM Press.

[25] R. A. Uhlig and T. N. Mudge. Trace-driven memory
simulation: A survey. ACM Computing Surveys,
29(2):128–170, June 1997.

[26] Extensible Markup Language (XML) 1.0. W3C
recommendation, World Wide Web Consortium, 2000.
<http://www.w3.org/TR/REC-xml>.

[27] Q. Wang, R. Brown, K. Driesen, L. Hendren, and
C. Verbrugge. EVolve: An extensible software
visualization framework. Sable Technical Report
2002-6, Sable Research Group, McGill University,
Montréal, QC, Canada, June 2002.

[28] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, IT-23(3):337–343, May 1977.

APPENDIX

A. STEP-DL 1.0 SYNTAX

EBNF
<def file> ::= <definition>*

<definition> ::=

‘package’ <name> ‘{’ <definition>* ‘}’ |

‘record’ <name> <label>?

(‘extends’ ‘!’? <record name>)? ‘{’

<description>?

<attribute>*

<field list>*

<field modifier>*

‘}’

<attribute> ::= ‘<’ <group> ‘:’ <value> ‘>’

<field list> ::=

<attributed type>

<field def> (‘,’ <field def>)* ‘;’

<attributed type> ::= <type> <attribute>*

<field def> ::= <name> <description>? <attribute>*

<field modifier> ::=

(‘~’ | ‘!’) <field name> <attribute>+ ‘;’

<type> ::=

‘int’ |

‘string’ |

‘data’ |

<user type name> |

<attributed type> ‘[]’

Notes
• Step-DL files are expressed in standard ASCII text.

• Type names may be relative to the current package or
absolute.

• Attribute group names are standard identifiers. At-
tribute values are standard string literals.

• Field modifiers may be applied to any previously de-
fined field (local or inherited). Modifier names may be
qualified (using the . symbol) to refer to sub-fields
(e.g., x.length refers to the length field of string

types).

• In general, attributes are interpreted left to right and
top to bottom (i.e., definitions first, then modifiers).
The specific rules regarding which values dominate, or
take precedence over others is deferred to the definition
of the particular attribute group.

• Comment formats include ‘//’ and ‘#’ single line, and
‘/* */’ multi-line variants.

B. STANDARD ENCODING ATTRIBUTES
The encoding attribute group is the most prominent and

integral to the Step system. The encoding techniques fall
into 3 categories: general regularity strategies, which may
be applied to any data value; specific regularity strategies,
which target a particular data type; and simple, property
based rules. The precedence of encoding strategies is based
on these three categories. First, the most recent general
strategy is applied. If an irregular value is encountered,
the next available rule is used: either a targeted strategy
or basic rule. Again, if a targeted strategy encounters an
irregular value, it defers to the most recently defined basic
rules. If no basic rule is given, the encoder factory assigns
certain default rules. When a strategy must defer to its
subordinate, the irregular value is indicated through the use
of a meta-event record.

B.1 General Strategies

identifier

This strategy is applied when the values are expected
to derive from a relatively small, fixed distribution.
As new values are encountered, they are written as
< value, ID > pairs. All subsequent occurrences of
the value result in only the ID being written to the
trace. The decoder reads the IDs and converts them to
values based on the initial mapping.

constant

This strategy assumes that all values for the given field
are the same. The value is only written for the initial
occurrence. If any subsequent value differs from the
initial value, an error is generated.

default

This strategy is similar the the constant strategy, but
deviant values are allowed and are signalled with meta-
data. This strategy is effective for fields which almost
always have the same value.

B.2 Integer Strategies
Integer (int) field values may be encoded using a variety

of targeted strategies and basic rules.

B.2.1 Targeted Strategies

delta=threshold

This strategy assumes that values are generally within
+/-threshold of the previous value, and only encodes
the difference. This is a version of Samples’ difference
technique [19]. The strategy is useful for data such as
allocation addresses where the values often exhibit a
sequentially increasing pattern.

stride=increment

This strategy assumes that values occur with a regular
increment from the previous value. In such cases, noth-
ing is written to the trace and the decoder reconstructs
the value from the previous value and the increment.

offset=base

This strategy assumes that values are clustered about
a given base value and that it is more economical to
transmit the difference from the base than the absolute
value.

window=threshold

This strategy can be viewed as an adaptive version of

the offset strategy. The initial value is used as the base,
and subsequent values are encoded as the offset from
the initial value. If the difference exceeds the given
threshold, the base is shifted.

B.2.2 Basic Rules

size=fixed | start.. | min+ | creep

The number of bytes used for an integer value (i.e., its
size) can be defined in a number of ways. The rule
may state that values always use the same fixed num-
ber of bytes. The rule may begin using a particular
size, and then grow to use more bytes as larger values
are encountered. The resizing may be elastic, in the
case where values requiring more than the minimum
are rare. Finally, a variable size encoding may be used,
where the high bit of each byte is used to signal whether
more bytes should be read. The default rule is to use
the variable size “creep” rule.

unsigned

Values that are always ≥ 0 are indicated as unsigned.
This rule is implied by the property attributes “un-
signed” and “address”, and is often omitted in favor of
the property version.

B.3 String Rules
String (string) types currently have just a single basic

rule which states character encoding of the string in bytes.

charset=UTF-8 | US-ASCII | ...

The encoding of string values parallels Java’s string
encoding rules. The default rule is to encode values
using the UTF-8 character set.

B.4 Record Rules

type=variable | default | constant

Since Step supports inheritance of record types, it is
possible that sub-types may be used in the place of a
field’s defined type. To avoid object slicing, the record
encoder must indicate the type of the specific value.
The strategy for tagging the type of a record value as-
sumes that either a) the types are uniform, in which
case the default or constant options are appropriate,
or that b) a number of different types are used, in which
case the variable option (based on the identifier

strategy) is a better choice.

General Notes
• string, data and array objects write a length field

when encoded. The length encoding strategy may be
adjusted with a relative modifier (e.g., ~x.length

<encoding:"default">).

• The strategy for elements of an array field can also be
changed by applying a modifier to the element field.

