
EVolve: An Open Extensible Software Visualization Framework∗

Qin Wang, Wei Wang, Rhodes Brown, Karel Driesen, Bruno Dufour,
Laurie Hendren and Clark Verbrugge

School of Computer Science
McGill University

Montréal, Québec, CANADA H3A 2A7
[qwang21,wwang22,rhodesb,karel,bdufou1,hendren,clump]@cs.mcgill.ca

Abstract

Existing visualization tools typically do not allow easy extension
by new visualization techniques, and are often coupled with inflex-
ible data input mechanisms. This paper presents EVolve, a flexible
and extensible framework for visualizing program characteristics
and behaviour. The framework is flexible in the sense that it can
visualize many kinds of data, and it is extensible in the sense that it
is quite straightforward to add new kinds of visualizations.

The overall architecture of the framework consists of the core
EVolve platform that communicates with data sources via a well
defined data protocol and which communicates with visualization
methods via a visualization protocol.

Given a data source, an end-user can use EVolve as a stand-alone
tool by interactively creating, configuring and modifying visual-
izations. A variety of visualizations are provided in the current
EVolve library, with features that facilitate the comparison of mul-
tiple views on the same execution data. We demonstrate EVolve in
the context of visualizing execution behaviour of Java programs.

CR Categories: D.3.5 [Software]: Programming Languages—
Language Classifications - Object-oriented Languages; D.2.5 [Soft-
ware]: Software Engineering—Testing and Debugging - Tracing

Keywords: Software Visualization, Trace-based Visualization,
Object-oriented Systems, Java, JVMPI

1 Introduction

This paper presents a software visualization framework, EVolve,
which has been designed to be both open and extensible. EVolve
is extensible in the sense that it is very easy to integrate new data
sources and new kinds of visualizations. EVolve is open in the sense
that EVolve framework is publicly-available and the interfaces to
new data sources and new visualizations are clearly defined via Java
APIs.

The development of EVolve started from our need to visualize
the run-time behavior of Java programs in ways that help us develop
new compiler optimizations and new run-time systems. We had

∗Supported in part by NSERC, FCAR and McGill FGSR.

trace data from many diverse data sources, including several JVMPI
agents, instrumented Java virtual machines and instrumented byte-
code. Thus, we needed a system that could be easily adapted to new
sources of data. Note that our data is usually collected offline. On
the visualization side we wanted to be able to develop new visual-
izations that allowed us to view specific program behaviours, such
as the predictability of polymorphic virtual method calls. Thus,
we needed a system where new visualizations could also be easily
added.

Our final EVolve system can be used in two ways: (1) as a stand-
alone tool using pre-defined data sources and visualizations and (2)
as a toolkit for developing new visualizers (adding new data sources
and visualizations).

This paper has two major areas of contributions. The first area
is the design and features provided by the EVolve platform, and the
second is the development of a collection of software visualizations
that are suited to the study of the run-time behaviour of Java pro-
grams. We expand upon these two major areas in the following
subsections.

1.1 Design and Features

In designing the EVolve platform we considered both extensibility
and usability. Extensibility was achieved via a clean definition of
the data and visualization protocols; in particular, the data proto-
col provides a well-defined method for defining data records (ele-
ments) and classifying these as either entities (static information)
and events (dynamically-occurring events stored in a trace file).
Furthermore, fields in elements are defined with specific properties
which allows the EVolve system to automatically create appropriate
menus for visualization creation and configuration.

The EVolve platform provides many useful features for selecting
and instantiating, manipulating and comparing visualizations. For
example, we found that it was very important to align different visu-
alizations along the same axes, in order to facilitate understanding
of the interaction of run-time behaviours. Going one step further
we also provide a method for overlapping visualizations. Other fea-
tures include a tool to zoom in, a tool to select subsets of data and
color them appropriately, and the ability to sort entities along any
dimension.

1.2 Visualizations

In order to make a useful tool for our research, we have defined a
collection of standard as well as new visualizations,some specific to
our particular interest in the run-time behaviour of Java programs.

Each visualization implements the EVolve visualization protocol
by providing an implementation for the visualization API. EVolve
currently supports eight different types of visualizations, imple-
mented using a visualization hierarchy which uses subclasses to
group common behaviour together. This initial set can be easily



JVMPI

Instrumented VM

SOOT

Custom Data Source

Hotspot Visualization

Dotplot Visualization

Custom Visualization

Visualization
Manager

Data
Manager

Filter

UI Manager

Data
Protocol

Visualization
Protocol

EVolve
Platform

Data
Sources

Visualization
Library

Figure 1: Architecture of EVolve.

expanded. A user wishing to add a new kind of visualization simi-
lar to an existing one can implement a subclass, and only define new
behaviour. Completely new visualizations can be added by defining
a new class higher up in the hierarchy. We have found that the vi-
sualization API is quite clear and the implementations required are
relatively small.

