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Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren and Navindra Umanee
Sable Research Group, School of Computer Science

McGill University
Montreal, Quebec, CANADA H3A 2A7

[berndl,olhotak,fqian,hendren,navindra]@sable.mcgill.ca

ABSTRACT
This paper reports on a new approach to solving a subset-based
points-to analysis for Java using Binary Decision Diagrams (BDDs).
In the model checking community, BDDs have been shown very ef-
fective for representing large sets and solving very large verification
problems. Our work shows that BDDs can also be very effective for
developing a points-to analysis that is simple to implement and that
scales well, in both space and time, to large programs.

The paper first introduces BDDs and operations on BDDs using
some simple points-to examples. Then, a complete subset-based
points-to algorithm is presented, expressed completely using BDDs
and BDD operations. This algorithm is then refined by finding ap-
propriate variable orderings and by making the algorithm propagate
sets incrementally, in order to arrive at a very efficient algorithm.
Experimental results are given to justify the choice of variable or-
dering, to demonstrate the improvement due to incrementalization,
and to compare the performance of the BDD-based solver to an
efficient hand-coded graph-based solver. Finally, based on the re-
sults of the BDD-based solver, a variety of BDD-based queries are
presented, including the points-to query.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.4 [Programming
Languages]: Processors—compilers, optimization

General Terms
Languages, Experimentation

Keywords
Points-to analysis, binary decision diagrams

1. INTRODUCTION
In this paper, we take a well-known problem from the compiler

optimization community, points-to analysis, and we show how to
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solve this problem efficiently using reduced ordered binary deci-
sion diagrams (ROBDDs)1 which have been shown to be very ef-
fective in the model checking community.

Whole program analyses, such as points-to analysis, require ap-
proaches that can scale well to large programs. Two popular ap-
proaches to flow-insensitive points-to analysis have been pursued in
the past, equality-based approaches like those pioneered by Steens-
gaard [32], and subset-based approaches like the analysis first sug-
gested by Andersen [1]. The subset-based approaches give more
accurate results, but they also lead to greater challenges for effi-
cient implementations [6, 10, 12, 19, 25, 28, 34].2

For this paper, we have chosen to implement a subset-based points-
to analysis for Java. At a very high level, one can see this problem
as finding the allocation sites that reach a variable in the program.
Consider an allocation statement S : a = new A();. If a variable
x is used in some other part of the program, then one would like
to know whether x can refer to (point-to) an object allocated at S.
A key problem in developing efficient solvers for the subset-based
points-to analysis is that for large programs there are many points-
to sets, and each points-to set can become very large. Often, many
of these points-to sets are equal or almost equal. Several methods
of representing them compactly have been studied in the past, in-
cluding collapsing equivalent variables [10, 24] and designing new
representations for sets [11, 17, 18]; the BDD-based approach that
we introduce in this paper is another example of such a compact
representation.

Since BDDs have been shown to be effective for compactly rep-
resenting large sets and for solving large state space problems like
those generated in model checking, it seemed like an interesting
question to see if BDDs could also be used to efficiently solve the
points-to problem for Java. In particular, we wanted to examine
three aspects of the BDD solution: (a) execution time for the solver,
(b) memory usage, and (c) ease of specifying the points-to algo-
rithm using a standard BDD package. In summary, our experience
was that BDDs were very effective in all three aspects.

The contributions of this paper include:

• We propose and develop an efficient BDD-based algorithm
for subset-based points-to analysis for Java. To our knowl-
edge, we are the first group to successfully use BDDs to solve
such an analysis efficiently.

• We provide new insights into how to make the BDD-based
implementation efficient in terms of space and time. First,
we used a systematic approach to find a good variable or-
dering for the points-to set. Second, we noted that the al-

1In the remainder of this paper we simply refer to BDDs, meaning
ROBDDs.
2A more detailed description of related work is found in Section 7.



gorithm should propagate the sets incrementally, and pre-
sented an incremental version. This general idea of incre-
mentalizing the algorithm may be useful in solving other
program analysis problems using BDDs. Third, we found
that specifying an analysis using high-level BDD opera-
tions allowed us to specify our analysis very compactly
and it was very simple to experiment with a wide va-
riety of algorithms. Our source code (available on our
web page: http://www.sable.mcgill.ca/bdd/)
contains many different variations that can be enabled by
switches.

• We experimentally validated the BDD-based approach by
comparing its performance to a previously existing efficient
solver. For small problem sizes, we found that the time and
space requirements are similar, but for larger problems, the
BDD-based approach requires less memory, and scales bet-
ter.

• Although we initially intended to compute only points-to sets,
we found that the BDD approach leads to a solution that can
be used to answer a variety of queries, of which the points-to
query is only one. We suggest several possible other queries.
In future work we plan to develop this aspect of our work
further.

The rest of this paper is organized as follows. In Section 2 we
provide an introduction to BDDs and operations on BDDs using
small examples based on the points-to problem. Given this intro-
ductory material, we then introduce our points-to algorithm and its
implementation using BDDs in Section 3. Then, in Section 4, we
show how to improve the performance of the algorithm by choosing
the correct variable ordering and making the algorithm incremental.
In Section 5 we give experimental results for our best BDD algo-
rithm and compare its performance to a hand-coded and optimized
solver based on SPARK. In Section 6 we discuss possible appli-
cations for the results of our algorithm, which includes answering
points-to queries. Finally, Section 7 gives a discussion of related
work and Section 8 gives conclusions and future work.

2. BDD BACKGROUND
A Binary Decision Diagram (BDD) is a representation of a set

of binary strings of length n that is often, equivalently, thought of
as a binary-valued function that maps binary strings of length n to
1 if they are in the set or to 0 if they are not.

Structurally, a BDD is a rooted directed acyclic graph, with ter-
minal nodes 0 and 1 , and where every non-leaf node has two
successors: a 0-successor and a 1-successor. As in a binary trie,
to determine whether a string is in the set represented by a BDD,
one starts at the root node, and proceeds down the BDD by fol-
lowing either the 0- or 1- successor of the current node depending
on the value of the bit of the string being tested. Eventually, one
ends up either at 1 , indicating that the string is in the set, or at 0
indicating that it is not.

To use a concrete example, consider the program fragment in
Figure 1. The points-to relation we would compute for this code is
{(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),(c,C)}, where (a,A) indi-
cates that variable a may point to objects allocated at allocation site
A. Using 00 to represent a and A, 01 to represent b and B, and 10 to
represent c and C, we can encode this points-to relation using the
set {0000,0001,0100,0101,1000,1001,1010}.

