
Towards Dynamic Interprocedural Analysis in JVMs ∗

Feng Qian Laurie Hendren

School of Computer Science, McGill University
3480 University Street, Montreal, Quebec

Canada H3A 2A7
{fqian,hendren}@cs.mcgill.ca

Abstract

This paper presents a new, inexpensive, mechanism for
constructing a complete call graph for Java programs at
runtime, and provides an example of using the mecha-
nism for implementing a dynamic reachability-based in-
terprocedural analysis (IPA), namely dynamic XTA.

Reachability-based IPAs, such as points-to analysis
and escape analysis, require a context-insensitive call
graph of the analyzed program. Computing a call graph
at runtime presents several challenges. First, the over-
head must be low. Second, when implementing the
mechanism for languages such as Java, both polymor-
phism and lazy class loading must be dealt with correctly
and efficiently. We propose a new, low-cost, mecha-
nism for constructing runtime call graphs in a JIT en-
vironment. The mechanism uses a profiling code stub
to capture the first execution of a call edge, and adds at
most one more instruction to repeated call edge invoca-
tions. Polymorphism and lazy class loading are handled
transparently. The call graph is constructed incremen-
tally, and it supports optimistic analysis and speculative
optimizations with invalidations.

We also developed a dynamic, reachability-based type
analysis, dynamic XTA, as an application of runtime call
graphs. It also serves as an example of handling lazy
class loading in dynamic IPAs.

The dynamic call graph construction algorithm and
dynamic version of XTA have been implemented in Jikes
RVM. We present empirical measurements of the over-
head of call graph profiling and compare the characteris-
tics of call graphs built using our profiling code stubs
with conservative ones constructed by using dynamic
class hierarchy analysis (CHA).

∗The work was supported, in part, by NSERC.

1 Introduction

Interprocedural analyses (IPAs) derive more precise pro-
gram information than intraprocedural ones. Static IPAs
provide a conservative approximation of runtime infor-
mation to clients for optimizations. A foundation of
IPA is the call graph of the analyzed program. IPAs
for Object-Oriented (OO) programs share some com-
mon challenges. Virtual calls (polymorphism) make call
graph construction difficult. Further, since the code base
tends to be large, the complexity and precision of the
analysis must be carefully balanced.

One difficulty of call graph construction for OO lan-
guages lies in how to approximate the targets of polymor-
phic calls. In addition to polymorphism, call graph con-
struction for Java is further complicated by the presence
of dynamic class loading. Static IPAs assume that the
whole program is available at analysis time. However,
this may not be the case for Java. A Java program can
download a class file from the network or other unknown
resources. Even when all programs exist on local disks,
a VM may choose to load classes lazily, on demand, to
reduce resource usage and improve responsiveness [21].
When a JIT compiler encounters an unresolved symbolic
reference, it may choose to delay resolution until the in-
struction is executed at runtime. A dynamic analysis has
to deal with these unresolved references. A more subtle
problem, usually ignored by static IPAs for Java, is that
a runtime type is defined by both the class name and its
initial class loader. Therefore, a correct dynamic IPA has
to be incremental (dealing with dynamic class loading),
efficient, and type safe.

Although Java’s dynamic features pose difficulties for
program analyses, there are many opportunities at run-
time that can only be enjoyed by dynamic analyses.
For example, a dynamic analysis only needs to analyze
loaded classes and invoked methods. Therefore, the an-
alyzed code base can be much smaller than in a con-
servative static analysis. Further, dynamic class load-
ing can improve the precision of type analyses. The

set of runtime types can be limited to loaded classes.
Thus, a dynamic analysis has more precise type infor-
mation than its static counterpart. Further, in contrast to
the conservative (pessimistic) nature of static analysis, a
dynamic one can be optimistic about future execution,
if used in conjunction with runtime invalidation mecha-
nisms [12, 18, 23, 30].

Over the last 10 years, VM technology has greatly
advanced. JIT compilers now implement most in-
traprocedural data-flow analyses that can be found in
static compilers [1, 22]. Further performance improve-
ments have been achieved using adaptive and feedback-
directed compilation [4, 5].

Dynamic interprocedural analysis, however, has not
yet been widely adopted. Some type-based IPAs [18,
23] have gained ground in JIT compilation environ-
ments. However, work relating to more complicated,
reachability-based IPAs, such as dynamic points-to
analysis and escape analysis, is only just starting to
emerge [15].

In this paper, we present a call graph construction
mechanism for reachability-based interprocedural anal-
yses at runtime. Instead of approximating a call graph
as in static IPAs, our mechanism uses a profiling code
stub to capture invoked call edges. The mechanism over-
comes difficulties caused by dynamic class loading and
polymorphism. Most overhead happens at JIT compila-
tion and class loading time. It has only small overhead
on the performance of applications in a JIT environment.
A very desirable feature of the mechanism is that call
graphs can be built incrementally while execution pro-
ceeds. This enables speculative optimizations using run-
time invalidations for safety.

Dynamic IPAs seem more suitable for long-running
applications in adaptive recompilation systems.
Pechtchanski and Sarkar [23] described a general
approach of using dynamic IPAs. A virtual machine
gathers information about compiled methods and loaded
classes in the initial state, and performs recompilation
and optimizations only on selected hot methods. When
the application reaches a “stable state”, information
changes should be rare.

Based on our new runtime call graph mechanism, we
describe the design and implementation of an online ver-
sion of an example IPA, XTA type analysis [32]. Dy-
namic XTA uses dependency databases to handle unre-
solved types and field references. The analysis is driven
by VM events such as compilation, class loading, or the
discovery of new call edges.

