
Effective Inline-Threaded Interpretation of Java

Bytecode Using Preparation Sequences?

Etienne Gagnon and Laurie Hendren

Sable Research Group
Université du Québec à Montréal and McGill University

Montreal, Canada
[etienne.gagnon@uqam.ca,hendren@cs.mcgill.ca]

Abstract. Inline-threaded interpretation is a recent technique that im-
proves performance by eliminating dispatch overhead within basic blocks
for interpreters written in C [11]. The dynamic class loading, lazy class
initialization, and multi-threading features of Java reduce the effective-
ness of a straight-forward implementation of this technique within Java
interpreters. In this paper, we introduce preparation sequences, a new
technique that solves the particular challenge of effectively inline-threa-
ding Java. We have implemented our technique in the SableVM Java
virtual machine, and our experimental results show that using our tech-
nique, inline-threaded interpretation of Java, on a set of benchmarks,
achieves a speedup ranging from 1.20 to 2.41 over switch-based inter-
pretation, and a speedup ranging from 1.15 to 2.14 over direct-threaded
interpretation.

1 Introduction

One of the main advantages of interpreters written in high-level languages is their
simplicity and portability, when compared to static and dynamic compiler-based
systems. One of their main drawbacks is poor performance, due to a high cost for
dispatching interpreted instructions. In [11], Piumarta and Riccardi introduced
a technique called inlined-threading which reduces this overhead by dynamically
inlining instruction sequences within basic blocks, leaving a single instruction
dispatch at the end of each sequence. To our knowledge, inlined-threading has
not been applied to Java interpreters before.

Applying this inline-threaded technique within an interpreter-based Java vir-
tual machine (JVM) is unfortunately difficult, as Java has features that conflict
with a straight-forward implementation of the technique. In particular, the JVM
specification [9] mandates lazy class initialization, permits lazy class loading and
linking, and mandates support for multi-threading. Efficient implementation of
laziness requires in-place code replacement which is a delicate operation to do
within a multi-threaded environment. In this paper, we introduce a technique

? This research was partly supported by NSERC, FCAR and Hydro-Québec.

called preparation sequences which solves the synchronization and shorter se-
quence problems caused by in-place code replacement within an inline-threaded
interpreter-based JVM.

This paper is structured as follows. In Section 2 we briefly describe some
interpreter instruction dispatch techniques, including inline-threading. Then, in
Section 3 we discuss the difficulty of applying the inline-threaded technique in
a Java interpreter. Next, in section 4 we introduce our preparation sequences

technique. In Section 5, we present our experimental results within the SableVM

framework. In Section 6 we discuss related work. Finally, in Section 7, we present
our conclusions.

2 Dispatch Types

In this section, we describe three dispatch mechanisms generally used for imple-
menting interpreters.

Switching A typical bytecode interpreter loads a bytecode program from disk
using standard file operations, and stores instructions into an array. It then dis-
patches instructions using a simple loop-embedded switch statement, as shown
in Figure 1(a). This approach has performance drawbacks. Dispatching instruc-
tions is very expensive. A typical compilation of the dispatch loop requires a
minimum of 3 control transfer machine instructions per iteration: one to jump
from the previous bytecode implementation to the head of the loop, one to test
whether the bytecode is within the bounds of handled switch-case values, and
one to transfer control to the selected case statement. On modern processors,
control transfer is one of the main obstacles to performance [7], so this dispatch
mechanism causes significant overhead.

Direct-Threading This technique was popularized by the Forth programming
language [5]. Direct-threading improves on switch-based dispatch by eliminating
central dispatch. In the executable code stream, each bytecode is replaced by
the address of its associated implementation. This reduces, to one, the number
of control transfer instructions per dispatch. Direct-threading is illustrated in
Figure 1(b)1.

Inline-Threading This technique, recently introduced in [11], improves upon
direct-threading by eliminating dispatch overhead for instructions within a basic

block [1]. The general idea is to identify instruction sequences forming basic
blocks, within the code array, then to dynamically create a new implementation
for the whole sequence by sequentially copying the body of each implementation
into a new buffer, then copying the dispatch code at the end. Finally a pointer to

1 Figure 1(b) uses the label-as-value GNU C extension, but direct-threading can also
be implemented using a couple of macros containing inline assembly.