Figure 2(a) shows an unreduced BDD representing this set where
the variables a, b and c are encoded at BDD node levels V0 and V1

A: a = new O();
B: b = new O();
C: c = new O();

a = b;
b = a;
c = b;

Figure 1: Example code fragment.

and the heap objects A, B and C are encoded at the H0 and H1
levels. As a convention, 0-successors are indicated by dotted edges
and 1-successors are indicated by solid edges.

Notice that nodes marked x, y, and z in Figure 2(a) are at the
same level and have the same 0- and 1-successors. This is because
they represent the subset {A,B}, which is shared by all three pro-
gram variables. Because they are at the same level and share the
same successors, they could be merged into a single node, reduc-
ing the size of the BDD. Furthermore, since their two successors
are the same (the 1 node), their successor does not depend on the
bit being tested, so the nodes could be removed entirely. Simplify-
ing other nodes in this manner, we get the BDD in Figure 2(b). The
BDD with the fewest nodes is unique if we maintain a consistent
ordering of the nodes; it is called a reduced BDD. When BDDs are
used for computation, they are always kept in a reduced form.

In the examples so far, the bits of strings were tested in the order
in which they were written. However, any ordering can be used,
as long as it is consistent over all strings represented by the BDD.
For example, Figure 2(c) shows the BDD that represents the same
relation, but tests the bits in a different order. This BDD requires 8
nodes, rather than 5 nodes as in Figure 2(b). In general, choosing a
bit ordering which keeps the BDDs small is very important for ef-
ficient computation; however, determining the optimal ordering is
NP-hard [23]. BDDs support the usual set operations (union, inter-
section, complement, difference) and can be maintained in reduced
form during each operation. A binary operation on BDDs A and B,
such as A∪B, takes time proportional to the number of nodes in
the BDDs representing the operands and result. In the worst case,
the number of nodes in the BDD representing the result can be the
product of the number of nodes in the two operands, but in most
cases, the reduced BDD is much smaller [23].
BuDDy [20] is one of several publicly-available BDD packages.

Instead of requiring the programmer to manipulate individual bit
positions in BDDs, BuDDy provides an interface for grouping bit
positions together. The term domain is used to refer to such a group.
In the example in Figure 2, we used the domain V to represent
variables, and H to represent pointed-to heap locations.

Another BDD operation is existential quantification. For exam-
ple, given a points-to relation P⊆V ×H, we can existentially quan-
tify over H to find the set S of variables with non-empty points-to
sets: S = {v | ∃h.(v,h) ∈ P}.

The relational product operation implemented in BuDDy com-
poses set intersection with existential quantification, but is imple-
mented more efficiently than these two operations composed. Specif-
ically, rel prod(X ,Y,V 1) = {(v2,h) | ∃v1.((v1,v2) ∈ X ∧ (v1,h) ∈
Y )}. To illustrate this with an example, for the code fragment
in Figure 1, consider the initial points-to set {(a,A),(b,B),(c,C)}
(corresponding to the first three lines of code) and the assignment
edge set {(b,a),(a,b),(b,c)} (corresponding to the last three lines
of code). The pair (a,b) corresponds to the statement b := a; that
is, we write the variables in reverse order, indicating that all allo-
cation sites reaching a also reach b. The initial points-to set is rep-
resented in the BDD in Figure 3(a) using the domains V 1 and H.
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Figure 2: BDDs for points-to relation {(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),(c,C)} (a) unreduced using ordering V1V0H1H0, (b)
reduced using ordering V1V0H1H0, (c) reduced using alternative ordering H0V0H1V1
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Figure 3: (a) BDD for initial points-to set {(a,A),(b,B),(c,C)} (b) BDD for edge set {(a → b),(b → a),(b → c)} (c) result of rel-
prod((a),(b),V1) (the points-to set {(a,B),(b,A),(c,B)}) (d) result of replace((c),V2ToV1) (e) result of (a)∪(d) (the points-to set
{(a,A),(a,B),(b,A),(b,B),(c,B),(c,C)}

The edge set contains pairs of variables, so two variable domains
(V 1 and V2) are required to represent it; its representation is shown
in Figure 3(b). Given these two BDDs, we can apply the relational
product with respect to V1 to obtain the BDD of the points-to sets
after propagation along the edges (Figure 3(c)), using the domains
V 2 and H.

The replace operation creates a BDD in which information that
was stored in one domain is moved into a different domain. For
example, we would like to find the union of the points-to relations
in parts (a) and (c) of Figure 3, but the former uses the domains V1
and H, while the latter uses V2 and H.

Before finding the union, we applying the replace operation to (c)
to obtain (d), which, like (a), uses domains V1 and H. We can now
find (e)=(a)∪(d), the points-to set after one step of propagation. If
we repeated these steps a second time, we would obtain the final
points-to set BDD from Figure 2(b).

Note that it is possible for a BDD for a large set to have fewer
nodes than the BDD for a smaller set. In this case, although the
points-to set grows from three, to six, to seven pairs, the BDD rep-
resenting it goes from eight to six to five nodes (see Figures 3(a),
3(e), and 2(b), respectively).

3. POINTS-TO ALGORITHM WITH BDDS
A points-to analysis computes a points-to relation between vari-

ables of pointer type and allocation sites. Our analysis is a Java
extension of the analysis suggested for C by Andersen [1]. As
such, it is both flow- and context-insensitive. The analysis takes
as input constraints modelling four types of statements: allocation,
simple assignment, field store, and field load (Figure 4). pt(l) in-
dicates the points-to set of variable l. l1 → l2 indicates that l2 may
point to anything that l1 may point to. Based on a call graph built
using class hierarchy analysis [7], we add appropriate assignment
edges to model inter-procedural pointer flow through method pa-
rameters and return values. We took this approach of generating all
the constraints ahead of time because in this first study, we wanted
to clearly separate the constraint generator from the solver. In fu-
ture work, we plan to integrate them more closely, making it pos-
sible to experiment with building the call graph on-the-fly as the
points-to analysis proceeds.

The inference rules shown in Figure 5 are used to compute points-
to sets. The basic idea is to apply these rules until a fixed point is
reached. The first rule models simple assignments: if l1 points to
o, and is assigned to l2, then l2 also points to o. The second rule



a : l := new C oa ∈ pt(l)
l2 := l1 l1 → l2
q. f := l l → q. f
l := p. f p. f → l

Figure 4: The four types of pointer statements (constraints).

models field stores: if l points to o2, and is stored into q. f , then
o1. f also points to o2 for each o1 pointed to by q. Similarly, the
third rule models field loads: if l is loaded from p. f , and p points
to o1, then l points to any o2 that o1. f points to.

l1 → l2 o ∈ pt(l1)

o ∈ pt(l2)
(1)

o2 ∈ pt(l) l → q. f o1 ∈ pt(q)

o2 ∈ pt(o1. f )
(2)

p. f → l o1 ∈ pt(p) o2 ∈ pt(o1. f )

o2 ∈ pt(l)
(3)

Figure 5: Inference rules

3.1 BDD Implementation
The rules presented in Figure 5 apply to elements of points-to

(pt) and assignment-edge (→) relations. In BDDs, we encode them
as operations on entire relations, rather than their individual ele-
ments. In our algorithm, we map the components of relations onto
five BuDDy domains (groups of bit positions).