The rest of paper is organized as follows. Section 2
introduces our new call graph construction mechanism
which serves as the basis for dynamic IPAs. In the fol-
lowing section, Section 3, we describe the design of a
specific dynamic IPA, dynamic XTA type analysis, in the

presence of lazy class loading. The call graph mecha-
nism and dynamic XTA have been implemented in Jikes
RVM. Section 4 analyzes the cost of call graph profiling
and compares the characteristics of profiled call graphs
to conservative ones built by dynamic CHA on a set of
standard benchmarks. Section 5 discusses related work
and conclusions are presented in Section 6.

2 Online Call Graph Construction

Context-insensitive call graphs are commonly used by
IPAs, where a method is represented as one node in the
call graph. There exists a directed edge from a method A
to a method B if A calls B.

Dynamic class hierarchy information can be used to
build a conservative call graph at runtime. However, it is
desirable to have a more precise call graph for most inter-
procedural analyses. We propose a new mechanism for
profiling and constructing context-insensitive call graphs
at runtime. The mechanism initializes call edges using a
profiling code stub. When the code stub gets executed, it
generates a new call edge event, then it triggers method
compilation if the method is not compiled yet, and fi-
nally patches the address of the real target. The mecha-
nism captures the first execution event of each call edge,
and the first execution has some profiling overhead. The
repeated calls only need to execute at most one more in-
struction. Clients, such as call graph builders, can regis-
ter callback routines called by a profiling code stub when
new call edges are discovered. Callbacks can perform
necessary actions before the callee is invoked.

The remainder of this section is structured as follows.
First, in Section 2.1, we briefly introduce a conservative
approach for building call graphs using runtime class hi-
erarchy information. In Section 2.2 we give the neces-
sary background, describing the existing implementation
of virtual method tables in Jikes RVM. In Section 2.3 we
describe the basic mechanism we propose for building
call graphs at runtime, and in Section 2.4 we show how
this basic mechanism can be optimized to reduce over-
heads.

2.1 Conservative call graph construction
using dynamic CHA

Due to polymorphism, the exact types of the receiver of a
virtual call site may not be known at analysis time. Class
hierarchy analysis (CHA) [9] makes the conservative as-
sumption that all subtypes of a receiver’s declaring type
are possible types at runtime.

CHA was originally suggested as a static analysis,
where all classes and the complete class hierarchy are
known at compile time. However, when adapting CHA

to be a dynamic analysis one must consider that the class
hierarchy can grow as classes are dynamically loaded.
Thus a dynamic CHA must record all virtual call sites
that have already been resolved. When a new class is
loaded, it must be included in the the type set of any
recorded call site whose receiver’s declaring class is a
super type of the newly loaded class. If the newly added
type, of a call site, declares a method with the same sig-
nature as the callee, a new call edge to the method must
be generated at this call site. Hirzel et. al. [15] have given
a detailed description of this approach. In our study, we
implemented a call graph builder using dynamic CHA to
compare with our proposed profiler-based mechanism.

2.2 Background: virtual method table

We propose a profiling mechanism for constructing a
more precise dynamic call graph than a conservative one
constructed using dynamic CHA. To understand how the
mechanism works, we first revisit the virtual method dis-
patch table in Jikes RVM [1], which is a standard imple-
mentation in modern Java virtual machines. Figure 1(a)
depicts the object layout in Jikes RVM. Each object has
a pointer, in its header, to the Type Information Block
(TIB) of its type (class). A TIB is an array of objects
that encodes the type information of a class. At a fixed
offset from the TIB header is the Virtual Method Ta-
ble (VMT) which is embedded in the TIB array. A re-
solved method has an entry in the VMT of its declaring
class, and the entry offset to the TIB header is a con-
stant, say method offset, assigned during class res-
olution. A VMT entry records the instruction address
of the method that owns it. Figure 1(b) shows that, if
a class, say A, inherits a method from its superclass,
java.lang.Object, the entry at the method offset
in the subclass’ TIB has the inherited method’s instruc-
tion address. If a method in the subclass, say D, overrides
a method from the superclass, the two methods still have
the same offset, but the entries in two TIBs point to dif-
ferent method instructions.

Given an object pointer at runtime, an invokevirtual
bytecode is implemented by three basic operations:

TIB = * (ptr + TIB_OFFSET);
INSTR = TIB[method_offset];
JMP INSTR

The first instruction obtains the TIB address from the
object header. The address of the real target is loaded
at the method offset offset in the TIB. Finally the
execution is transferred to the target address.

Lazy method compilation works by first initializing
TIB entries with the address of a lazy compilation code
stub. When a method is invoked for the first time, the
code stub gets executed. The code stub triggers the com-
pilation of the target method and patches the address of

the compiled method into the TIB entry (where the code
stub resided before).

2.3 Call graph construction by profiling

In normal lazy method compilation, the code stub cap-
tures the first invocation of a method without distinguish-
ing callers. In order to capture call edges, we extended
the TIB structure to store information per caller. Fig-
ure 1(c) shows the extended TIB structure. The TIB en-
try of a method is replaced by an array of instruction ad-
dresses. We call the array a Caller-Target Block (CTB).
The indices of CTB slots (caller index) are dynamically
assigned to callers of the method by the JIT compilers.
Note that now an invokevirtual bytecode takes one extra
load to get the target address.

TIB = * (ptr + TIB_OFFSET);
/* load method’s CTB array from TIB */
CTB = TIB[method_offset];
/* load method’s code address */
INSTR = CTB[caller_index];
JMP INSTR

The lazy method compilation code stub is extended to
a profiling code stub which, in addition to triggering the
lazy compilation of the callee, also generates a new call
edge event from the caller to the callee. Initially all of
the CTB entries have the address of the profiling code
stub. When the code stub at a CTB entry gets executed,
it notifies clients monitoring new call edge events, and
compiles the callee method if necessary. Finally the code
stub patches the callee’s instruction address into the CTB
entry. Clearly the profiling code stub at each entry of the
CTB array will execute at most once, and the rest of the
invocations from the same caller will execute the callee’s
machine instruction directly.