1.3 Paper Organization

The paper is organized as follows. In Section 2 we discuss the over-
all architecture of the system and describe the data and visualiza-
tions protocols in more depth. In Section 3 we describe our existing
visualizations along with examples taken from real benchmark pro-
grams. In Section 4 we give an overview of the most important
features provided by EVolve. In Section 5 we give an example of
a new visualization and discuss the implementation effort involved.
Finally, we give related work and conclusions in Sections 6 and 7.

2 Architecture

The EVolve platform consists of three components (see Figure 1).
The leftmost data source component translates input data into
EVolve’s abstract representation so that it can be manipulated and
visualized. The visualization library component at the opposite end
presents this data using standard and newly built custom visualiza-
tions. The third (middle) component forms the fixed core of the
EVolve platform. The core takes care of all communication be-
tween data source and visualization library, encapsulating the com-
plex machinery that manipulates the data. This allows data sources
and visualizations to focus on their specific tasks. Although EVolve
is distributed with a default data source and a default set of visual-
izations, end-users can — and are encouraged to — develop custom
ones in order to suit their particular needs.

2.1 Data Representation

In order to make the EVolve platform extensible we limit the con-
straints imposed on the input format of the source data. An abstract
and flexible internal representation is independent from the source
from which data was obtained or the format in which it is stored.

We distinguish between two major classes of data elements. En-
tities are named, unordered data elements that remain constant dur-
ing the visualization process. Examples of entities are data types
and class information. Events are anonymous, ordered data ele-
ments that are dynamic in nature. They represent the behaviour of
a program. Examples of events are object allocations and method
invocations. Execution traces typically contain few entities and nu-
merous events, therefore EVolve caches entities in memory and

keeps events on disk. In a typical run 99% of the elements in an
execution trace are events.

Elements consist of fields of two types: entity reference (which
we will refer to as reference) and value. A reference field refers to
an entity whereas a value field holds scalar data.

In addition we define properties for value fields. Properties com-
municate generic data characteristics so visualizations can operate
on appropriate data. Three properties are built-in:

amount: The amount property indicates a numeric and
summable value. For example, the “allocation size” of an ob-
ject allocation event is an amount.

coordinate: The coordinate property indicates a non-numeric,
non-summable value. For example, an object address is a co-
ordinate because addresses cannot be meaningfully summed.

time: The time property indicates that a data value is monotoni-
cally increasing, and thus can be interpreted as a definition of
time. It can be used in conjunction with amount or coor-
dinate.

EVolve allows the definition of custom data properties in order
to support new visualization requirements.

2.2 The Data Protocol

The data source component converts input data into a format that
can be manipulated within the framework. The data source com-
municates with the core of EVolve through the data protocol. A
new data source supports the data protocol by implementing 7 sim-
ple methods which are called by EVolve.

The init() method initializes the data source. This typically
involves opening the input file for reading and instantiating global
objects and data structures. The remaining 6 methods are grouped
in pairs: one for each of three three kinds of objects that a data
source sends to EVolve. Each pair provides the start and the deliv-
ery of the next object for one object type.

EVolve uses element definitions to represent the structure of data
elements (entities and events) in the execution trace. Element defi-
nitions encode properties of data fields and relationships between
fields of data elements. The data source implements a method
pair to send this information to EVolve: startBuildDefi-
nition() and getNextDefinition(). EVolve first calls
startBuildDefinition() to let the data source know that
it is ready to accept definitions, and then calls getNextDefini-
tion() repeatedly until a null value is returned. The second pair
of methods, startBuildEntity() and getNextEntity(),
deliver entities. The third pair, startBuildEvent() and get-
NextEvent(), deliver events. .



EVolve provides two convenience classes to assist in the creation
of these three kinds of objects: EntityBuilder and Event-
Builder. They generate a definition or an instance of a data el-
ement. The process is similar for both tasks. The builder class is
instructed to start building a new definition (instance). Fields are
repeatedly added. Once every field is provided, the builder class is
instructed to return a newly built item. In the case of element in-
stances, builder classes verify that all previously-defined fields have
been properly set and throw an exception if any are missing, thus
avoiding potential problems associated with malformed input.

2.3 The Visualization Protocol

In order to make visualizations flexible, they must be able to display
data from a variety of different data sources. Therefore any specific
requirement must be expressed in a systematic, data-independent
way. Similarly to data sources, EVolve requires visualizations to
provide an abstract representation of their visualization capabilities.