• FD is a domain representing the set of field signatures.

• V 1 and V 2 are domains of variables of pointer type. We need
two such domains in order to represent the → relation of two
variables.

• H1 and H2 are domains of allocation sites. Two are needed,
along with the FD domain, in order to represent the pt re-
lation for fields of objects, which contains elements of the
form o2 ∈ pt(o1. f ).

We now describe the most important relations used in the algo-
rithm, along with the domains onto which they are mapped.

• pointsTo ⊆ V 1×H1 is the points-to relation for variables,
and consists of elements of the form o ∈ pt(l).

• f ieldPt ⊆ (H1×FD)×H2 is the points-to relation for fields
of heap objects, and consists of elements of the form o2 ∈
pt(o1. f ).

• edgeSet ⊆V1×V 2 is the relation of simple assignments, and
consists of elements of the form l1 → l2.

• stores ⊆ V 1× (V2×FD) is the relation of field stores, and
consists of elements of the form l1 → l2. f .

• loads ⊆ (V 1×FD)×V2 is the relation of field loads, and
consists of elements of the form l1. f → l2.

• typeFilter ⊆V 1×H1 is a relation which specifies which ob-
jects each variable can point-to, based on its declared type.
This is used to restrict the points-to sets for variables to the
appropriate objects.

The BDD algorithm is given in Figure 6. First, the algorithm
loads input constraints and initializes the relations introduced above.
The main algorithm consists of an inner loop nested within an outer
loop. To make the algorithm easier to understand, we annotated the
type of the relations involved in each step of computation. Lines
1.1 to 1.2 implement rule (1). In line 1.1, the edgeSet and pointsTo
relations are combined. This relprod operation computes the rela-
tion {(l2,o) | ∃l1.l1 → l2 ∧ o ∈ pt(l1)}, the pre-conditions of rule
(1). In line 1.2, the relation is converted to use domains V1 and H1
rather than V2 and H1, and in line 1.4, it is added into the pointsTo
relation. Line 1.3 will be explained later.

Lines 2.1 to 2.3 implement rule (2). Line 2.1 computes the
intermediate result of the first two pre-conditions: tmpRel1 =
{(o2,q. f ) | ∃l.o2 ∈ pt(l) ∧ l → q. f}. In line 2.2, tmpRel1 is
changed to domains suitable for the next computation. In line
2.3, the resulting relation of all three pre-conditions is computed
as {(o2,o1. f ) | ∃q.(o2,q. f )∧o1 ∈ pt(q)}.

In a similar way, lines 3.1 to 3.3 implement rule (3). Again,
the first two pre-conditions are first combined to form a temporary
relation (line 3.1), then combined with the results from rule (2) (line
3.2). After changing the result to the appropriate domains (line 3.3),
we obtain new points-to pairs to add to the points-to relation. These
are merged into the pointsTo set in line 4.2.

The algorithm in Figure 6 is very close to the real code of our
implementation using the BuDDy package. So far, we have not
explained the purpose of lines 1.3 and 4.2. An earlier points-to
study [17, 18] showed that static type information is very useful to
limit the size of points-to sets by including only allocation sites of
a subtype of the declared type of the variable. Lines 1.3 and 4.2
implement this by screening all newly-introduced points-to pairs
with a typeFilter relation. This relation is constructed in line 0.3
from three relations read from the input file: the subtype relation
between types, the declared type relation between variables and
types, and the allocated type relation between allocation sites and
types.

4. PERFORMANCE TUNING
As we have seen in section 2, different variable orderings result

in different sizes of the BDD for the same set. By default, BuDDy
interleaves the variables of all domains; this tends to be a good or-
dering for transition systems in model checking. For our points-to
problem set, however, the default ordering turns out to only work
on toy problems, and was very slow on real benchmarks. This lead
us to explore a variety of different variable orderings by rearrang-
ing and interleaving domains. In practice, different orderings yield
dramatically different performance. The best ordering we encoun-
tered gives impressive results even without further optimizations.
When, in addition, we applied incrementalization, the performance
of the BDD solver became very competitive compared to a care-
fully hand-coded solver. Before introducing variable orderings and
optimizations, we first describe the experimental setup on which
our performance profiling and tuning were done.

4.1 Experimental Setup
We selected benchmarks from the SPECjvm98 [31]

suite, SPECjbb2000 [30] and three other large benchmarks:
sablecc-j, soot-c and jedit. Table 1 shows the description
of each benchmark. Sablecc-j is a parser generator written in



/* --- initialization --- */
/* 0.1 */ load constraints from the input file
/* 0.2 */ initialize pointsTo, edgeSet, loads, and stores
/* 0.3 */ build typeFilter relation

repeat
repeat

/* --- rule 1 --- */
/* 1.1 */ newPt1:[V2xH1] = relprod(edgeSet:[V1xV2], pointsTo:[V1xH1], V1);
/* 1.2 */ newPt2:[V1xH1] = replace(newPt1:[V2ToV1], V2ToV1);

/* --- apply type filtering and merge into pointsTo relation --- */
/* 1.3 */ newPt3:[V1xH1] = newPt2:[V1xH1] ∩ typeFilter:[V1xH1];
/* 1.4 */ pointsTo:[V1xH1] = pointsTo:[V1xH1] ∪ newPt3:[V1xH1];

until pointsTo does not change

/* --- rule 2 --- */
/* 2.1 */ tmpRel1:[(V2xFD)xH1] = relprod(stores:[V1x(V2xFD)], pointsTo:[V1xH1], V1);
/* 2.2 */ tmpRel2:[(V1xFD)xH2] = replace(tmpRel1:[(V2xFD)xH1], V2ToV1 & H1ToH2);
/* 2.3 */ fieldPt:[(H1xFD)xH2] = relprod(tmpRel2:[(V1xFD)xH2], pointsTo:[V1xH1], V1);