There remain four problems to address. First, one
needs a convenient way of indexing into the CTBs which
works even in the presence of lazy class loading. Second,
the implementation of interface calls should be aware of
the CTB array. Third, object initializers and static meth-
ods can be handled specially. Fourth, we must handle the
case where an optimizing compiler inlines one method
into another. Our solution to these four problems is given
below.

2.3.1 Allocating slots in the CTB

To index callers of a callee, our modified JIT compiler
maintains a table of (callee, caller) pairs. In Java byte-
code, the target of invokevirtual is only a symbolic ref-
erence to the name and descriptor of the method as well
as a symbolic reference to the class where the method
can be found. Resolving the method reference requires
the class to be loaded first. A VM can delay method res-
olution until the call instruction is executed at runtime.

method instruction address

fields

class A’s TIB

an object of A

other type information

virtual method table

header

object pointer

(a) TIB in Jikes RVM

java.lang.Object

A

D

E

method instruction address

VMT

overriding method instruction address

(b) VMT in Jikes RVM

java.lang.Object

A

D

E

method instruction address

indexed by method_offset

CTB array

indexed by caller_index

(c) Extended VMT for profiling call graph

java.lang.Object

A

D

E

(d) Inlining 1 element of CTB

Figure 1: Virtual Method Dispatching Table in Jikes
RVM

Therefore, the real target may not be known at JIT com-
pilation time.

To deal with lazy class resolution and polymorphism,
our approach uses the callee’s method name and descrip-
tor in the table. For example, if both methods X.x()
and Y.y() have virtual calls of a symbolic reference
A.m(), and another method Z.z() has a virtual call of
B.m(), our approach assumes that all three methods are
possible callers of any method with the signature m()1,
and allocates slots in the TIB for all of them. At run-
time, only two CTB entries of A.m() may be filled, and
only one entry of B.m() may get filled. With this solu-
tion no accuracy is lost, but some space may be wasted
due to unfilled CTB entries. Although some space is
sacrificed, our approach simplifies the task of handling
symbolic references and polymorphism. In real appli-
cations we observed that only a few common method
signatures, such as equals(java.lang.Object),
and hashCode(), have large caller sets where space is
unused.

2.3.2 Approximating interface calls

Interface calls are considered to be more expensive than
virtual calls in Java programs because a normal class can
only have a single super class, but could implement mul-
tiple interfaces. Jikes RVM has an efficient implementa-
tion of interface calls using a interface method table with
conflict resolution stubs [2].

We tried two approaches to handling interface calls in
the presence of CTB arrays. Our first approach profiles
interface calls by allocating a caller index for a call site
in the JIT compiler and generating an instruction before
the call to save the index value in a known memory loca-
tion. After a conflict resolution stub has found its target
method, it loads the index value from the known memory
location. The CTB array of the target method is loaded
from the TIB array of receiver object’s declaring class.
The target address is read out from the CTB at the in-
dex, and finally the resolution stub jumps to the target ad-
dress. This approach uses two more instructions to store
and load the caller index than invokevirtual calls. Af-
ter introducing one of our optimizations in Section 2.4,
inlining CTB elements into TIBs, the conflict resolution
stub requires more instructions to check the range of the
index value to determine if the indexed CTB element is
inlined in the TIB or not.

Our second approach was to simply use dynamic CHA
to build call edges for invokeinterface call sites, without
introducing profiling instructions.

Since our profiling results showed that the number of

1A full method descriptor should include the name of the method,
parameter types, and the return type. In this example, we use the name
and parameter types only for simplicity.

call edges from invokeinterface call sites is only a small
portion of all edges, we chose to use the second approach
for the remaining experiments in this paper.

2.3.3 Handling object initializers and static methods

Because there are many object initializers that share a
common name <init> and descriptor, their CTB ar-
rays may grow too large if we allocate CTB slots us-
ing the name and descriptor as index. Since calls of
object initializers and static methods are monomorphic,
the allocation of CTB slots for each method is indepen-
dent of other methods with the same name and descrip-
tor. For example, static methods A.m() and B.m()
both can use the same CTB index for different callers.
Therefore, there is no superfluous space in CTB arrays
of object initializers and static methods. For unresolved
static or object initializer method references, a depen-
dency on the reference from the caller is registered in a
database. When the method reference gets resolved (this
happens due to a class loading event), the dependency
is converted to a call edge conservatively. Using the
213 javac benchmark as example, we found this con-

servativeness only adds 1.5% more edges.

2.3.4 Dealing with Inlining

In an adaptive system, inlining might be applied on a few
hot methods. We capture these events as follows. When
a callee is inlined into a caller by an optimizing JIT com-
piler, the call edge from the caller to callee is added to
the call graph unconditionally. This is a conservative so-
lution without runtime overhead. Since an inlined call
site is likely executed before its caller becomes hot, the
number of added superfluous edges is modest.

2.4 Optimizations

Since Jikes RVM is written in Java, our runtime call
graph construction mechanism may incur two kinds of
overhead. First, adding one instruction per call can po-
tentially consume many CPU cycles because Jikes RVM
itself is compiled using the same compilers used for com-
piling the applications, and it also inserts many system
calls into applications for runtime checks, locks and ob-
ject allocations. Second, a CTB array is a normal Java
array with a three-word header; thus CTB arrays can in-
crease memory usage and create extra work for garbage
collectors.