Visualization capabilities are defined in terms of dimensions. Ev-
ery visualization defines its dimensions, which can either be values
or references. For example, the horizontal bar chart visualization
in Figure 2 declares a reference dimension and a value dimension,
where the value dimension is used for the length of the bars.

Every dimension is associated with a data property. The prop-
erty constrains the fields from a data source which can be mapped
to a dimension. For example, the bar chart in Figure 2 requires that
its value dimension is an amount, i.e. a summable value. Dimen-
sions are also associated with data filters which extract the field of
interest for the selected type of event.

A new visualization in EVolve extends Visualization,
which defines 9 abstract methods. These methods collectively form
the visualization protocol. The first task is the creation of the vi-
sualization, supported by two methods: createDimension()
creates the dimensions of the visualization, createPanel() cre-
ates the canvas on which the visualization will be drawn. The
next two methods make the visualization configurable via the con-
figuration dialog: createConfigurationPanel() creates a
visualization-specific panel to be inserted in the generic configura-
tion dialog (see middle panel of figure 2), updateConfigura-
tion() sends a notification that a user has configured a visual-
ization. Three additional methods support the visualization process
itself: preVisualize() starts a new visualization phase, re-
ceiveElement() then passes elements one by one to the visu-
alization, visualize() produces the visual representation once
all elements have been sent. Two more methods then allow the user
to manipulate visualization entities by making selections and sort-
ing dimensions: makeSelection() and sort().

2.4 The EVolve Core Platform

The core of the EVolve platform manages the user interface and
handles communication between the data source and different vi-
sualizations, in order to allow both these components to work as
independently as possible. The topmost picture in figure 2 shows
the list of available visualizations. The UIManager, part of the
EVolve core, automatically generates this menu from a list of reg-
istered visualizations with EVolve. The user selected a simple Bar
Chart.

In order to promote extensibility, direct interactions between data
source and visualizations are prohibited. Data sources provide an
abstract description of their input format, and visualizations provide
a description of requirements and capabilities. EVolve’s data man-
ager makes sure that only data elements with appropriate properties
are sent to the visualization manager.

The configuration dialog in the middle screen shot of Figure 2 il-
lustrates the link between data source and visualization: the EVolve

Figure 2: Barchart visualization process: selecting a registered vi-
sualization (top), configuring the Barchart with fields from the data
source (middle), and visualization (bottom).

core generates the items in the drop-down lists automatically. The
subject of the visualization is simply the type of event that is vi-
sualized, in this case a Method Invocation. This information
is extracted from the abstract element definitions generated by the
data source. Once a subject has been selected, EVolve extracts from
the element definition the fields which have properties appropriate
to each dimension of the visualization. A field can be mapped to a
dimension if it is the proper kind (value or reference) and possesses
the appropriate property. In this example, the y-axis of a (horizon-
tal) bar chart must be a reference, and therefore EVolve shows the
list of references available in a Method Invocation event. The
user selected Invoking Locations.



Figure 3: Visualization Hierarchy.

The bottom screen shot in Figure 2 shows the resulting bar chart
visualization. At this point the user can manipulate the bar chart,
for example by changing the order of references on the y-axis (tem-
poral or lexical: see Section 3). A user can customize EVolve by
plugging in different sorting schemes for data fields with particular
properties. Users can also make selections on the graph and apply
operations on them, for instance colouring a particular data subset.
A colouring scheme can be shared among different visualizations
allowing one to keep track of a subset of interest across different
views (see Section 3).

3 Visualization Library

EVolve can be used as a stand-alone tool to interactively create and
modify multiple visualizations from an existing library. In this sec-
tion we demonstrate these built-in visualizations, while emphasiz-
ing the ability to view one data source simultaneously in a variety
of different views.

EVolve is also designed to be extensible. The core platform en-
sures that each new visualization can be applied to any data source
which has the appropriate properties. The visualization interface
described in Section 2 ensures seamless integration of any new vi-
sualization into the existing tool. In addition, we provide the exist-
ing library as an implementation hierarchy, so that new visualiza-
tions can reuse code from old visualizations. Extending the library
with new visualizations is now just a matter of finding the right su-
per class to inherit from, and overriding the appropriate methods.