/* --- rule 3 --- */
/* 3.1 */ tmpRel3:[(H1xFD)xV2] = relprod(loads:[(V1xFD)xV2], pointsTo:[V1xH1], V1);
/* 3.2 */ newPt4:[V2xH2] = relprod(tmpRel3:[(H1xFD)xV2], fieldPt:[(H1xFD)xH2], H1xFD);
/* 3.3 */ newPt5:[V1xH1] = replace(newPt4:[V2xH2], V2ToV1 & H2ToH1]);

/* --- apply type filtering and merge into pointsTo relation --- */
/* 4.1 */ newPt6:[V1xH1] = newPt5:[V1xH1] ∩ typeFilter:[V1xH1];
/* 4.2 */ pointsTo:[V1xH1] = pointsTo:[V1xH1] ∪ newPt6:[V1xH1];

until pointsTo does not change

Figure 6: The basic BDD algorithm for points-to analysis

benchmark description
compress Modified Lempel-Ziv method (LZW).
db Performs multiple database functions on mem-

ory resident database.
raytrace A raytracer that works on a scene depicting a di-

nosaur.
mpegaudio Decompresses audio files that conform to the

ISO MPEG Layer-3 audio specification.
jack A Java parser generator that is based on the Pur-

due Compiler Construction Tool Set (PCCTS).
jess Java Expert Shell System.
sablecc-j An object-oriented parser generator written in

Java.
jbb2000 A Java program emulating a 3-tier system with

emphasis on the middle tier.
javac The Java compiler from the JDK 1.0.2.
soot-c A bytecode to bytecode optimization and anno-

tation framework.
jedit A full-featured editor written in Java.

Table 1: Benchmark description

Java, and soot-c is a bytecode transformation framework. Both
are non-trivial Java applications, and are publicly-available in the
Ashes [2] suite. Jedit [15] is a full-featured editor written in
Java.

We generated the constraints for our BDD-based solver using
the SPARK points-to analysis framework [17,18]. Constraints were
generated for a field-sensitive analysis (using a separate points-to
set for each field of the objects allocated at each allocation site).
The call graph used for interprocedural flow of pointers was con-

structed using class hierarchy analysis. Effects of native methods
were considered, as supported by SPARK.

The raw points-to constraints generated from an input program
can either be fed directly to a solver as input, or they can first be
simplified off-line by substituting a single variable for groups of
variables known to have the same points-to set [24]. This results
in a smaller set of constraints for an equivalent problem. We used
the SPARK framework to generate both unsimplified and simplified
versions of the constraints as input to our BDD solver. We denote
a simplified set of constraints with the letter s, and an unsimplified
set of constraints with ns.

A points-to analysis solver for a typed language such as Java
has two reasonable options for dealing with the declared types of
variables: it can solve the points-to constraints first, and restrict
the points-to sets to subtypes of the declared type afterwards [25,
33]; alternatively, it can remove objects of incompatible type as the
points-to analysis proceeds [17, 18, 34]. Both our BDD solver and
the SPARK solver support both variations. We denote a solver that
respects declared types throughout the analysis with the letter t, and
one that ignores them until the end with nt.

The two options for simplification and two options for handling
of types result in four combinations, all four of which have been
used in related work. In this study, we focus on three of them: (s/t),
(ns/t), and (ns/nt). We stress that the same sets of constraints were
used as input to both our BDD solver and the SPARK solver.

The BDD Solver is written in C++ and uses the BuDDy 2.1 C++
interface compiled with GCC 2.95.4 at -O3. The BuDDy package
has a built-in reference counting mark-and-compact garbage col-
lector for recycling BDD nodes. Whenever the proportion of free
nodes is less than a threshold (20% by default), the kernel increases
the node table size. In our experiments for performance measure-
ment, we used a heap size of 160M. All our experimental data were



collected on a 1.80 GHz Pentium 4 with 1 GB of memory running
Linux 2.4.18.

4.2 Variable Ordering
In this section, we describe the path leading us to find efficient or-

derings and empirically compare several representative orderings.
We consider two factors in choosing a variable ordering: the

ordering of domains and interleaving of the variables of differ-
ent domains. We use the following naming scheme for orderings:
when we list several domain names together, their variables are in-
terleaved; when we list domain names separated by underscores,
the variables of one domain all come before those of the next.
For example, if f0, f1, . . . , fn are the variables of the domain fd
and v0,v1, . . . ,vn are the variables of the domain v1, the order-
ing fdv1 corresponds to f0v0 f1v1 . . . fnvn, and fd v1 corresponds
to f0 f1 . . . fnv0v1 . . .vn. Within each domain, the variables are ar-
ranged from the most significant bit to the least significant bit, be-
cause the more significant bits may not all be used (always 0), and
placing them closer to the beginning reduces the BDD size.

Using the default ordering fdv1v2h1h2, our BDD solver cannot
solve real benchmarks. We investigated the performance bottleneck
and found that most of time was spent on the relprod operation for
rule (1) (line 1.1 of Figure 6). This operation propagates points-to
sets along assignment edges. Since this operation only involves the
edgeSet and pointsTo relations, which use the domains v1, v2 and
h1, only the arrangement of these three domains affects this opera-
tion. We experimented with several arrangements and interleavings
of these three key domains.

The graph in Figure 7 shows the effect of two different order-
ings of the domains h1 and v1 on the execution time of the rel-
prod operation in line 1.1 (on the javac benchmark, with off-line
simplification and respecting declared types). The x-axis gives the
loop iteration number and the y-axis gives the time spent on each
iteration of the relprod operation in line 1.1. The solid line corre-
sponds to the case where h1 comes after v1 whereas the dotted line
corresponds to the case where h1 comes before v1. Note that the
execution time of relprod changes dramatically: with v1 before h1,
each operation takes less than 0.5s, while with h1 before v1, each
operation takes about 4.2s on average. Our experiments with other
orderings confirm this behavior, and we conclude that arranging v1
before h1 is a good heuristic.
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Figure 7: Effect of domain arrangement

We also measured the size of the pointsTo relation for these two
orderings expecting the slower ordering to correspond to a larger
relation. Surprisingly, we did not find this to be the case, both or-
derings gave similar sizes. This indicates that the relprod operation
in BuDDy is sensitive to not only the size of operands but also the
variable ordering.

In other experiments, we found that arranging v1 before v2 for
the edgeSet relation yields better performance, but this has a much
smaller effect than rearranging v1 and h1. One possible explana-
tion is that the edgeSet relation (using the domains v1 and v2) re-
mains constant during the computation, while the pointsTo relation
(using domains v1 and h1) is repeatedly recomputed; therefore, the
order of v1 and h1 affects the computation more.