Table 1 shows the distribution of the CTB sizes for the
SpecJVM98 benchmarks [27] profiled in a FastAdaptive-
SemiSpace boot image. The boot image contains mostly
RVM classes and a few Java utility classes. We only pro-
filed methods from Java libraries and benchmarks. A

#callers Java Libraries SpecJVM App
0 2214 69.08% 507 19.32%
1 291 78.16% 815 50.38%

2-3 172 83.53% 608 73.55%
4-7 170 88.83% 283 84.34%
8- 358 411

TOTAL 3205 2624

Table 1: Distribution of CTB sizes

small number of methods of classes in the boot image
may have CTB arrays allocated at runtime because there
is no clear cut mechanism for distinguishing between
Jikes RVM code and application code. The first column
shows the range of the number of callers. The second
and third columns list the distributions of methods be-
longing to Java libraries and SpecJVM application code.2

To demonstrate that most methods have few callers, we
calculated the cumulative percentages of methods that
have no caller, ≤ 1, ≤ 3 and ≤ 7 callers in the first
to fourth rows. We found that 89% of methods from
(loaded classes in) Java libraries and 84% of methods
from SpecJVM98 have no more than 7 callers. In these
cases, it is not wise to create short CTB arrays because
each array header takes 3 words. The last data row la-
belled “TOTAL” gives the total number of methods of all
classes and the number of methods in each of two sub-
categories.

To avoid the overhead of array headers for CTBs, and
to eliminate the extra instruction to load the CTB array
from a TIB in the code for invokevirtual instructions, a
local optimization is to inline the first few elements of
the CTB into the TIB. Since caller indices are assigned at
compile time, a compiler knows which part of the CTB
will be accessed in the generated code. To accommo-
date the inlined part of the CTB, a class’ TIB entry is
expanded to allow a method to have several entries. Fig-
ure 1(d) shows the layout of TIBs with one inlined CTB
element. When generating instructions for a virtual call,
the value of the caller’s CTB index, caller index, is
examined: if the index falls into the inlined part of the
CTB, then invocation is done by three instructions:

TIB = * (ptr + TIB_OFFSET);
INSTR = TIB[method_offset + caller_index];
JMP INSTR

Whenever a CTB index is greater than or equal to
the inlined CTB size, INLINED CTB SIZE, then four in-
structions must be used for the call:

TIB = * (ptr + TIB_OFFSET);
CTB = TIB[method_offset + CTB_ARRAY_OFFSET];
INSTR = CTB[caller_index - INLINED_CTB_SIZE];
JMP INSTR

2We used package names to distinguish classes.

Note that in addition to saving the extra instruction
for inlined CTB entries, the space overhead of the CTB
header is eliminated in the common cases where all CTB
entries are inlined.

Another source of optimization is to avoid the over-
head of handling system code, such as runtime checks
and locks, inserted by compilers, because this code is
frequently called and ignoring them does not affect the
semantics of applications. To achieve this, the first CTB
entry is reserved for the purpose of system inserted calls.
Instead of being initialized with the address of a call
graph profiling stub, the first entry has the address of a
lazy method compilation code stub or method instruc-
tions. When the compiler generates code for a system
call, it always assigns the zero caller index to the
caller. To avoid the extra load instruction, the first entry
of a CTB array is always inlined into the TIB.

3 Dynamic XTA Type Analysis

A runtime call graph is constructed incrementally while
a program runs. Dynamic IPAs using call graphs also
have to perform analysis incrementally. A dynamic IPA
has to overcome the difficulties of dynamic class loading
and lazy resolution of references. As one example appli-
cation of profiled call graphs, we developed a dynamic
XTA type analysis which can serve as a general model
of other dynamic IPAs.

Tip and Palsberg [32] proposed a set of propagation-
based call graph construction algorithms for Java with
different granularities ranging from RTA to 0-CFA. XTA
uses separate sets for methods and fields. A type reach-
ing a caller can reach a callee if it is a subclass of the
callee’s parameter types. Types can be passed between
methods by field accesses as well. To approximate the
targets of a virtual call, XTA uses the reachable types of
the caller to perform method lookups statically. When
new targets are discovered, new edges are added into the
graph. The analysis performs propagation until reaching
the fixed point. XTA has the same complexity as subset-
based points-to analysis, O(n3), but with fewer nodes in
the graph.

XTA analysis is a good candidate as a dynamic IPA:
it requires reasonably small resources to represent the
graph since it ignores the dataflow inside a method. The
results might be less precise than an analysis using a full
dataflow approach [23, 31]. On the other hand, rich run-
time type information may improve the precision of dy-
namic XTA. The results of the analysis can be used for
method inlining and the elimination of type checks.

Like other static IPAs for Java, static XTA assumes
the whole programs are available at analysis time.
Dynamically-loaded classes must be supplied to the anal-

ysis manually. The burden on static XTA is to ap-
proximate targets of polymorphic calls while propagat-
ing types along the call graph. However, dynamic XTA
does not have this difficulty because it uses the call graph
constructed at runtime. The call graph used by dynamic
XTA is significantly smaller than the one constructed by
static XTA. However, a new challenge for dynamic XTA
comes from lazy class loading. In a Java class file, a call
instruction has only the name and descriptor of a callee as
well as a symbolic reference to a class where the callee
can be found. Similarly, field access instructions have
symbolic references only. At runtime, a type reference is
resolved to a class type and a method/field reference is
resolved to a method/field before any use. 3

class A { Object f; }

class B extends A {
}

A a;
a.f = ...;

B b;
o = b.f;

(a) Java source
......
putfield A.f Ljava/lang/Object;

getfield B.f Ljava/lang/Object;
......

(b) compiled bytecode

Figure 2: Field reference example

Figure 2 shows a simple example to help understand
the problem caused by symbolic references. Class B ex-
tends class A, which declares a field f . Field accesses of
a.f and b.f were compiled to putfield and getfield instruc-
tions with different symbolic field references A.f and B.f.
At runtime, before the getfield instruction gets executed,
the reference B.f is resolved to field f of class A. However,
a dynamic analysis or compiler cannot determine that B.f
will be resolved to f of A without loading both classes B
and A.

Resolution of method/field references requires the
classes to be loaded and resolved first. However, a JVM
may choose to delay such resolution as late as possible to
reduce resource usage and improve responsiveness [21].
To port a static IPA for Java to a dynamic IPA, the anal-
ysis must be modified to handle unresolved references.

3In following presentation, we use type(s) as a short name for re-
solved class type(s), and use references for symbolic references, e.g.,
type references, method/field references.