3.1 Hierarchy

Figure 3 shows the visualization hierarchy. We show abstract
classes in rounded boxes, concrete classes in plain boxes, and over-
ridden methods in italics. Abstract classes provide functionality

that all visualizations in the subtree have in common. The top-
most abstract class is Visualization, which declares all meth-
ods necessary to communicate with the visualization platform, as
discussed in Section 2. Two methods can be inherited or overridden
for visualization-specific behavior: sort provides different sorting
schemes and makeSelection encodes how the user selects sub-
sets of data. Visualization has a concrete subclass Table,
which shows a set of references/values in table format, and an ab-
stract subclass XYVisualization, which serves as root for all
two-dimensional visualizations showing an x and y-axis.
XYVisualization declares installPainter, which de-

termines the colouring of a visualization, and mouseMove which
generates text when the user moves the mouse over a particular spot
(e.g. showing the name of an invoked method). XYVisualiza-
tions differ in the way they treat coordinates on x and y-axis: each
axis can be either a reference or a value. References refer to enti-
ties (see Section 2), are named and can be sorted and coloured to
facilitate comparisons between different views. A value axis shows
computed values. Nothing is known a priori about values: they can
be extracted directly from the data source (e.g. object size) or be
computed (e.g. a metric such as average inline cache miss rate).
Value-Reference visualizations contain one reference axis,

and therefore share code for mouseMove, showing the name of
the reference corresponding to the mouse position1, and sort,
sorting the reference axis temporally or lexically. Reference-
Reference visualizations contain a reference on both x and y-
axis. Value-Value visualizations, which are more open-ended,
share sort but override mouseMove, makeSelection and
installPainter.

In the next sections, we show examples of concrete classes and
discuss how they fit into the hierarchy.

1all Value-Reference visualizations can be oriented horizontally or
vertically



Figure 4: Four aligned visualizations: a barchart and three hotspots.

3.2 Bar Chart

Figure 4 shows four aligned visualizations of method invocations
from a fragment of the Volano benchmark[VOLANO 2001]. The
top left window shows a simple visualization: a horizontally ori-
ented bar chart. This is the bar chart shown in Figure 2, after
the user selected colours for particular subsets: the method invo-
cation locations on the y-axis are coloured yellow (Volano), red
(frequently called Java libraries) and blue (infrequently called Java
libraries). The x-axis shows the total number of invocations for each
of the 252 locations.

3.3 Hotspot

The top right window of Figure 4 shows a lexically sorted hotspot.
The picture is similar to the bar chart, but now method invocations
are shown as they occur in time, instead of summed together. The
y-axis is identical to the bar chart y-axis, but the value axis (x-
axis), shows the passing of time as method invocations: invocations

20300 to 22602, grouped in intervals of 20 invocations each2).
Both windows are aligned according to the reference axis us-

ing EVolve’s window alignment feature. The hotspot visualization
shows when and for how long particular parts of a program be-
come active. For example, the visualized program phase starts with
class loading, executing exclusively Java library code in red, and
then switches to com.volano invocations, which also call some
library code in blue and red.

The mouseMove method, implemented for all Value-
Reference visualizations, shows the name of the invoking lo-
cation pointed at by the mouse (the name shows at the bottom of
the screen).

The bottom right window of Figure 4 shows the same hotspot
graph as the top right window, but with a temporal sorting of the

2If an invoking location occurs once or several times in the interval then
the appropriate location is coloured. The surface area of a hotspot is an ap-
proximation of the number of invocations. The bar chart shows this number
precisely.



Figure 5: Polymorphism viewed in prediction hotspot and correlation visualizations.

reference axis. A temporal sorting orders entities by the time stamp
of their first occurrence in the data source, while the default lexical
sorting sorts them in alphabetical order. A temporal hotspot clus-
ters together invocations that start together, and emphasizing pro-
gram phases. The yellow com.volano invocations now appear
clustered together with the Java library code that they call.

3.3.1 Thread Hotspot

The bottom left window of Figure 4 shows a thread hotspot graph.
Thread Hotspot is a subclass of Hotspot, and shares al-
most all of its code with Hotspot. This example shares identi-
cal axis orderings with the temporal hotspot to its right. However,
Thread Hotspots define their own colouring scheme by over-
riding (installPainter). Each different Java execution thread
is assigned a colour by the user. Volano begins in single thread ex-
ecution and quickly moves into a more colourful multiple thread
execution when it reaches the actual Volano code.

3.3.2 Stack Hotspot

Adding new hotspots with different colouring schemes takes min-
imal effort: only installPainter needs to be defined. The
Stack Hotspot visualization uses three different colours to
show within a given time sample all methods that are called, on
the stack but inactive, on the stack and active, by overriding in-
stallPainter. We do not show an example because of space
limitations.