(a) Pure Switch-Based Interpreter (b) Direct-Threaded Interpreter

char code[CODESIZE];
char *pc = code;
int stack[STACKSIZE];
int *sp = stack;

/* load bytecodes from file and
store them in code[] */

...
/* dispatch loop */
while(true) {

switch(*pc++) {
case ICONST_1: *sp++ = 1; break;
case ICONST_2: *sp++ = 2; break;
case IADD: --sp; sp[-1] += *sp; break;
...
case END: exit(0);

}}

/* code */
void *code[] = {
&&ICONST_2, &&ICONST_2,
&&ICONST_1, &&IADD, ...

}
void **pc = code;

/* dispatch first instruction */
goto **(pc++);

/* implementations */
ICONST_1: *sp++ = 1; goto **(pc++);
ICONST_2: *sp++ = 2; goto **(pc++);
IADD: --sp; sp[-1] += *sp;

goto **(pc++);
...

Fig. 1. Switch and Direct-Threaded Interpreters

this sequence implementation is stored into the code array, replacing the original
bytecode of the first instruction in the sequence. Figure 2 illustrates the creation
of an instruction sequence implementation and shows an abstract source code

representation of the resulting inlined instruction sequence implementation.

Inline-threading improves performance by reducing the overhead due to dis-
patch. This is particularly effective for sequences of simple instructions, which
have a high dispatch to real work ratio. Unfortunately, not all instructions can
be inlined. Inlining instructions that contain C function calls, hidden (compiler
generated) function calls, or even simple conditional expressions (in presence of
some compiler optimizations) can prevent inlining2.

3 The Difficulty of Inline-Threading Java

Lazy Loading and Preparation In Java, classes are dynamically loaded.
The JVM Specification [9] allows a virtual machine to eagerly or lazily load
classes (or anything in between). But this flexibility does not extend to class

initialization3 . Class initialization must occur at specific execution points, such
as the first invocation of a static method or the first access to a static field of
a class. Lazily loading classes has many advantages: it saves memory, reduces
network traffic, and reduces startup overhead.

Inline-threading requires analyzing a bytecode array to determine basic blo-

cks, allocating and preparing implementation sequences, and lastly preparing
a code array. As this preparation is time and space consuming, it is advisable
to only prepare methods that will actually be executed. This can be achieved
through lazy method preparation.

2 The target of a relative branch instruction might be invalid in the inlined instruction
copy.

3 Class initialization consists of initializing static fields and executing static class ini-
tializers.

(a) Instruction Implementations (c) Inlined Instruction Sequence

ICONST_1_START: *sp++ = 1;
ICONST_1_END: goto **(pc++);

INEG_START: sp[-1] = -sp[-1];
INEG_END: goto **(pc++);

DISPATCH_START: goto **(pc++);
DISPATCH_END: ;

ICONST_1 body: *sp++ = 1;
INEG body : sp[-1] = -sp[-1];
DISPATCH body: goto **(pc++);

(b) Sequence Computation

/* Implement the sequence ICONST_1 INEG */
size_t iconst_size = (&&ICONST_1_END - &&ICONST_1_START);
size_t ineg_size = (&&INEG_END - &&INEG_START);
size_t dispatch_size = (&&DISPATCH_END - &&DISPATCH_START);

void *buf = malloc(iconst_size + ineg_size + dispatch_size);
void *current = buf;

memcpy(current, &&ICONST_START, iconst_size); current += iconst_size;
memcpy(current, &&INEG_START, ineg_size); current += ineg_size;
memcpy(current, &&DISPATCH_START, dispatch_size);
...
/* Now, it is possible to execute the sequence using: */
goto **buf;

Fig. 2. Inlining a Sequence

Performance Issue Lazy preparation (and loading), which aims at improving
performance, can pose a performance problem within a multi-threaded4 environ-
ment. The problem is that, in order to prevent corruption of the internal data
structure of the virtual machine, concurrent preparation of the same method (or
class) on distinct Java threads should not be allowed.

The natural approach, for preventing concurrent preparation, is to use syn-
chronization primitives such as pthread mutexes5. But, this approach can have a
very high performance penalty; in a naive implementation, it adds synchroniza-
tion overhead to every method call throughout a program’s execution, which is
clearly unacceptable, specially for multi-threaded Java applications.

Broken Sequences An important performance factor of inline-threading is the
length of inlined instruction sequences. Longer sequences reduce the dispatch-
to-real work ratio and lead to improved performance. Lazy class initialization
mandates that the first call to a static method (or access to a static field) must
cause initialization of a class. This implies (in a naive Java virtual machine im-
plementation) that instructions such as GETSTATICmust use a conditional to test
whether the target class must be initialized prior to performing the static field
access. If initialization is required, a call to the initialization function must be
made. The conditional and the C function call prevent inlining of the GETSTATIC
instruction.