In this section, we demonstrate a solution for the prob-
lem for dynamic XTA; our solution is also applicable to
general IPAs for Java.

Our dynamic XTA analysis constructs a directed XTA
graph G = {V, E, TypeF ilters, ReachableTypes}:

• V ⊆ M ∪ F ∪ {α}, where M is a set of resolved
methods, F is a set of resolved fields, and α is an
abstract name representing array elements;

• E ⊆ V × V , is the set of directed edges;

• TypeF ilters ⊆ E → S, is a map from an edge to
a set of types, S;

• ReachableTypes ⊆ V → T , is a map from a node
to a set of resolved types T .

The XTA graph combines call graphs and field/array
accesses. A call from a method A to a method B is mod-
elled by an edge from node A to node B. The filter set
includes parameter types of method B. If B’s return type
is a reference type, it is added in the filter set of the edge
from B to A. Field reads and writes are modelled by edges
between methods and fields, with the fields’ declaring
classes in the filter. Each node has a set of reachable (re-
solved) types.

Basic graph operations include adding new edges, new
reachable types, and propagations:

• addEdge(a, b, T), creates an edge from a node a to
a b if it does not exist yet; then adds types in set T

to the filter set associated with the edge;

• addType(a, t), adds a type t to the reachable type set
of a node a;

• propagate(t, a), propagates a type t to successors
of a node a if t is a subtype of a type in the filter
set associated with the edge from a to its succes-
sor. If t is not in a successor’s reachable type set,
it is recursively propagated to all of that successor’s
descendants until there are no further changes.

Since the call graph is constructed at runtime using
code stubs, there are no new edges created during prop-
agation. The complexity of the propagation operation is
linear.

Dynamic XTA analysis is driven by events from JIT
compilers and class loaders. Figure 3 shows the flow of
events. In the dotted box are the three modules of dy-
namic XTA analysis: XTA graphs, the analysis, and de-
pendency databases. The JIT compilers notify the anal-
ysis by channel 1 that a method is about to be compiled.
The analysis scans the bytecode of the method body and,
for each new instruction with a resolved type, the analy-
sis adds the type into the reachable type set of the method

via channel 3; otherwise it registers a dependency on the
unresolved type reference for the method via channel 4.
Similarly for field accesses, if the field reference can be
resolved without triggering class loading, the analysis
adds a directed edge into the graph via channel 3; oth-
erwise, it registers a dependency on unresolved field ref-
erence for the method. Since we use call graph profiling
code stubs to discover new call edges, the code stubs can
add new edges to the graph by channel 2. Whenever a
type reference or field reference gets resolved, the de-
pendency databases are notified (by channel 5), and reg-
istered dependencies on resolved references are resolved
to new reachable types or new edges of the graph. When-
ever the graph is changed (either an edge is changed, or
a new reachable type is added), a propagator propagates
type sets of related nodes until no further change occurs.

analysis

dependency
databases

XTA graphs

3

6

compilers

profiling
callgraph 2

1

4

classloaders
5

Figure 3: Model of XTA events

Compared to static IPAs such as points-to analysis, the
problem set of dynamic XTA analysis is much smaller
because the graph contains only compiled methods and
resolved fields at runtime. Although optimizations such
as off-line variable substitution [24] and online cycle
elimination [11] can help reduce the graph size further,
the complexity and runtime overhead of the algorithms
may prevent them from being useful in a dynamic anal-
ysis. Efficient representations for sets and graphs, such
as hybrid integer sets [14, 20] and BDDs [7], are more
important since the dynamic analysis has bounded re-
sources. In our implementation, graphs, sets, and depen-
dency databases were implemented using hybrid integer
sets and integer hash maps.

Graph changes are driven by runtime events such as
newly compiled methods, newly discovered call edges,
or dynamically loaded classes. Similar to the DOIT
framework [23], clients using XTA analysis for optimiza-
tions should register properties to be verified when the
graph changes. Since the analysis can notify the client
when a change occurs, the clients can perform an in-
validation of compiled code or recover execution states
to a safe point. The exact design and implementation
details for verifying properties and performing invalida-
tions are beyond the scope of this paper. Readers can

find more about dependency management and invalida-
tion techniques in [12, 16, 18].

4 Evaluation

We have implemented our proposed call graph con-
struction mechanism in Jikes RVM [19] v2.3.0. Our
benchmark set includes the SpecJVM98 suite [27],
SpecJBB2000 [26], and a CFS subset evaluator from a
data mining package Weka [34]. We made a variation
of the FastAdaptiveCopyMS boot image for evaluating
our mechanism. In our experiment, classes whose names
start with com.ibm.JikesRVM are not presented in
the dynamic call graphs because (1) the number of RVM
classes is much larger than the number of classes of ap-
plications and libraries, and (2) the classes in the boot im-
age were statically compiled and optimized. Static IPAs
such as extant analysis [28] may be applied on the boot
image classes. We report the experimental results for ap-
plication classes and Java library classes.

In our initial experiments we found that the default
adaptive configuration gave significantly different be-
haviour when we introduced dynamic call graph con-
struction because the compilation rates and speedup rates
of compilers were affected by our call graph profiling
mechanism. It was possible to retrain the adaptive sys-
tem to work well with our call graph construction en-
abled, but it was difficult to distinguish performance dif-
ferences due to changes in the adaptive behaviour from
differences due to overhead from our call graph construc-
tor. In order to provide comparable runs in our experi-
ments, we used a counter-based recompilation strategy
and disabled background recompilation. We also dis-
abled adaptive inlining. This configuration is more deter-
ministic between runs as compared to the default adap-
tive configuration. This behavior is confirmed by our
observation that, between different runs, the number of
methods compiled by each compiler is very stable. The
experiment was conducted on a PC with a 1.8G Hz Pen-
tium 4 CPU and 1G memory. The heap size of RVM was
set to 400M. Note that Jikes RVM and applications share
the same heap space at runtime.