3.3.3 Prediction Hotspot

The final Hotspot class, Prediction Hotspot, is illustrated
in the left window of the next figure: Figure 5. This hotspot shares
x and y-axis definitions with the previous hotspots. Only the colour-
ing scheme is customized: method invocations appear in blue when
the invoked target method does not change within an interval, in
red when it does change —i.e., the invocation is polymorphic. Ap-
parently com.volano exhibits some polymorphism in the later
phase.

This visualization is called Prediction Hotspot because it
displays the predictability of events. The name "prediction" stems

from the technique used to generate colours: a simple last-value
predictor guesses that an invocation location will invoke the ex-
act same method as the last time it was executed. The blue areas
indicate perfect prediction accuracy, the red areas show when the
predictor guesses wrong at least once in the time interval. Different
predictors can be visualized by plugging them into the framework.

Note that this visualization is not restricted to method target pre-
diction. It displays a measurement of polymorphism only because
the user selected invoked method fields from method invocations
events. In general, the prediction of any event field by any other
field can be visualized. For example one can show whether array
allocation size is stable (blue) or unpredictable (red) by selecting
the size field in an array object allocation event.

The implementation effort required to build the prediction visu-
alization was very small. About 120 lines of code needed to be
added to plug in the visualization, 40 of which implemented a new
colouring scheme including the simple last-value predictor. The
actual programming took only a few hours.

3.4 Correlation

The Correlation class, a subclass of Reference-
Reference, is illustrated in the right part of Figure 5. Its
y-axis shows method invocation locations, identical to the y-axis
hotspot to its left. Its x-axis shows invoked methods. A correlation
visualization shows when a reference x occurs in the same event as
reference y, therefore this graph displays the method targets of all
invocation locations.

A horizontal row of dots indicates an invoking location with
more than one target method (a polymorphic location). A vertical
row indicates a method that is called from multiple locations. Most
of the dots are close to the diagonal, indicating that most methods
are monomorphic and only called from one location. Polymorphic
locations thus show as horizontal rows of dots.

Figure 5 also demonstrates the use of a Zoomed View, which
is available in all visualizations. The 20 x 20 area under the mouse
pointer is enlarged to allow the user to see the fine-grained struc-
ture of the graph and to point to a specific dot in order to see the
reference name (implemented by the moveMouse method.



Figure 6: Method invocations as dotplot and stack visualization.

3.5 Stack

The Stack class is a sub class of Value-Value, defining its own
mouseMove, makeSelection and installPainter. Fig-
ure 6 shows a stack visualization in the bottom window for a frag-
ment of execution in the SPEC JVM98 javac benchmark. The
y-axis measures time as method invocations. The x-axis shows the
runtime stack. Stack uses a colouring scheme that assigns a ran-
dom colour to each invoked method. This visualization is similar to
stack visualization in Jinsight [Pauw et al. 2002]. Random colour-
ing at method granularity shows various execution phases.

3.6 Dotplot

The Dotplot class, shown in the top window of Figure 6, is also
a sub class of Value-Value. A dotplot is a general visualization
technique used to highlight repetition in any sequence of values
[Church and Helfman 1993]. Often, x and y-axis are identical. The
dotplot graph has a dot at position (x,y) if a value in the sequence
at index x is identical to a value at index y (the value repeats at
time x and time y). Figure 6, shows a dotplot for the same method
invocations as the aligned stack visualization at the bottom. They
both use identical colouring schemes (the top of the stack has the
same colour as a dotplot dot at position x).

Dotplots show repetitive calls as a solidly coloured block. In Fig-
ure 6, the orange block represents one method called 50 times. The
block has some smaller echoes to its left and right, below and above
(the dotplot is symmetric with respect to the diagonal). Striped
blocks in the graph also represent repetitive behaviour, but of a se-
quence of methods instead of a single method (see zoomed view).

Dot plots seem particularly good for highlighting similarities be-
tween program phases. We plan to extend dotplots with the ability
to select non-identical x and y-axis. Weaker definitions of equal-
ity may also be useful, for example to define equality as "defined
in the same class", showing the repetition of classes instead of the
methods themselves.

3.7 Metric

The final Value-Value subclass is the abstract Metric class,
which visualizes the value of a dynamic metric as it changes over
time. Dynamic metrics are values that reflect particular aspects of
program behaviour useful to compiler developers, such as inline
cache misprediction rate, byte codes touched, average object life-
times and many more [Dufour et al. 2002], which are computed
for an entire program run. A metric visualization shows the met-
ric value on the y-axis per time sample, visualizing its evolution as
execution proceeds. Metric can be customized by creating a sub-
class defining the appropriate metric (see Miss prediction in
Figure 3).

4 Features

In order to make our visualizations as useful as possible, certain im-
portant features are shared among all visualizations. These include
aspects of an enhanced user-interface and features that allow one to
combine multiple visualizations in order to improve understanding
of the inspected program.