What we would like, is to use two versions of the GETSTATIC instruction, as
shown in Figure 3 and replace the slow synchronized version by the fast version

4 Note that multi-threading is a concurrent programming technique which is inherently
supported in Java, whereas inline-threading is an instruction dispatch technique.

5 POSIX Threads mutual exclusive locks.

after initialization. Unfortunately this does not completely solve our performance
problem. Even though this technique eliminates synchronization overhead from
most executions of the GETSTATIC instruction, it inhibits the removal of dispatch
code in an instruction which has very little real work to do. In fact, the cost can
be as high as the execution of two additional dispatches. To measure this, we
compare the cost of two inline-threaded instruction sequences that only differ in
their respective use of ILOAD and GETSTATIC in the middle of the sequence.

Synchronized GETSTATIC Unsynchronized GETSTATIC

GETSTATIC_INIT: /* pseudo-code */

pthread_mutex_lock(...);

/* lazily load class */
...
/* conditional & function call */
if (must_initialize)

initialize_class(...);
/* do the real work */
*sp++ = class.static_field;
/* replace by fast version */
code[pc -1] = &&GETSTATIC_NO_INIT;

pthread_mutex_unlock(...);

/* dispatch */
goto **(pc++);

GETSTATIC_NO_INIT: /* pseudo-code */

/* do the real work */
*sp++ = class.static_field;

/* dispatch */
goto **(pc++);

Fig. 3. GETSTATIC With and Without Initialization

Broken Sequence Cost If we had the sequence of instructions ICONST2-

-ILOAD-IADD, we could build a single inlined sequence for these three instruc-
tions, adding a single dispatch at the end of this sequence. Cost: 3×realwork+1×
dispatch. If, instead, we had the sequence of instructions ICONST2-GETSTATIC-
-IADD, we would not be allowed to create a single inlined sequence for the three
instructions. This is because, in the prepared code array, we would need to put
3 distinct instructions: ICONST2, GETSTATIC INIT, and IADD, where the middle
instruction cannot be inlined. Even though the GETSTATIC INIT will eventually
be replaced by the more efficient GETSTATIC NO INIT, the performance cost, af-
ter replacement, will remain: 3 × realwork + 3 × dispatch. So, the overhead of
a broken sequence can be as high as two additional dispatches.

Two-Values Replacement In reality, the problem is even a little deeper. The
pseudo-code of Figure 3 hides the fact that GETSTATIC INIT needs to replace two
values, in the code array: the instruction opcode and its operand. The idea is
that we want the address of the static variable as an operand (not an indirect
pointer) to achieve maximum efficiency, as shown in Figure 4. But this pointer is
unavailable at the time of preparation of the code array, as lazy class loading only
takes place later, within the implementation of the GETSTATIC INIT instruction.

Fast Instruction Code Array

GETSTATIC_NO_INIT:
{ int *pvalue =

(pc++)->pvalue;
*sp++ = *pvalue;

}
/* dispatch */
goto **(pc++);

/* Initially */
...
[GETSTATIC_INIT]
[POINTER_TO_FIELD_INFO]
...
/* After first execution */
...
[GETSTATIC_NO_INIT]
[POINTER_TO_FIELD]
...

Fig. 4. Two-Values Replacement in Code Array

Replacing two values without synchronization creates a race condition. Here
is a short illustration of the problem. A first Java thread reads both initial values,
does the instruction work, then replaces the first of the two values. At this exact
point of time (before the second value is replaced), a second Java thread reads
the two values (instruction and operand) from memory. The second Java thread
will thus get the fast instruction opcode and the old field info pointer. This can
of course lead to random execution problems.

4 Preparation Sequences

In this section, we first introduce an incomplete solution to the problems dis-
cussed in Section 3, then we introduce our preparation sequences technique.

Incomplete Solution The two problems we face are two-values replacement,
and shorter sequences caused by the slow preparation version of instructions such
as GETSTATIC. Of course, there is a simple solution to two-values replacement
that consists of using single-value replacement6 and an indirection in the fast

version of instructions, as shown in Figure 5. Note how this implementation
differs from Figure 4; in particular the additional fieldinfo indirection. This
simple solutions comes at a price, though: that of an additional indirection in
a very simple instruction. Furthermore, this solution does not solve the shorter
sequences problem.

The Basic Idea Instead, we propose a solution that solves both problems. This
solution consists of adding preparation sequences in the code array. The basic idea
of preparation sequences is to duplicate certain portions of the code array, leaving
fast inlined-sequences in the main copy, and using slower, synchronized, non-
inlined preparation version of instructions in the copy. Single-value replacement
is then used to direct control flow appropriately.