The first column of Table 2 gives four configura-
tions of different inlined CTB sizes and the default Fast-
AdaptiveCopyMS configuration without the dynamic call
graph builder. The boot image size was increased about
10%, as shown in column 2, when including all compiled
code for call graph construction. Inlining CTB elements
increases the size of TIBs. However, changes are rela-
tively small (the difference between inlined CTB sizes
1 and 2 is about 153 kilobytes), as shown in the second
column.

The third column shows the memory overhead, in

bytes, of allocated CTB arrays for methods of classes
in Java libraries and benchmarks when running the
213 javac benchmark with an input size 100. The time

for creating, expanding and updating CTB array is negli-
gible.

Inlined bootimage size CTB space
CTB sizes (bytes) (bytes)

default 24,477,688 N/A N/A
1 26,915,236 9.96% 678,344
2 27,068,340 10.58% 660,960
4 27,327,760 11.64% 637,312
8 27,838,796 13.73% 607,712

Table 2: Bootimage sizes and allocated CTB sizes of
213 javac

A Jikes RVM-specific problem is that the RVM sys-
tem and applications share the same heap space. Ex-
panding TIBs and creating CTBs consumes heap space,
leaving less space for the applications, and also adding
more work for the garbage collectors. We examine the
impact of CTB arrays on the GC. Since CTB arrays are
likely to live for a long time, garbage collection can be
directly affected. Using the 213 javac benchmark as ex-
ample with the same experimental setting mentioned be-
fore, GC time was profiled and plotted in Figure 4 for the
default system and configurations with different inlined
CTB sizes. The x-axis is the garbage collection num-
ber during the benchmark run, and the y-axis is the time
spent on each collection. We found that, with these CTB
arrays, the GC is slightly slower than the default system,
but not significantly. When inlining more CTB elements,
the GC time is slightly increased. This might be because
the increased size of TIBs exceeds the savings on CTB
array headers when the inlining size gets larger. We ex-
pect a VM with a specific system heap would solve this
problem.

The problem mentioned above also poses a challenge
for measuring the overhead of call graph profiling. Fur-
thermore, the call graph profiler and data structures
are written in Java, which implies execution overhead
and memory consumption, affecting benchmark execu-
tion times. To only measure just the overhead of exe-
cuting profiling code stubs, we used a compiler option
to replace the allocated caller index by the zero index.
When this option is enabled, calls do not execute the ex-
tra load instruction and profiling code stub, but still allo-
cate CTB arrays for methods. For CFS and SpecJVM98
benchmarks, we found that usually the first run has
some performance degradation when executing profiling

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60

gc
 ti

m
e

(m
s)

garbage collection number

garbage collection time (_213_javac)

1
2
4
8

default

Figure 4: GC time when running 213 javac

code stubs (up to 9% except for 201 compress4), but
the degradation is not significant upon reaching a sta-
ble state (between -2% to 3%). The performance of
SpecJBB2000 is largely unaffected. Compared to not al-
locating CTB arrays at all (TIBs, however, are still ex-
panded), the performance change is also very small. For
our set of benchmarks, it seems that inlining more CTB
array elements does not result in further performance im-
provements.

Table 3 shows the size of the profiled call graph com-
pared to the one constructed by using dynamic CHA. The
size of the call graph generated by CHA is shown in the
second and third columns where, in the second column,
the total number of call edges is followed by those from
invokevirtual call sites only. The number of methods is
given in the third column. From the second column, we
can see that for all benchmarks, the major part of call
edges come from invokevirtual instructions. The fourth
and fifth columns show the size of profiled call graph
and the percentages comparing to the sizes of the CHA
call graphs. Call graphs constructed using our profiling
code stubs have 20% to 50% fewer call edges than the
CHA-based ones. More call edges from invokevirtual
sites were reduced than for the other types of call instruc-
tions because we took the conservative CHA approach on
other types of call instructions to reduce runtime over-
head. The reduction for the number of methods is not as
significant as for the number of call edges.

4The first run of 201 compress does not promote enough methods
to higher optimization levels.

5 Related Work

Static call graph construction for OO programming lan-
guages focuses on approximating a set of types that a
receiver of a polymorphic call site may have at run-
time. Static class hierarchy analysis (CHA) [9] treats
all subclasses of a receiver’s declaring class as possi-
ble types at runtime. Rapid type analysis (RTA) [6]
prunes the type set of CHA by eliminating types that
do not have an allocation site in the whole program.
Static CHA and RTA examine the entire set of classes.
Propagation-based algorithms propagate types from al-
location sites to receivers of polymorphic call sites along
a program’s control flow. Assignments, method calls,
field and array accesses may pass types from one vari-
able to another. Context-insensitive algorithms can be
modelled as unification-based [29] or subset-based [3]
propagation as points-to analysis. The complexity varies
from O(Nα(N, N)) for unification-based analysis to
O(N3) for subset-based analysis. Context-sensitive al-
gorithms [10] might yield more precise results but are
difficult to scale to large programs. Since CHA and RTA
do not use control flow information, both are considered
to be fast algorithms when compared with propagation-
based algorithms. Both VTA [31] and XTA analysis [32]
are simple propagation-based type analyses for Java. The
analyses can either use a call graph built by CHA/RTA,
then refine it, or build the call graph on the fly [25].