After determining the order in which to arrange domains, we
looked at the effect of interleaving them. Again, we only consid-
ered v1, v2, and h1, since these are the domains involved in the
most expensive operation. Figure 8 shows the effect on the BDD
size of the pointsTo relation and on the execution time of line 1.1
in each iteration. When v1 and h1 are interleaved, the BDD for the
initial points-to relation is much smaller than when they are placed
one after the other. However, as the analysis proceeds, the BDD
with the interleaved ordering grows to about five times the size of
the BDD with v1 before h1. This is because the points-to sets be-
gin to grow as the analysis proceeds, but it appears that the latter
BDD is able to exploit their regularity and remain small. The size
increase in the BDD with the interleaved ordering degrades the per-
formance significantly. Thus, a good heuristic is to place v1 before
h1, and not interleave them.

Table 2 summarizes the performance of the BDD solver with
four representative orderings. Column (a) corresponds to the de-
fault ordering used by BuDDy; this ordering cannot solve real bench-
marks in a reasonable time. Column (b) is another example of a
bad ordering, with h1 before v1. This ordering already allows the
solver to finish on small inputs. The last two columns show the
performance when using a good domain arrangement, without in-
terleaving v1 and h1. The performance improvement is dramatic.
The difference between last two columns shows the effect of inter-
leaving v1 and v2. This effect is much less significant. The BDD
for the edgeSet relation is smaller when v1 and v2 are interleaved,
and we observed fewer garbage collections. The pointsTo relation
has the same size with either ordering. On small inputs (s/t), the
two orderings yield comparable performance. On large problem
sets (ns/nt), interleaving v1 and v2 gives much better performance.

(a) - fdv1v2h1h2 (b) - h1 v1v2 fd h2
(c) - fd v1v2 h1 h2 (d) - fd v1 v2 h1 h2

benchmark (a) (b) (c) (d)
compress (s/t) 6420s 996s 21s 19s
compress (ns/t) N/C 4200s 53s 84s
compress (ns/nt) N/C 8280s 145s 228s
javac (s/t) 9360s 1203s 23s 24s
javac (ns/t) N/C 4920s 62s 104s
javac (ns/nt) N/C 10140s 167s 286s
sablecc-j (s/t) 9960s 1388s 22s 23s
sablecc-j (ns/t) N/C 5700s 63s 111s
sablecc-j (ns/nt) N/C 9480s 158s 269s
jedit (s/t) N/C 2460s 36s 35s
jedit (ns/t) N/C N/C 112s 358s
jedit (ns/nt) N/C N/C 336s 784s

Table 2: Effect of variable ordering on performance
(N/C means the solver does not complete the run in 4 hours.)
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Figure 8: Effect of interleaving domains

4.3 Incrementalization
So far, we have seen that ordering has a huge effect on the perfor-

mance of the basic BDD solver. The empirical study and analysis
lead us to find good orderings that yield reasonable performance
in our basic algorithm. However, this is not the end of the story.
We apply one further optimization on our basic algorithm, which
improves the performance to compete with a highly efficient, hand-
coded solver.

Whenever the pointsTo relation changes, the solver propagates
points-to pairs by repeating the relprod operation in line 1.1 until
it reaches a fixed point. The execution time of the relprod opera-
tion is proportional to the sizes of the BDDs being combined, in
this case pointsTo and edgeSet. In each iteration, we propagate all
points-to sets along all edges, even though most points-to sets have
already been propagated in previous iterations. This leads us to an
additional optimization, incrementalization.

The idea is to propagate, in each iteration, only the part of each
points-to set that has been newly introduced since the last itera-
tion (the old part has already been propagated). Figure 9 shows the
replacement for rule (1) of the algorithm. Notice that the pointsTo
operand of relprod in line 1.1 has been replaced with a newPointsTo
relation, which holds only newly introduced points-to pairs. A new

benchmark fd v1v2 h1 h2 fd v1 v2 h1 h2
non-inc inc non-inc inc

compress (s/t) 20.63 11.72 19.07 9.80
compress (ns/t) 54.46 26.83 83.63 19.66
compress (ns/nt) 145.33 71.55 228.21 58.58
javac (s/t) 22.62 14.83 23.89 10.83
javac (ns/t) 62.35 30.55 103.52 23.14
javac (ns/nt) 166.66 80.04 285.65 65.46
sablecc-j (s/t) 21.90 14.00 23.10 10.60
sablecc-j (ns/t) 63.43 30.05 110.87 22.86
sablecc-j (ns/nt) 158.33 76.53 269.30 63.82
jedit (s/t) 35.92 20.11 35.43 15.60
jedit (ns/t) 112.47 47.53 357.97 35.29
jedit (ns/nt) 336.18 150.72 783.92 120.53

Table 3: Analysis time improvement due to incrementalization

line 1.3 has been added, in which any old points-to pairs that have
already been propagated (and are therefore present in the pointsTo
relation) are removed from the newPointsTo relation. This opti-
mization keeps the newPointsTo relation small (both in terms of set
size, and number of BDD nodes), greatly speeding up the relprod
operation.

In a similar way, we also applied incrementalization to the other
rules. The details are omitted here; the full incrementalized algo-
rithm is given in Appendix A and the full source code can be found
on our web site http://www.sable.mcgill.ca/bdd/.

Table 3 shows the improvements in analysis times due to incre-
mentalization on the two good variable orderings that we identi-
fied earlier. For the ordering fd v1v2 h1 h2, incrementalization
improves the performance almost 100% for all input sizes. With
the ordering fd v1 v2 h1 h2, the improvement is even more dra-
matic, and becomes more significant when the problem becomes
larger. On jedit (ns/t), incrementalization makes the solver al-
most 10 times faster. Combined with incrementalization, the or-
dering fd v1 v2 h1 h2 outperforms fd v1v2 h1 h2 on all of the
benchmarks.

By finding a good variable ordering, and by incrementalizing
the algorithm, we have significantly improved its performance, to
the point that it competes with hand-coded points-to solvers. In
fact, as we show in the next section, for large problems, the BDD
algorithm scales well and produces extremely compact encodings
of the points-to sets.

5. FULL EXPERIMENTAL RESULTS
We introduced our benchmarks and experimental setup in sec-

tion 4.1. We also presented the performance of the BDD solver
on four benchmarks during the tuning process. In this section, we
present and discuss the performance of our best variable ordering
for BDDs compared to an efficient, hand-coded solver, SPARK [17,
18], in three aspects: time, memory requirements, and scalability.
SPARK includes several different solving algorithms; we used the
incremental worklist propagation algorithm, the fastest one.