6 Single-value replacement does not require synchronization when there is a single
aligned word to change.

Fast Instruction with Indirection Code Array

GETSTATIC_NO_INIT:
{ int *pvalue =

(pc++)->fieldinfo->pvalue;
*sp++ = *pvalue;

}
/* dispatch */
goto **(pc++);

/* Initially */
...
[GETSTATIC_INIT]
[POINTER_TO_FIELD_INFO]
...

/* After first execution */
...
[GETSTATIC_NO_INIT]
[POINTER_TO_FIELD_INFO]
...

Fig. 5. Single-Value Replacement of GETSTATIC

Single-Instruction Preparation Sequence Preparation sequences are best
explained using a simple illustrative example. We continue with our GETSTATIC
example. We assume, for the moment, that the GETSTATIC instruction is pre-
ceded and followed by non-inlinable instructions, in the code array. An appro-
priate instruction sequence would be MONITORENTER-GETSTATIC-MONITOREXIT,
as neither monitor instruction is inlinable.

Figure 6, (a) and (b), illustrates the initial content of a prepared code ar-
ray containing the above 3-instructions sequence. The GETSTATIC preparation

sequence appears at the end of the code array. The initial content of the code ar-
ray is as follows. After the MONITORENTER, we insert a GOTO instruction followed
by two operands: (i) the address of the GETSTATIC preparation sequence, and
(ii) an additional word (initially NULL) which will eventually hold a pointer to
the static field. At the end of the code array, we add a preparation sequence,
which consists of 3 instructions (identified by a *) along with their operands.

Figure 6, (c) to (f), shows the implementation of four instructions: GOTO,
REPLACE, GETSTATIC INIT, and GETSTATIC NO INIT. Notice that in the prepa-
ration sequence, the GETSTATIC NO INIT opcode is used as an operand to the
REPLACE instruction.

We used labels (e.g. SEQUENCE 1:) to represent the address of specific op-
codes. In the real code array, absolute addresses are stored in opcodes such as
[@ SEQUENCE 1].

Here is how execution proceeds. On the first execution of this portion of the
code, the MONITORENTER instruction is executed. Then, the GOTO instruction is
executed, reading its destination in the following word. The destination is the
SEQUENCE 1 label, or more accurately, the GETSTATIC INIT opcode, at the head
of the preparation sequence.

The GETSTATIC INIT instruction then reads two operands: (a) a pointer to
the field information structure, and (b) a destination pointer for storing a pointer
to the resolved static field. It then proceeds normally, loading and initializing
the class, and resolving the field, if it hasn’t yet been done7. Then, it stores
the address of the resolved field in the destination location. Notice that, in the
present case, this means that the pointer-to-field will overwrite the NULL value

7 Each field is only resolved once, yet there can be many GETSTATIC instructions
accessing this field. The same holds for class loading and initialization.

(a) Original (b) Initial Content of
Bytecode Code Array (c) GETSTATIC INIT

...

...
MONITORENTER
GETSTATIC
INDEXBYTE1
INDEXBYTE2
MONITOREXIT
...
...

...

...
[MONITORENTER]*

OPCODE_1: [GOTO]*
[@ SEQUENCE_1]

OPERAND_1: [NULL_POINTER]
NEXT_1: [MONITOREXIT]*

...

...
SEQUENCE_1: [GETSTATIC_INIT]*

[POINTER_TO_FIELDINFO]
[@ OPERAND_1]
[REPLACE]*
[GETSTATIC_NO_INIT]
[@ OPCODE_1]
[GOTO]*
[@ NEXT_1]

Opcodes followed by a * are
instructions.

GETSTATIC_INIT:
{ fieldinfo_t *fieldinfo =

(pc++)->fieldinfo;
int **destination =

(pc++)->ppint;
pthread_mutex_lock(...);
/* lazily load and initialize

class, and resolve field */
...
/* store field information in

code array */
*destination =

fieldinfo->pvalue;
/* do the real work */
*sp++ = *(fieldinfo->pvalue);
pthread_mutex_unlock(...);

}
/* dispatch */
goto **(pc++);

(d) GETSTATIC NO INIT (e) GOTO (f) REPLACE

GETSTATIC_NO_INIT:
/* skip address */
pc++;
{ int *pvalue =

(pc++)->pvalue;
/* do the real work */
*sp++ = *pvalue;

}
/* dispatch */
goto **(pc++);

GOTO:
{ void *address =

(pc++)->address;
pc = address;

}
/* dispatch */
goto **(pc++);

REPLACE:
{ void *instruction =

(pc++)->instruction;
void **destination =

(pc++)->ppvoid;
*destination =

instruction;
}
/* dispatch */
goto **(pc++);

Fig. 6. Single GETSTATIC Preparation Sequence

at label OPERAND 1. Finally, it executes the real work portion of the instruction,
and dispatches to the next instruction.