Ishizaki et. al. [18] published a new method of utiliz-
ing class hierarchy analysis for devirtualization at run-
time. If the target of a virtual call is not overridden in
the current class hierarchy, a compiler may choose to in-
line the target directly with a backup code of normal vir-

benchmark CHA Profiling
#edges #methods #edges #methods

compress 733 458 365 516 (70%) 241 (53%) 303 (83%)
jess 2549 1364 1130 1986 (78%) 801 (59%) 802 (71%)
db 961 578 413 711 (74%) 328 (57%) 350 (84%)
javac 9427 8137 1662 4315 (46%) 3025 (37%) 1169 (70%)
mpegaudio 1228 849 645 853 (69%) 475 (56%) 474 (73%)
mtrt 1192 833 563 950 (80%) 591 (71%) 446 (79%)
jack 1746 1131 703 1413 (81%) 799 (71%) 572 (81%)
jbb 4166 2802 1394 3221 (77%) 1757 (63%) 1160 (83%)
CFS 2101 1552 843 1259 (60%) 712 (46%) 557 (66%)

Table 3: The number of call edges and methods discovered by CHA and Profiling

tual call. To cope with dynamic class loading, the run-
time system monitors class loading events. If a newly
loaded class overrides a method that has been directly
inlined in some callers, the code of callers has to be
patched with the backup path before class loading pro-
ceeds. Pechtchanski and Sarkar [23] presented a frame-
work for performing dynamic optimistic interprocedural
analysis in a Java virtual machine. Similar to dynamic
CHA, their framework builds detailed dependencies be-
tween optimistic assumptions for optimizations and run-
time events such as method compilation. Invalidation
is a necessary technique for correctness when the as-
sumption is invalidated. Neither of these approaches ex-
plored reachability-based analysis which requires a call
graph as the base. Our work inherits the merits of their
work, supporting optimistic optimizations and invalida-
tions. Bogda and Singh [8] experimented an online
interprocedural shape analysis, which uses an inlining
cache to construct the call graph at runtime. However,
their implementation was based on bytecode instrumen-
tation, which incurs a large overhead. Our work aims to
build an accurate call graph with little overhead to enable
reachability-based IPAs at runtime.

In parallel to our work, Hirzel et. al. [15] adapted a
static subset-based pointer analysis to a runtime analy-
sis in Jikes RVM. In their work, an approach similar to
ours is used to handle lazy class loading and unresolved
method references. However, they used a conservative
call graph constructed by dynamic CHA, and the anal-
ysis also considers the dataflow in a method. It would
be interesting to see how much the smaller call graph
produced by our mechanism could improve their pointer
analysis results.

Code-patching [18] and stack-rewriting [12, 17] are
necessary invalidation techniques for optimistic opti-
mizations. Those operations might be expensive at run-
time. An optimization client should use these techniques
wisely. For example, if an optimistic optimization has
rare invalidations, these techniques can be applied. In

situations of frequent invalidations or incomplete IPA in-
formation, an optimization may choose runtime checks
to guard optimized code.

Static IPAs for Java programs assume whole classes
are available at analysis time. Dynamically loaded
classes should be supplied to the analysis manually.
Sreedhar et.al. [28] proposed an extant analysis frame-
work which performs unconditional static optimizations
on references that can only have types in the closed world
(known classes by analysis), and guided optimizations
on references with possible dynamically loaded types.
However, the effectiveness of online extant analysis may
be compromised by the laziness of class loading at run-
time. Java poses access restrictions on fields by modi-
fiers. Field analysis [13] uses access modifiers to derive
useful properties of fields for optimizations.

A new wave of VM technology is adaptive feedback-
directed optimizations [4, 16, 22]. Sampling is a tech-
nique for collecting runtime information with low costs.
Profiling information provides advice to compilers to
allocate resources for optimizing important code areas.
Compared with feedback-directed optimizations, opti-
mizations based on dynamic IPAs can be optimistic using
invalidation techniques instead of using runtime checks.
Dynamic IPAs also provide a complete picture of an ex-
ecuting program. The new proposed mechanism is ca-
pable of finding all invoked call edges in executed code.
In many cases, profiling information can be aggregated
with IPAs. For example, Jikes RVM’s adaptive system
samples call stacks periodically and builds a weighted,
partial call graph for adaptive inlining. A complete call
graph constructed by our mechanism could be annotated
with sampled weights on edges and clients could perform
probabilistic analysis using the call graph.

6 Conclusions

In this paper we have proposed a new runtime call graph
construction mechanism for dynamic IPAs in a JIT en-
vironment. Our approach uses code stubs to capture the
first-time execution of a call edge. The new mechanism
avoids iterative propagation which is costly at runtime.
We also addressed another important problem faced by
dynamic IPAs: lazy class loading. Our approach handles
the problem transparently. An important characteristic of
our mechanism is that it supports speculative optimiza-
tions with invalidation backups. Our preliminary results
showed that the overhead of online call graph construc-
tion is very small, and the call graph is much smaller than
the one built by dynamic CHA.

Based on runtime call graphs, we outlined the design
of a dynamic XTA type analysis. The model of han-
dling unresolved references is applicable to other dy-
namic IPAs.

Based on the encouraging results so far, we are work-
ing on combining call graph profiling and dynamic CHA
to deal with boot images and JNI calls. We also plan
to use the results of dynamic XTA to expose more op-
portunities for method inlining. We are also planning
to use the runtime call graphs, and the fundamental ap-
proach already used for dynamic XTA, for developing
other dynamic reachability-based IPAs, e.g. escape anal-
ysis [33].

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G.
Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink,
D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.
Smith, V. C. Sreedhar, H. Srinivasan, and J. Wha-
ley. The Jalapeño Virtual Machine. IBM Systems
Journal, 39(1):211–238, February 2000.

[2] B. Alpern, A. Cocchi, S. J. Fink, D. Grove, and
D. Lieber. Efficient Implementation of Java In-
terfaces: Invokeinterface Considered Harmless. In
Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions, pages 108–124, 2001.

[3] L. O. Andersen. Program Analysis and Specializa-
tion for the C Programming Language, May 1994.
Ph.D thesis, DIKU, University of Copenhagen.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F.
Sweeney. Adapative Optimization in the Jalapeño

JVM. In Proceedings the Conference on Object-
Oriented Programming, Systems, Languages, and
Applications, pages 47–65, Oct 2000.