4.1 Comparing

Comparisons can be quite informative; information gathered and
presented for one purpose can be correlated with another visualiza-
tion, and thereby give a more complete picture of program activity.
We provide 4 distinct methods for facilitating such comparisons:
colouring, overlapping, aligning and orientation.

4.1.1 Colouring

In many visualizations, colour is used somewhat arbitrarily to pro-
vide contrast between adjacent elements (e.g. bars in a bar graph).
Other visualizations may use colour as a third dimension (implying
a colour ordering). While these are useful applications of colour, a
third possibility is to use colour to relate visualizations together.

EVolve allows reference colours in one visualization to be shared
with another visualization. For example, the colours used to iden-
tify the most frequent methods executed within a bar chart can be
maintained when viewing method execution using a hotspot graph
(see Figure 4), allowing information presented in two views to be
easily correlated.

4.1.2 Overlap

Correlations between two visualizations are most obvious when the
visualizations are overlapped. Common information then appears
in the same location, and distinct information appears in different
locations; this can be quite informative. For example, identification
of related “phases” in execution becomes easy—the startup phase
common to each program is certainly quite obvious. Figure 7 il-
lustrates this feature on the startup phase of life and qsort,
two small benchmarks. These two programs are very different but
clearly have almost identical startup phases.

In order for overlapping to be meaningful, x and y-axis of both
visualizations must be unified. EVolve unifies two reference axes
by building a new reference axis that contains the union of the
two overlapping visualizations. The overlap visualization (bottom
window of Figure 7), contains all methods invoked by life and
qsort. The x-axis measures time as bytecodes executed since pro-
gram start, and is unified by scaling down the shorter run (life).
The colouring scheme of an overlap is determined by each partici-
pating visualization: life in blue, qsort (in red), with overlap in
predefined purple. All Value-Reference visualizations can be
overlapped. Note that the reference axis is sorted in lexical order,
since the temporal ordering of a union from two different programs
is ill-defined.

4.1.3 Aligning

For “busier” or more detailed visualizations, overlaying can obscure
visualization data. Moreover, it is most meaningful when all axes
of the visualizations are shared, or unifiable. A related approach
is then to simply align or tile the visualizations vertically and/or
horizontally; this suggests sharing of just one axis, but permits fea-
tures to be correlated by simple straight lines (or eye movements)
between visualizations. EVolve will align visualizations by axis
to facilitate this sort of comparison; for example, object allocation
behaviour aligned with method invocation behaviour allows one to
correlate these two activities to find the methods that are most likely
to allocate objects at each point. Aligned visualizations are illus-
trated by figure 4.

4.1.4 Orientation

A simple change that can aid in the application aligning or overlay-
ing is to allow permutation of axes. EVolve allows orientation of
axes to be arbitrarily assigned, and trivially changed.

Figure 7: Overlapping: life hotspot (top), qsort hotspot (mid-
dle), and overlapped hotspots (bottom).



4.2 User Interface

User interface features are particularly valuable in visualization sys-
tems; simple but important features can greatly amplify the ability
to interpret data and draw conclusions. EVolve has several UI fea-
tures designed to help in the interpretation or meaningful presenta-
tion of visualizations.

Sorting of reference axes is supported. These may be visualized in
temporal order as identified by time stamps, or lexical order
(by name). Figure 4 demonstrates both temporal and lexical
order.

Zooming is provided to inspect details of a particular visualiza-
tion. Event traces of program behaviour can be rather large,
and so it is usually not possible to show the entire trace at the
finest granularity. A magnification window allows the user to
check specific data results without losing track of the context
of the details shown. Figures 5 and 6 demonstrate this feature.

Mouse-overs are used to show the exact reference under the cursor
as an identifier string. This simple feature allows one to very
quickly identify program elements responsible for behaviour
of interest. Figures 4, 5, and 6 show mouse-overs.

Selections of a subset of data can be separately visualized. A user
may not find all aspects of their program worthy of inspec-
tion; reducing the visualization size allows one to focus on
the interesting parts, and also permits faster processing of the
visualization. All figures show selections of an entire program
run.