The next instruction is a special one, called REPLACE, which simply stores
the value of its first operand into the address pointed-to by its second operand.
In this particular case, a pointer to the GETSTATIC NO INIT instruction will be
stored at label OPCODE 1, overwriting the former GOTO instruction pointer. This
constitutes, in fact, our single-value replacement.

The next instruction is simply a GOTO used to exit the preparation sequence.
It jumps to the instruction following the original GETSTATIC bytecode, which in
our specific case is the MONITOREXIT instruction.

Future executions of the same portion of the code array will see a GETSTA-

TIC NO INIT instruction (at label OPCODE 1), instead of a GOTO to the preparation

sequence. Two-values replacement is avoided by leaving the GOTO operand address
in place. Notice how the implementation of GETSTATIC NO INIT in Figure 6 (d)
differs from the implementation in Figure 4, by an additional pc++ to skip the
address operand.

Some Explanations Our single-instruction preparation sequence has avoided
two-values replacement by using an extra word to permanently store a prepara-

tion sequence address operand, even though this address is useless after initial
execution.

This approach adds some overhead in the fast version of the overloaded in-
struction; that of a program-counter increment, to skip the preparation sequence
address. One could easily question whether this gains any performance improve-
ment over that of using an indirection as in Figure 5. This will be answered by
looking at longer preparation sequences.

The strangest looking thing, is the usage of 3 distinct instructions in the
preparation sequence. Why not use a single instruction with more operands?
Again, the answer lies in the implementation of longer preparation sequences.

Full Preparation Sequences We now proceed with the full implementation
of preparation sequences. Our objective is two-fold: (a) we want to avoid two-
values replacement, and (b) we want to build longer inlined instruction sequences
for our inlined-threaded interpreter, for reducing dispatch overhead as much as
possible.

To demonstrate our technique, we use the three instruction sequence: IC-
ONST2-GETSTATIC-ILOAD.

Figure 7, (a) and (b), shows the initial state of the code array, the content
of the dynamically constructed ICONST2-GETSTATIC-ILOAD inlined instruction
sequence, some related instruction implementations, and the content of the code
array after first execution.

This works similarly to the single-instruction preparation sequence, with two
major differences: (a) the jump to the preparation sequence initially replaces the
ICONST 2 instruction, instead of the GETSTATIC instruction, and (b) the REPLACE
instruction stores a pointer to an inlined instruction sequence, overwriting the
GOTO instruction.

Here is how execution proceeds in detail. On the first execution of this portion
of the code, the GOTO instruction is executed. Its destination is the ICONST 2

opcode, at the head of the preparation sequence.
Next, the ICONST 2 instruction is executed. Next, the GETSTATIC INIT in-

struction reads two operands: (a) a pointer to the field information structure,
and (b) a destination pointer for storing a pointer to the resolved static field. It
then proceeds normally, loading and initializing the class, and resolving the field,
if it hasn’t yet been done. Then, it stores the address of the resolved field in the
destination location. Finally, it executes the real work portion of the instruction,
and dispatches to the next instruction.

The next instruction is a REPLACE, which simply stores a pointer to the
dynamically inlined instruction sequence ICONST2-GETSTATIC-ILOAD at label
OPCODE 1, overwriting the former GOTO instruction, and performing a single-value

replacement.
Next, the ILOAD instruction is executed. Finally, the tail GOTO exits the prepa-

ration sequence.
Future executions of the same portion of the code array will see the ICONST2-

-GETSTATIC-ILOAD instruction sequence (at label OPCODE 1), as shown in Figure
7(f). Notice that the inlined implementation of GETSTATIC NO INIT in Figure 7(c)
does not add any overhead to the fast implementation shown in Figure 4.

(a) Bytecode (b) Initial Content of Code Array (c) GETSTATIC NO INIT

...

...
ICONST_2
GETSTATIC
INDEXBYTE1
INDEXBYTE2
ILOAD
INDEX
...
...

...

...
OPCODE_1: [GOTO]*

[@ SEQUENCE_1]
OPERAND_1: [NULL_POINTER]

[INDEX]
NEXT_1: ...

...