[5] M. Arnold, M. Hind, and B. Ryder. Online
Feedback-Directed Optimization of Java. In Pro-
ceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions, pages 111 – 129, October 2002.

[6] D. F. Bacon and P. F. Sweeney. Fast Static Analysis
of C++ Virtual Function Calls. In Proceedings of
the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 324 –
341, Oct 1996.

[7] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and
N. Umanee. Points-to Analysis Using BDDs. In
Proceedings of the Conference on Programming
Language Design and Inplementation, pages 103–
114, June 2003.

[8] J. Bogda and A. Singh. Can a Shape Analysis Work
at Run-time? In USENIX Java Virtual Machine and
Technology Symposium, pages 13 – 26, April 2001.

[9] J. Dean, D. Grove, and C. Chambers. Optimization
of Object-Oriented Programs Using Static Class
Hierarchy Analysis. In W. G. Olthoff, editor,
ECOOP’95—9th European Conference for Object-
Oriented Programming, volume 952 of Lecture
Notes in Computer Science, pages 77–101, Åarhus,
Denmark, August 1995. Springer.

[10] M. Emami, R. Ghiya, and L. J. Hendren. Context-
Sensitive Interprocedural Points-to Analysis in the
Presence of Function Pointers. In Proceedings of
the Conference on Programming Language Design
and Implementation, pages 242–256, June 1994.

[11] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken.
Partial Online Cycle Elimination in Inclusion Con-
straint Graphs. In Proceedings of the Conference
on Programming Language Design and Implemen-
tation, pages 85–96, June 1998.

[12] S. J. Fink and F. Qian. Design, Implementation and
Evaluation of Adaptive Recompilation with On-
Stack Replacement. In International Symposium
on Code Generation and Optimization, pages 241
– 252, March 2003.

[13] S. Ghemawat, K. Randall, and D. Scales. Field
Analysis: Getting Useful and Low-Cost Interpro-
cedural Information. In Proceedings of the Confer-
ence on Programming Language Design and Im-
plementation, pages 334 – 344, June 2000.

[14] N. Heintze. Analysis of Large Code Bases:
The Compile-Link-Analyze Model, 1999.
http://cm.bell-labs.com/cm/cs/who/nch/
cla.ps.

[15] M. Hirzel, A. Diwan, and M. Hind. Pointer
Analysis in the Presence of Dynamic Class Load-
ing. In ECOOP’04—18th European Conference for
Object-Oriented Programming, June 2004.

[16] U. Hölzle. Adaptive Optimization for SELF: Rec-
onciling High Performance with Exploratory Pro-
gramming, 1994. Ph.D Thesis, Standford Univer-
sity.

[17] U. Hölzle, C. Chambers, and D. Ungar. Debug-
ging Optimized Code with Dynamic Deoptimiza-
tion. In Proceedings of the Conference on Pro-
gramming Language Design and Implementations,
pages 32 – 43, July 1992.

[18] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu,
and T. Nakatani. A Study of Devirtualization
Techniques for a Java Just-In-Time Compiler. In
Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions, pages 294–310, October 2000.

[19] JikesTM Research Virtual Machine.
http://www-124.ibm.com/developerworks/
oss/jikesrvm/.

[20] O. Lhoták and L. Hendren. Scaling Java Points-to
Analysis Using Spark. In G. Hedin, editor, Com-
piler Construction, 12th International Conference,
volume 2622 of LNCS, pages 153–169, Warsaw,
Poland, April 2003. Springer.

[21] S. Liang and G. Bracha. Dynamic Class Loading in
the Java(TM) Virtual Machine. In Proceedings of
the Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 36 –
44, October 1998.

[22] M. Paleczny, C. Vick, and C. Click. The Java
HotSpot(TM) Server Compiler. In USENIX Java
Virtual Machine Research and Technology Sympo-
sium, pages 1 – 12, April 2001.

[23] I. Pechtchanski and V. Sarkar. Dynamic Opti-
mistic Interprocedural Analysis: A Framework and
an Application. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 195 – 210, Octo-
ber 2001.

[24] A. Rountev and S. Chandra. Off-line Variable Sub-
stitution for Scaling Points-to Analysis. In Pro-
ceedings of the Conference on Programming Lan-
guage Design and Implementation, pages 47 – 56,
June 2000.

[25] A. Rountev, A. Milanova, and B. Ryder. Points-to
Analysis for Java Using Annotated Constraints. In
Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applica-
tions, pages 43 – 55, October 2001.

[26] Spec JBB2000 benchmark.
http://www.spec.org/jbb2000/.

[27] Spec JVM98 benchmarks.
http://www.spec.org/jvm98/.

[28] V. C. Sreedhar, M. G. Burke, and J.-D. Choi. A
Framework for Interprocedural Optimization in the
Presence of Dynamic Class Loading. In Proceed-
ings of the Conference on Programming Language
Design and Implementations, pages 196 – 207,
June 2000.

[29] B. Steensgaard. Points-to Analysis in Almost
Linear Time. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 32–41, January
1996.

[30] T. Suganuma, T. Yasue, and T. Nakatani. A Region-
Based Compilation Technique for a Java Just-In-
Time Compiler. In Proceedings of the Conference
on Programming Language Design and Implemen-
tation, pages 312 – 323, June 2003.

[31] V. Sundaresan, L. J. Hendren, C. Razafimahefa,
R. Vallée-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical Virtual Method Call Resolution for Java.
In Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 264–
280, October 2000.

[32] F. Tip and J. Palsberg. Scalable Propagation-based
Call Graph Construction Algorithms. In Proceed-
ings of the Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications,
pages 281–293, October 2000.

[33] F. Vivien and M. C. Rinard. Incrementalized
Pointer and Escape Analysis. In Proceedings of the
Conference on Programming Language Design and
Implementation, pages 35 – 46, May 2001.

[34] Weka 3: Data Mining Software in Java.
http://www.cs.waikato.ac.nz/ml/weka/.