We are interested not only in scalability in terms of the size of the
program being analyzed, but also in the dependence of the solver
on techniques that reduce the size of the problem being solved,
such as respecting declared types and off-line variable substitution.
This is because these techniques may not always be applicable. For
example, if we were analyzing a program written in C rather than
Java, we could not rely on declared types. Even when analyzing
Java, declared types are not always used [25] because they may be



newPointsTo = pointsTo;
repeat

/* --- rule 1 --- */
/* 1.1 */ newPt1:[V2xH1] = relprod(edgeSet:[V1xV2], newPointsTo:[V1xH1], V1);
/* 1.2 */ newPt2:[V1xH1] = replace(newPt1:[V2ToV1], V2ToV1);

/* --- remove old (already propagated) points-to pairs --- */
/* 1.3 */ newPt3:[V1xH1] = newPt2:[V1xH1] \ pointsTo:[V1xH1];

/* --- apply type filtering and merge into pointsTo relation --- */
/* 1.4 */ newPointsTo:[V1xH1] = newPt3:[V1xH1] ∩ typeFilter:[V1xH1];
/* 1.5 */ pointsTo:[V1xH1] = pointsTo:[V1xH1] ∪ newPointsTo:[V1xH1];

until pointsTo does not change

Figure 9: Incremental modification to rule (1) of algorithm

inconvenient to represent in the specific solver being implemented.
Off-line variable substitution is applicable only when all the con-
straints are available before the analysis begins; we could not use
it if we were computing the call graph on-the-fly as the points-to
analysis proceeds.

Table 4 presents our benchmarks ordered by the size of the prob-
lem sets and grouped under the headings (s/t), (ns/t) and (ns/nt),
where s denotes simplification of the set of constraints, while ns
denotes no simplification, and t denotes use of type information
during propagation, whereas nt denotes no use of type information
during propagation. The column labelled constraints gives the size
of the input in terms of the number of constraints, including allo-
cation sites, direct assignments, and field loads and stores. Without
simplification, we see that numbers of constraints for the bench-
marks range from 316K to 433K. The set size column indicates the
sum of the sizes of the computed points-to sets across all variables,
and is an indication of the size of the solution (the output).

5.1 Performance of BDDs
For small problem sets, we find that our BDD solver is very com-

petitive in terms of solving time, and even begins to beat SPARK

when solving jedit, our largest benchmark. Further, in terms
of memory usage, the BDD solver is a clear winner. Figure 10
plots the memory usage versus the number of input constraints for
the (s/t) case, where the constraint set has been simplified and the
type information is used. Note that not only is the absolute space
used much lower for the BDD solver, but also the space used for the
BDD solver scales very well as the number of constraints increases.

The difference in space usage widens when we consider the other
cases, (ns/t) and (ns/nt), where the number of input constraints are
larger. As indicated by the middle section of Table 4, without sim-
plification but using type information (ns/t), the BDD solver scales
gracefully to a mere 38 MB of memory usage in the worst case,
whereas the traditional solver requires up to 244 MB of RAM.

The final section of Table 4 shows the results when type infor-
mation is not used. Note that the size of output sets increases dra-
matically, they are about an order of magnitude larger than when
types are used. This makes it clear that solvers using an explicit
representation of points-to sets will have difficulty scaling if type
information is not used, because the total size of the points-to sets
becomes up to 356 million elements. This number includes only
points-to sets corresponding to variables; the points-to sets corre-
sponding to fields of heap objects (the fieldsPt relation in our al-
gorithm) are more than an order of magnitude larger. Even a very
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efficient set representation using a single bit per set element would
require a huge amount of memory to store these sets. In fact, the
SPARK solver uses such an encoding, and it ran out of memory
on all of the problems which ignored declared types, even on a
larger machine with 2 GB of memory. However, when we look
at the results for the BDD solver we see that even though the set
size has increased by about a factor of 10 over the (ns/t) case, the
BDD memory usage increases by less than a factor of 2, and solves
all problems in less than 66 MB. This demonstrates the ability of
BDDs to take advantage of the sharing of large sets.

Overall, we see that both solvers are efficient on small problem
sets, and that the hand-coded solver is good at handling inputs with
type information. As the problem sets get larger, however, the BDD
solution shows a remarkable ability to scale well and handle large
points-to sets by exploiting regularity in the sets to keep the repre-
sentation small. Techniques in which declared types are not used
to limit the size of points-to sets, which have been used in related
work [25, 33], would not be able to scale to this size of problem;
however, the BDDs do.

5.2 Notes on Measuring Memory Usage
As previously noted, for the timing run of the BDD solver, we

allotted a heap of 160 MB to reduce the frequency of garbage col-
lections. However, the solver never requires this full amount during



benchmark const- set BDD SPARK
raints size time mem time mem

103 106 (s) (MB) (s) (MB)
(s/t)
compress 174 6.7 10 21 8 84
db 174 6.8 10 21 8 84
raytrace 175 6.7 10 21 8 84
jack 177 7.1 10 21 8 87
mpegaudio 178 7.0 10 21 8 88
jess 180 7.2 10 21 8 88
jbb2000 185 7.8 10 19 9 100
javac 198 8.0 11 23 10 99
sablecc-j 212 7.3 11 23 8 101
soot-c 218 9.9 12 23 10 104
jedit 232 12.2 16 28 19 169
(ns/t)
compress 316 18.3 20 29 11 127
db 317 18.4 20 28 11 128
raytrace 318 18.3 22 29 11 129
jack 325 19.2 22 29 12 132
mpegaudio 325 19.1 23 30 13 134
jess 330 19.8 24 29 12 136
jbb2000 342 20.9 22 23 13 159
javac 366 21.0 23 31 14 148
sablecc-j 393 19.9 23 31 14 158
soot-c 397 24.9 26 33 15 162
jedit 433 35.1 35 38 35 244
(ns/nt)
compress 316 163.3 59 38 oom oom
db 317 163.9 59 38 oom oom
raytrace 318 163.4 59 38 oom oom
jack 325 171.5 59 38 oom oom
mpegaudio 325 171.2 61 39 oom oom
jess 330 183.3 61 39 oom oom
jbb2000 342 206.7 70 42 oom oom
javac 366 199.7 65 40 oom oom
sablecc-j 393 196.3 64 41 oom oom
soot-c 397 228.4 66 43 oom oom
jedit 433 344.9 121 66 oom oom

Table 4: Performance and live data of BDD solver.
The value “oom” indicates that the solver ran out of memory, even

on a machine with 2 GB.

the computation.
To measure the actual memory usage, we started BuDDy with

23 MB as the initial size of the node table and a 2.4 MB cache size.
Whenever less than 20% of memory was left, BuDDy increased
the size of the node table by 2.4 MB. This allowed us to measure
the maximum live set size to within 2.4 MB. Note that the actual
memory allocated is up to 20% higher than this number, because
BuDDy always maintains 20% of unused nodes for future use.