...
SEQUENCE_1: [ICONST_2]*

[GETSTATIC_INIT]*
[POINTER_TO_FIELDINFO]
[@ OPERAND_1]
[REPLACE]*
[ICONST2-GETSTATIC-ILOAD]
[@ OPCODE_1]
[ILOAD]*
[INDEX]
[GOTO]*
[@ NEXT_1]

Opcodes followed by a * are
instructions.

GETSTATIC_NO_INIT_START:
{ int *pvalue =

(pc++)->pvalue;
*sp++ = *pvalue;

}
GETSTATIC_NO_INIT_END:
/* dispatch */
goto **(pc++);

(d) SKIP (e) ICONST2-GETSTATIC-ILOAD Inlined Instruction Sequence

SKIP_START:
*pc++;
SKIP_END:
/* dispatch */
goto **(pc++);

SKIP body : pc++;
ICONST_2 body : *sp++ = 2;
GETSTATIC_NO_INIT body: {int *pvalue = (pc++)->pvalue;

*sp++ = *pvalue;}
ILOAD body : {int index = (pc++)->index;

*sp++ = locals[index];}
DISPATCH body : goto **(pc++);

(f) Code Array After First Execution
...
...

OPCODE_1: [ICONST2-GETSTATIC-ILOAD]*
[@ SEQUENCE_1]

OPERAND_1: [POINTER_TO_FIELD]
[INDEX]

NEXT_1: ...
...
...

Opcodes followed by a * are
instructions.

SEQUENCE_1: [ICONST_2]*
[GETSTATIC_INIT]*
[POINTER_TO_FIELDINFO]
[@ OPERAND_1]
[REPLACE]*
[ICONST2-GETSTATIC-ILOAD]
[@ OPCODE_1]
[ILOAD]*
[INDEX]
[GOTO]*
[@ NEXT_1]

Fig. 7. Full Preparation Sequence

Thus, we have achieved our goals. In particular, we have succeeded at inlining
an instruction sequence, even though it had a complex two-modes (preparation
/ fast) instruction in the middle, while avoiding two-values replacement. All of
this with minimum overhead in post-first execution of the code array.

Detailed Preparation Procedure Preparation of a code array, in anticipation
of inline-threading, proceeds as follows:

1. Instructions are divided in three groups: inlinable, two-modes-inlinable (such
as GETSTATIC), and non-inlinable.

2. Basic blocks (determined by control-flow and non-inlinable instructions) are
identified.

3. Basic blocks of inlinable instructions, without two-modes-inlinable instruc-
tions, are inlined normally.

4. Every basic block containing two-modes-inlinable instructions causes the
generation of an additional preparation sequence at the end of the code array,
and the construction of a related inlined instruction sequence.

The construction of a preparation sequence proceeds as follows:

1. Instructions are copied sequentially into the preparation sequence.
– Inlinable instructions and their operands are simply copied as-is.
– The preparation version of two-modes-inlinable instructions is copied into

the preparation sequence, along with the destination address for resolved
operands.

2. A REPLACE instruction with appropriate operands is inserted just after the
last two-modes-inlinable instruction.

3. A final GOTO instruction with appropriate operand is added at the end of the
preparation sequence.

The motivation for adding the replace instruction just after the the last two-
modes-inlinable instruction, is that it is the earliest safe place to do so. Replacing
sooner could cause the execution (on another Java thread) of the fast version
of an upcoming two-modes instruction before it is actually prepared. Replacing
later can also be a problem, specially if some upcoming inlinable instruction
is a conditional (or unconditional) branch instruction. This is because, if the
branch is taken, then single-value replacement will not take place, forcing the
next execution to take the slow path8.

The construction of an inlined instruction sequence containing two-modes-
inlinable instructions proceeds as follows:

1. The body of the SKIP instruction is copied at the beginning of the sequence
implementation.

8 Multiple executions of the same preparation sequence is allowed, but suffers from high
dispatch overhead. It can happen in the normal operation of the inline-threaded
interpreter as the result of an exception thrown before single-value replacement,
while executing a preparation sequence.

2. Then, all instruction bodies are sequentially copied.

3. Finally, the body of the DISPATCH instruction is copied at the end of the
sequence implementation.

Note that a single preparation sequence can contain multiple two-modes in-
structions. Yet, on the fast execution path, there is a single program-counter
increment (i.e. SKIP body) per inlined instruction sequence.

5 Experimental Results

We have implemented 3 flavors of threaded interpretation, in the SableVM frame-
work [6]: switch-threading, direct-threading and inline-threading. Switch-threa-

ding differs from simple switch-based bytecode interpretation in that it is applied
on a prepared code array of word-size elements. To avoid the two-values replace-
ment problem, single-instruction preparation sequences are in use within the
switch-threaded and direct-threaded engines.