5 Extending EVolve

We recently added the Event visualization (see Figure8), in which
each event is denoted by a colored rectangle. Events are presented
from left to right and top to bottom as in the order that they ap-
pear in the data trace. Adding this visualization was simplified by
the implementation hierarchy. The three different coloring schemes
(painters) were re-used from other visualizations: default painter
(user-determined coloring as in Figure4, with Volano calls in yel-
low, Java library calls in red and blue), prediction painter (polymor-
phic calls in red, others in blue, as in Figure5) and random painter
(a unique color for each method). These are the same painters as
used by Hotspot, Prediction Hotspot and Dotplot, respectively. Be-
sides some codes for the UI interface,the following methods had to
be overridden:

preVisualize: prepare data structures used in this visualization

receiveElement: extract data from events and feed them to
painters in correct formats

sort: show the sorted visual representation

mouseMove: show entity information according to mouse pointer

makeSelection: collect data selected by the end-user

This was accomplished in a few days, demonstrating the ease with
which EVolve can be extended and a new visualization can be inte-
grated into the existing framework.

Figure 8: Event Visualization.

6 Related Work

Visualization tools are often used for performance tuning. Pro-
grams such as Jinsight[JINSIGHT 2002; Pauw et al. 2002],
JProbe[JPROBE 2003] and OptimizeIt[OPTIMIZEIT 2003] are de-
signed to help programmers optimize their programs by visualizing
the runtime usage of system resources (CPU time, memory, etc).
An earlier visualization system originating in the IBM T.J. Wat-
son Research Center is PV [Kimelman et al. 1994][Kimelman et al.
1998], which provides trace-based visualization of different sys-
tem layers, including the hardware, and the juxtaposition of differ-
ent Views. Jerding, Stasko and Ball visualize message patterns in
object-oriented languages using information murals[Jerding et al.
1997]. These resemble the hotspot visualizations generated by
EVolve. An other trace-based visualization tool which bears some
resemblance to EVolve is ParaGraph[Heath and Etheridge 1991],
which focuses on parallel program visualization, Unlike EVolve,
these tools tend not to be extensible—they use built-in or specific
profiling front-ends to generate trace data and use a fixed set of vi-
sualizations to interpret the data.

Visualization has also been applied to the fields of software un-
derstanding and reverse engineering. These tools, such as Dot-
plot[Church and Helfman 1993] helps users explore self-similarity
of code, Rigi[Storey et al. 1997] (using SHriMP views[Storey and
Müller 1995]) and Moose[Lanza and Ducasse 2001] help develop-
ers understand the hierarchy and structure of systems by visualizing
static information (classes, methods, fields, etc.), usually obtained
from parsing the source code,

Most software visualization tools are designed to visualize par-
ticular aspects of software systems, and provide no aid in the
development of new visualizations. One of the exceptions is
BLOOM[Reiss 2001], which provides extensibility by using a visu-
alization back-end supporting a variety of visualization strategies.
Our approach to extensibility is to provide a framework that sim-
plifies the task of both connecting new data sources and designing
new visualizations. Also, EVolve differs from BLOOM in provid-
ing features to easily compare visualizations (overlapping and shar-
ing of color schemes), and to refer back to entities from the data
that generates a visualization (mouse-over).

Extensibility is more often seen in information visualization (vs
software visualization) systems. These systems tend to concentrate
on extensibility because they are designed to solve general-purpose



problems. ADVIZOR[Eick 2000] is a commercial tool with a rich
set of visualization mechanisms that supports the linking of dif-
ferent views and can be extended. Visage[Roth et al. 1996], is an
information visualization environment for data-intensive domains
that supports and coordinates multiple visualizations and analysis
tools. Furthermore, Visage provides an interactive tool to facilitate
creating new visualizations. EVolve is designed with a more spe-
cific domain in mind: to visualize program execution behavior.

7 Conclusion and Future Work

In this paper we have presented the EVolve platform, an open and
extensible framework for visualizing the runtime behaviour of Java
programs. The architecture of EVolve is designed to facilitate the
addition of new data sources as well as new kinds of visualizations.
Both can be added independently, enabling a data provider to ex-
amine a new data source immediately using a wide range of visual-
izations, and allowing a visualization provider to test a new visual-
ization technique on a variety of existing sources.

In order to study various aspects of the runtime behaviour of
Java programs we have developed a collection of visualizations and
integrated these into the EVolve platform. These visualizations are
implemented as a hierarchy designed to be easily extended, and
encoding features such as colouring, alignment and overlapping,
which facilitate the comparison of multiple visualizations.

We have illustrated some visualizations from EVolve’s built-in
library. Hot spot visualizations highlight different program phases,
showing when and for how long particular events occur. Special-
ized hot spots use colouring to visualize the occurrence of particular
aspects of execution such as thread occurrence and polymorphism.
Correlations visualize the co-occurrence of entities such as method
invocation location and target. Stack visualization provides a de-
tailed view of the run-time stack. Dotplot visualization highlights
recurring phases as blocks of similar color or pattern.