In SPARK, the memory requirements increase monotonically as
the analysis proceeds, so we simply report the final live set size af-
ter a garbage collection at the end of the analysis. This comparison
can only be used as a rough reference, since Java and C++ have dif-
ferent object models and memory management. However, we are
measuring only the size of the data structures used by the points-
to analysis, excluding any structures introduced by the language-
specific run-time system. The memory requirements should there-
fore be at least roughly comparable, in spite of the differences be-
tween Java and C++.

6. APPLICATIONS
Section 5 shows that the BDD encoding scheme allows the points-

to problem to be solved quickly and represents the points-to relation
compactly. A compiler has several options for accessing this infor-

mation. One option is to extract the entire relation into an explicit
representation of the points-to sets. The time to enumerate the set
of satisfying bit-vectors for a BDD X is nearly linear to the num-
ber of solutions3. Alternatively, it can selectively extract only the
points-to set of a variable, or those of a specific set of variables, on
demand. A third, interesting option is to minimize or even elimi-
nate the need to extract an explicit representation, but rather use the
BDD representation and operations for further computation. The
size of the explicit representation of the relation stored in a BDD
may be quite large; by encoding part or all of the subsequent set
processing with BDD operations, we can avoid constructing an ex-
plicit representation of this possibly large relation.

The most common use of points-to information is to determine
whether two heap references p. f and q. f could refer to same loca-
tion, which reduces to checking whether p and q could be aliased.
A demand-driven way to solve this is to extract the points-to set of
pt(p) and pt(q) by using the standard BDD operation, restrict, and
check if the intersection of two sets is not empty (an empty set in
BDD equals to the bdd false constant):

pt(p) = restrict(pointsTo, BDD(p), V1);
pt(q) = restrict(pointsTo, BDD(q), V1);
alias(p,q) = (pt(p) ∩ pt(q) 6= bdd_false);

Another common use of points-to information is virtual method
call resolution. To resolve a method call site, a compiler needs a
set of possible types of the receiver. This can be determined by
checking the types of the objects found in the points-to set of the
receiver. As the object types are encoded in a BDD relation, we can
find the sets of possible receiver types for all receivers using just
one relational product operation. Thus we can find all the types for
all the receivers in just one step.

varTypes = relprod(pointsTo, objectType, H1)

The implicit BDD encoding has advantages beyond that of com-
pactness. Direct operations on BDDs are very powerful; they allow
a compiler to use a high-level specification to describe complex
queries and set transformations. Not only does this enable rapid
development, but with a good ordering, one can expect good per-
formance.

7. RELATED WORK
Points-to analysis [1, 9, 32] has been an active research field in

the past several years. Hind [14] gives a very good overview of the
current state of algorithms and metrics for points-to analysis. An
important issue is how well the algorithms scale to large programs.
Various points-to analyses make trade-offs between efficiency and
precision. Equality-based analysis [32] runs in almost linear time,
but with less precise results. On the other hand, subset-based anal-
ysis [1] produces more precise results, but with cubic worst-case
complexity. In this work, we developed a specific version of a
subset-based analysis that is suitable for implementing with BDDs,
and which exhibits good space and time behaviour when used to an-
alyze a range of Java programs, including a variety of large bench-
mark programs.

Various optimizations have been proposed to improve the effi-
ciency of points-to analyses. Two of these optimizations, cycle
elimination [10] and variable substitution [24], are based on the
idea that variables whose points-to sets are provably equal can be
merged, so that a single representation of the set can be shared

3If |X | is size of the set, and M is the number bits used to encode
the BDD, then the set can be enumerated in Θ(|X |×M) time.



by multiple variables. Heintze and Tardieu [12] reported very fast
analysis times using a demand-driven algorithm and a carefully de-
signed implementation of points-to sets [11].

Several groups adapted the points-to analyses used for C to
Java [19, 25]. These approaches, however, were applied only to
benchmarks using the JDK 1.1.8 class library. One of the difficult
points for whole program analysis for Java is that even very simple
programs touch, or appear to touch, a large part of the class library.
The JDK 1.3.1 class library is several times larger than the 1.1.8 li-
brary, and techniques which applied to the 1.1.8 case may no longer
scale.

Recently, two approaches have been presented that have been
shown to scale well to the JDK 1.3.1 library. Whaley and Lam [34]
adapted the approach of Heintze and Tardieu to Java programs, and
managed to get it to scale to benchmarks using the JDK 1.3.1 class
library (although they made optimistic, potentially unsafe, assump-
tions about what part of the library needs to be analyzed). Lhoták
and Hendren [17, 18] presented the SPARK framework, which al-
lows experimentation with many variations of points-to analyses
for Java. They used this framework to implement points-to solvers
that were more efficient in time and space than the other reported
work, including that of Whaley and Lam, making it the most effi-
cient Java points-to analysis solver of which we are aware. There-
fore, in our study of BDD-based points-to analysis, we used the
SPARK framework both to generate the input to our BDD-based
solver, and as a baseline solver against which to compare our new
BDD-based solver.

Ordered Binary Decision Diagrams [5] represent boolean func-
tions as DAGs. The canonical representation allows efficient
boolean operations and testing of equivalence and satisfiability.
Symbolic Model Checking [16] is used to verify circuits with an ex-
tremely large number of states by using BDDs. The use of BDDs in
this context has allowed researchers to solve larger problems than
can be solved using table-based representations of graphs. BDDs
have also been used in software verification and program analyses.
PAS [29] converts predicate and condition relations in a control
flow graph to a compact BDD representation and performs analy-
sis on these BDDs. Another use of BDDs is to represent large sets
and maps; TVLA [21] and Bebop [3] are examples. In our work,
as in model checking, we use BDDs to represent all data structures,
and we show non-trivial techniques to make the original algorithm
scalable to large programs using this new representation.

Although model checking and program analyses are not tightly
connected yet, several publications have pointed out theoretical
connections between them [26, 27]. The theoretical foundation of
flow analyses is the fixed-point theory on monotonic functions,
whose counterpart in model checking is the modal µ-calculus.
Schmidt and Steffen [27] presented a methodology of treating it-
erative flow analysis as model checking of abstract interpretations.
Bandera [8] is a tool-set applying such ideas to analyzing realistic
programs. Like some other work [4], it abstracts program prop-
erties to linear temporal logic (LTL) or computational tree logic
(CTL) formulas, which can be verified efficiently by existing model
checking tools. Martena and Pietro [22] studied the application of
a model checker, Spin, to solve intraprocedural alias analysis for
C. In a different program analysis setting, BDD-based groundness
analysis for constraint (logic) programs has become one of the stan-
dard approaches [13].