We have performed execution time measurements with SableVM to measure
the efficiency of inline-threading Java, using our technique. We have performed
our experiments on a 1.5 GHz Pentium IV based Debian GNU/Linux worksta-
tion with 1.5 Gb RAM, and a 7200 RPM disk, running SPECjvm98 benchmarks
and two object-oriented applications: Soot version 1.2.39 and SableCC version
2.17.310.

In a first set of experiments, we have measured the relative performance of
the switch-threaded, direct-threaded and inline-threaded engines. Results are
shown in Table 1. To do these experiments, three separate versions of SableVM

were compiled with identical configuration options, except for the interpreter
engine type.

Table 1. Inline-Threading Performance Measurements

switch- direct- inline-
benchmark threaded threaded threaded

compress 317.72 sec. 281.78 sec. (1.13) 131.64 sec. (2.41) (2.14)
db 132.15 sec. 119.17 sec. (1.11) 87.64 sec. (1.51) (1.36)
jack 45.65 sec. 46.78 sec. (0.98) 38.16 sec. (1.20) (1.23)
javac 110.10 sec. 105.24 sec. (1.05) 89.37 sec. (1.23) (1.17)
jess 74.79 sec. 68.12 sec. (1.10) 53.57 sec. (1.40) (1.27)

mpegaudio 285.77 sec. 242.90 sec. (1.18) 136.97 sec. (2.09) (1.77)
mtrt 142.87 sec. 115.34 sec. (1.24) 100.39 sec. (1.42) (1.15)

raytrace 166.19 sec. 134.06 sec. (1.24) 113.55 sec. (1.46) (1.18)
soot 676.06 sec. 641.96 sec. (1.05) 548.13 sec. (1.23) (1.17)

sablecc 40.12 sec. 36.95 sec. (1.09) 26.09 sec. (1.54) (1.41)

9 http://www.sable.mcgill.ca/soot/
10 http://www.sablecc.org/

Columns of Table 1 contain respectively: (a) the name of the executed bench-
mark, (b) the execution time in seconds using the switch-threaded engine, (c) the
execution time in seconds using the direct-threaded engine, and the speedup over
the switch-threaded engine in parentheses, and (d) the execution time in seconds
using the inline-threaded engine, and the speedup over both switch-threaded and
direct-threaded engines respectively in parentheses.

The Inline-threaded engine does deliver significant performance improvement.
It achieves a speedup of up to 2.41 over the switch-threaded engine. The smallest
measured speedup, over the fastest of the two other engines on a benchmark, is
of 1.15 on the mtrt benchmark, where it still delivers a speedup of 1.42 over the
second engine.

It is important to note that the switch-threaded engine already has some
advantages over a pure switch-based bytecode interpreter. It benefits from word
alignment and other performance improving features of the SableVM framework.
So, it is likely that the performance gains of inline-threading over pure bytecode
interpretation are even bigger than those measured against switch-threading.

In a second set of tests, we measured the performance improvement due
to the inlining of two-modes instructions (e.g. GETSTATIC), within the inlined-
threaded engine. To do so, we compiled a version of SableVM with a special
option that prevents inlining of two-modes instructions, and compared its speed
to the normal inline-threaded engine. Results are shown in Table 2.

Table 2. Preparation Sequences Performance Measurements

shorter full
benchmark sequences sequences speedup

compress 195.50 sec. 131.64 sec. 1.49
db 108.22 sec. 87.64 sec. 1.24
jack 40.46 sec. 38.16 sec. 1.06
javac 99.99 sec. 89.37 sec. 1.12
jess 62.91 sec. 53.57 sec. 1.17

mpegaudio 157.38 sec. 136.97 sec. 1.16
mtrt 105.39 sec. 100.39 sec. 1.05

raytrace 133.12 sec. 113.55 sec. 1.17
soot 617.42 sec. 548.13 sec. 1.13

sablecc 32.35 sec. 26.09 sec. 1.24

Columns of Table 2 contain respectively: (a) the name of the executed bench-
mark, (b) the execution time in seconds using the special inline-threaded engine
that does not inline two-modes instructions, (c) the execution time in seconds us-
ing the normal inline-threaded engine implementing full preparation sequences,
and (d) the speedup achieved by the normal inline-threaded engine over the
atrophied version.

Our performance measurements show that the speedup due to longer se-
quences ranges between 1.05 and 1.49, which is quite significant.