Extensibility was demonstrated by adding new visualizations as
the library developed. This was a straightforward process, requiring
relatively little coding and minimal time (a few hours). For exam-
ple, the predictability hotspot visualization was implemented with
about 120 lines of Java code. Adding new data sources is similarly
easy; we have used EVolve with traces generated from JVMPI, a
customized Java virtual machine, and several other internal formats.

We plan to continue to extend EVolve’s repertoire of visualiza-
tion techniques, and test these on more data sources. Since exten-
sibility is built-in, the core of the EVolve platform does not need
to change. We are very welcome to suggestions of other kinds of
visualizations to add to the framework and other users of EVolve
are encouraged to contribute their new visualizations and/or data
sources to the project. We have setup a website for download-
ing of EVolve at http://www.sable.mcgill.ca/evolve.
We are actively using EVolve in our research and graduate courses.
This version of EVolve has already benefited greatly from the feed-
back of the students using the system. We plan to continue inves-
tigating other user-interface and comparison techniques that may
improve comprehension of the resulting visualizations.

References

CHURCH, K. W., AND HELFMAN, J. I. 1993. Dotplot: a pro-
gram for exploring self-similarity in millions of lines of text and
code. In Proceedings of Journal of Computational and Graphi-
cal Statistics, 2:153–174.

DUFOUR, B., DRIESEN, K., HENDREN, L., AND VERBRUGGE,
C. 2002. Dynamic metrics for compiler developers. Sable Tech-

nical Report SABLE-TR-2002-11, McGill University, School of
Computer Science.

EICK, S. 2000. Visual discovery and analysis. IEEE Transactions
on Visualization and Computer Graphics 6, 1 (Jan.), 44 –58.

HEATH, M. T., AND ETHERIDGE, J. A. 1991. Visualizing the
performance of parallel programs. IEEE Software 8, 5 (Sept.),
29 –39.

JERDING, D., STASKO, J., AND BALL, T. 1997. Visualizing mes-
sage patterns in object-oriented program executions. In Proceed-
ings of the Nineteenth International Conference on Software En-
gineering (ICSE’97), 360–370.

JINSIGHT. 2002. Jinsight. http://www.research.ibm.com/
jinsight/ .

JPROBE. 2003. Jprobe. http://www.sitraka.com/software/jprobe/ .

KIMELMAN, D., ROSENBURG, B., AND ROTH, T. 1994. Strata-
various: Multi-layer visualization of dynamics in software sys-
tem behavior. In Proceedings of the IEEE Visualization ’94 Con-
ference, 172–178.

KIMELMAN, D., ROSENBURG, B., AND ROTH, T. 1998. Visu-
alization of dynamics in real world software systems. In Soft-
ware Visualization: Programming as a Multimedia Experience,
J. Stasko, J. Domingue, M. H. Brown, and B. A. Price, Eds. MIT
Press, Cambridge, MA, 293–314.

LANZA, M., AND DUCASSE, S. 2001. A categorization of
classes based on the visualization of their internal structure:
the class blueprint. In Proceedings of Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA’01), 300–311.

OPTIMIZEIT. 2003. Optimizeit. http://www.optimizeit.com/ .

PAUW, W. D., JENSEN, E., MITCHELL, N., SEVITSKY, G., VLIS-
SIDES, J., AND YANG, J. 2002. Visualizing the execution
of Java programs. International Seminar, Dagstuhl Castle, Ger-
many, May 20-25, 2001. In Lecture Notes in Computer Science
Vol. 2269, Springer Verlag, 151–162.

REISS, S. P. 2001. An overview of BLOOM. In Proceedings
of the 2001 ACM SIGPLAN - SIGSOFT Workshop on Program
Analysis for Software Tools and Engeneering (PASTE’01), 2–5.

ROTH, S. F., LUCAS, P., SENN, J. A., GOMBERG, C. C., BURKS,
M. B., STROFFOLINO, P. J., KOLOJEJCHICK, J. A., AND
DUNMIRE, C. 1996. Visage: A user interface environment for
exploring information. In Proceedings of Information Visualiza-
tion, IEEE, 3–12.

STOREY, M.-A. D., AND MÜLLER, H. A. 1995. Manipulating and
documenting software structures using SHriMP views. In Pro-
ceedings of International Conference on Software Maintenance,
275–285.

STOREY, M.-A. D., WONG, K., AND MÜLLER, H. A. 1997.
Rigi: A visualization environment for reverse engineering. In
Proceedings of the International Conference on Software Engi-
neering (ICSE’97), 606–607.

VOLANO. 2001. Volano benchmark. http://www.volano.com/
report/index.html.