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a BDD-based points-to analysis

that scales very well in terms of time and space, and is very easy
to implement using standard BDD packages. The motivation to use

BDDs came from the fact that for large programs, the number and
size of points-to sets can grow so that even well-tuned traditional
representations fail to scale appropriately. BDDs have been shown
to work well for large problems in the model checking commu-
nity, and we wanted to see if they could be applied effectively to
the points-to problem. We showed that with the appropriate tuning,
a fairly simple algorithm could deliver a solver that was competi-
tive with previously existing solvers and provided a very compact
representation of points-to relationships.

It was not immediately obvious that a BDD-based approach
would work for a program analysis like points-to. Although BDDs
have been shown to be very effective in areas like hardware ver-
ification, program analyses face program properties that are quite
different from those areas, including: 1) the problem may not be
represented by LTL and CTL formulas; and 2) the analyzed object
may not have many common patterns. For example, the transition
system of a circuit written in CTL often exhibits regularities in the
structure, which can be compactly represented in BDDs by apply-
ing good heuristics. However, before we started our work, it was
not clear if the subset-inclusion relationship graph, and other data
structures required for points-to analysis, had common structures
that could give compactness. By systematically exploring a va-
riety of orderings and empirically analyzing the performance, we
did find an incrementalized algorithm and associated variable or-
dering that led to compact BDD representations. It is interesting to
note that in the case of points-to analysis, it was not so important
to find a compact representation for the input problem (unlike the
case of hardware verification, where the input description may be
very large and have many common patterns), but it was important
to find a compact representation for the solution (i.e. the points-to
relationships). Thus, it was the fact that the points-to sets showed
a lot of regularity that leads to a fast and space-efficient solution.
It would be very interesting to see if other whole-program analyses
exhibit the same sort of regularity in their solutions. In our opinion,
this is very likely.

In our work so far, we concentrated on choosing a good variable
ordering and developing the incremental propagation algorithm. It
is possible that this could be further improved by introducing some
aspects of graph-based solvers into the BDD solver. For exam-
ple, it would be very interesting to see if efficient BDD algorithms
for collapsing strongly connected components [35] would further
improve the efficiency of our BDD-based points-to algorithm. An-
other idea which has been suggested for improving the efficiency
of BDDs is dynamic variable reordering. Our preliminary experi-
ments with using this technique on our points-to problem showed
no significant improvement. In fact, the cost of reordering the large
BDDs involved appeared to be even higher than the cost of solv-
ing the points-to problem with the original ordering. We there-
fore leave further investigation of dynamic variable reordering for
BDD-based points-to analysis as future work.

In addition to achieving our goals in terms of time and space, we
were pleasantly surprised with how easy it was for us to specify a
wide variety of algorithms with the BDD approach. We tried many
variations of the points-to analysis while developing our algorithm
and it was very easy to go from one variation to the next. Based on
this experience, we believe that a BDD package should be part of
the standard toolkit for compiler analysis developers. Further, our
BDD-based points-to analysis should be very easy to incorporate
into program analysis tools where BDDs are used more and more
frequently.

We plan to continue our work with BDDs and to further experi-
ment with the kinds of queries outlined in Section 6. In addition, we
would like to make a tighter connection between the Soot frame-



work and a BDD toolkit so that subsequent BDD-based analyses
could be specified at a very high level.
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APPENDIX

A. FULL INCREMENTAL ALGORITHM

/* global variables, initialized by input constraints */
bdd pointsTo; // points-to relation V1 x H1
bdd edgeSet; // assignment relation V1 x V2
bdd stores; // field store relation V1 x (V2 x FD)
bdd loads; // field load relation (V1 x FD) x V2
bdd typeFilter; // encoding type filter V1 x H1
/* caches for intermediate results */
bdd fieldPt; // (H1 x FD) x H2 points-to relation for fields of heap objects
bdd storePt; // H2 x (V1 x FD) temporary relation for field stores
bdd loadAss; // (H1 x FD) x V2 temporary relation for field loads

/* incrementally computes points-to relation */
void solve_incremental(){

bdd oldPointsTo = bdd_false(); // initialize variable to FALSE (0)
bdd newPointsTo = pointsTo;
// main iteratons
do{
// repeat rule (1) in the inner loop, see Figure 9 for details
do{

bdd newPt1 = bdd_relprod(edgeSet, newPointsTo, fdd_ithset(V1));
bdd newPt2 = bdd_replace(newPt1, V2ToV1);
bdd newPt3 = newPt2 - pointsTo;
newPointsTo = newPt3 & typeFilter;
pointsTo = pointsTo | newPointsTo;

} while (newPointsTo != bdd_false());
newPointsTo = pointsTo - oldPointsTo;

// apply rule (2)
bdd tmpRel1 = bdd_relprod(stores, newPointsTo, fdd_ithset(V1)); // (V2xFD)xH1
bdd tmpRel2 = bdd_replace(bdd_replace(tmpRel1, V2ToV1), H1ToH2); // (V1xFD)xH2
bdd newStorePt = tmpRel2 - storePt;
storePt |= newStorePt; // (V1xFD)xH2

bdd newFieldPt = bdd_relprod(storePt, newPointsTo, fdd_ithset(V1)); // (H1xFD)xH2
newFieldPt |= bdd_relprod(newStorePt, oldPointsTo, fdd_ithset(V1)); // (H1xFD)xH2
newFieldPt -= fieldPt;
fieldPt |= newFieldPt; // (H1xFD)xH2

// apply rule (3)
bdd tmpRel3 = bdd_relprod(loads, newPointsTo, fdd_ithset(V1)); // (H1xFD)xV2
bdd newLoadAss = tmpRel3 - loadAss;
bdd newLoadPt = bdd_relprod(loadAss, newFieldPt, fdd_ithset(H1)&fdd_ithset(FD));
newLoadPt |= bdd_relprod(newLoadAss, fieldPt, fdd_ithset(H1)&fdd_ithset(FD));
loadAss |= newLoadAss;

oldPointsTo = pointsTo;

// convert new points-to relation to normal type
newPointsTo = bdd_replace(bdd_replace(newLoadPt, V2ToV1), H2ToH1);
newPointsTo -= pointsTo;

// apply typeFilter
newPointsTo = typeFilter & newPointsTo;
pointsTo |= newPointsTo;

// loop until points-to set has no changes
} while (newPointsTo != bdd_false());

}