6 Related Work

The most closely related work to the work of this paper is the work of I. Piumarta
and F. Riccardi in [11]. We have already discussed the inline-threading technique
introduced in this paper in Section 2. Our work builds on top of this work, by
introducing techniques to deal with multi-threaded execution environments, and
inlining of two-modes instructions.

Inline-threading, in turn, is the result of combining the Forth-like threaded

interpretation technique [5] (which we have already discussed in Section 2) with
the idea of template-based dynamic compilation [2, 10]. The main advantage of
inline-threading over that of template based compilation is its simplicity and
portability.

A related system for dynamic code generation is that of vcode, introduced
by D. Engler [4]. The vcode system is an architecture-neutral runtime assembler.
It can be used for implementing just-in-time compilers. It is in our future plans
to experiment with vcode for constructing an architecture-neutral just-in-time

compiler for SableVM, offering an additional choice of performance-portability
tradeoff.

Other closely related work is that of dynamic patching. The problem of po-
tential high cost synchronization costs for concurrent modification of executed
code is also faced by dynamically adaptive Java systems. In [3], M. Cerniac et

al. describe a technique for dynamic inline patching (a similar technique is also
described in [8]). The main idea is to store a self-jump (a jump instruction to it-
self) in the executable code stream before proceeding with further modifications
of the executable code. This causes any concurrent thread executing the same
instruction to spin-wait for the completion of the modification operation.

Our technique of using explicit synchronization in preparation sequences and
single value replacement has the marked advantage of causing no spin-wait.
Spinning can have, in some cases, a highly undesirable side effect, that of almost

dead-locking the system when the spinning thread has much higher priority
than the code patching thread. This is because, while it is spinning, the high
priority does not make any progress in code execution and, depending on the
thread scheduling policy of the host operating system, might be preventing the
patching thread from making noticeable progress.

7 Conclusions

In this paper we have explained the difficulty of using the inline-threaded inter-
pretation technique in a Java interpreter. Then, we introduced a new technique,
preparation sequences, that not only makes it possible, but also effective. This
technique uses efficient single-word replacement for managing lazy class-loading
and preparation in a multi-threaded environment, and increases the length of
inlined instruction sequences, reducing dispatch overhead.

We then presented our experimental results, showing that an inline-threaded
interpreter engine, implementing our technique, achieves significant performance

improvements over that of switch-threaded and direct-threaded engines. Our re-
sults also show that longer inlined instructions sequences, due solely to prepa-
ration sequences, can yield a speedup ranging between 1.05 and 1.49.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

2. J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad. Fast,
effective dynamic compilation. In Proceedings of the ACM SIGPLAN ’96 confer-
ence on Programming language design and implementation, pages 149–159. ACM
Press, 1996.

3. M. Cierniak, G.-Y. Lueh, and J. N. Stichnoth. Practicing JUDO: Java under
dynamic optimizations. In Proceedings of the ACM SIGPLAN ’00 Conference
on Programming Language Design and Implementation, pages 13–26, Vancouver,
British Columbia, June 2000. ACM Press.

4. D. R. Engler. Vcode: a retargetable, extensible, very fast dynamic code generation
system. In Proceedings of the ACM SIGPLAN ’96 conference on Programming
language design and implementation, pages 160–170. ACM Press, 1996.

5. A. M. Ertl. A portable Forth engine. http://www.complang.tuwien.ac.at/forth
/threaded-code.html.

6. E. M. Gagnon and L. J. Hendren. SableVM:A Research Framework for the Efficient
Execution of Java Bytecode. In Proceedings of the Java Virtual Machine Research
and Technology Symposium (JVM-01), pages 27–40. USENIX Association, Apr.
2001.

7. J. L. Hennessy and D. A. Patterson. Computer architecture (2nd ed.): a quantita-
tive approach. Morgan Kaufmann Publishers Inc., 1996.

8. K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A study
of devirtualization techniques for a Java Just-In-Time compiler. In Proceedings
of the ACM SIGPLAN ’00 conference on Object-oriented programming, systems,
languages, and applications, pages 294–310. ACM Press, 2000.

9. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wes-
ley, second edition, 1999.

10. F. Noel, L. Hornof, C. Consel, and J. L. Lawall. Automatic, template-based run-
time specialization: Implementation and experimental study. In Proceedings of the
IEEE Computer Society International Conference on Computer Languages 1998,
pages 132–142. IEEE Computer Society Press, Apr. 1998.

11. I. Piumarta and F. Riccardi. Optimizing direct threaded code by selective inlining.
In Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language
Design and Implementation, pages 291–300. ACM Press, June 1998.

