
Towards Dynamic
Interprocedural Analysis in JVMs

Feng Qian and Laurie Hendren

{fqian,hendren}@cs.mcgill.ca.

School of Computer Science, McGill University

http://www.sable.mcgill.ca

VM 2004 – p.1/23

Motivation

Goal:

• do interprocedural analysis supporting speculative
optimizations in a JIT compiler

Problems:

• construct a high quality call graph efficiently

• deal with dynamic class loading

• handle unresolved symbolic references

•

VM 2004 – p.2/23

Motivation

Goal:

• do interprocedural analysis supporting speculative
optimizations in a JIT compiler

Problems:

• construct a high quality call graph efficiently

• deal with dynamic class loading

• handle unresolved symbolic references

•

VM 2004 – p.2/23

Dynamic call graphs

A call graph is a representation of call relations between
methods.

A dynamic call graph

• is constructed incrementally

• is conservative w.r.t. executed code

• supports speculative optimizations

VM 2004 – p.3/23

Road map

• Motivation

• Constructing call graphs using profiling stubs

◦ Constructing call graphs using type analysis

◦ Evaluation

◦ Dynamic XTA

◦ Related work and conclusion

VM 2004 – p.4/23

Background: virtual method calls in JikesRVM

method instruction address

class A’s TIB

virtual method table

object pointer

TIB = * (ptr + TIB_OFFSET);

INSTR = TIB[method_offset];

JMP INSTR

*The method_offset is a runtime constant.

VM 2004 – p.5/23

Incorporating call graph profiling stubs

method instruction address

CTB array

indexed by method_offset

indexed by caller_index

class A’s TIB

TIB = * (ptr + TIB_OFFSET);

CTB = TIB[method_offset]; // load CTB array from TIB

INSTR = CTB[caller_index]; // load code address

JMP INSTR

*The caller_index is a runtime constant.

VM 2004 – p.6/23

CTB arrays

• an entry of a CTB array

• is initialized to the address of a profiling code stub

• contains real method code address after executing the
code stub

• caller_index assignment

• handles polymorphism and symbolic references
properly

• may waste some space in CTBs

VM 2004 – p.7/23

Call graph profiling code stubs

A call graph profiling code stub

• generates a call edge event

• triggers the compilation of the method if necessary

• patches the instruction address into the CTB entry

Note: a call edge only triggers the profiling stub once (at

its first invocation).

VM 2004 – p.8/23

Optimizations

• Majority of methods have a small number of callers
• Inlining first few CTB elements into TIBs eliminates the

extra load

2 4 8

compress 97.26% 99.99% 99.99%

javac 21.62% 64.25% 83.53%

jack 48.51% 77.82% 86.01%

• Type analysis can be used for non-virtual and interface
calls

• Runtime overhead ranges from -2% to 3% for our set of
benchmarks

VM 2004 – p.9/23

Road map

• Motivation

• Constructing call graphs using profiling stubs

• Constructing call graphs using type analysis

◦ Evaluation

◦ Dynamic XTA

◦ Related work and conclusion

VM 2004 – p.10/23

Dynamic type analysis

During the execution of a program P, define

initialized types(P) the set of initialized classes
(built by class loaders)

rapid types(P) the set of initialized classes having
allocation sites
(built by JIT compilers)

instantiated types(P) the set of classes having instances
(built by allocators)

Sets are dynamically expanded as program runs.

VM 2004 – p.11/23

Dynamic CHA, RTA, and ITA

Let hierarchy_types(C) be the set of types including C
and its subclasses.

When compiling a resolved call C.m(), the following type
set is used for computing call targets:

Class hierarchy analysis :
hierarchy_types(C) ∩ initialized_types(P)

Rapid type analysis :
hierarchy_types(C) ∩ rapid_types(P)

Instantiation-based type analysis :
hierarchy_types(C) ∩ instantiated_types(P)

VM 2004 – p.12/23

Handle dynamic expansion of type sets

Maintain a database of RESOLVED_CALLSITES

resolved (callee) method ⇒ { call sites }

Let C be a new member of the type set,

for each virtual method m of C

for each m’ overridden by m

for each resolved call site s calling m’

generate a call edge from s to m

A similar approach is used to handle unresolved method

calls.

VM 2004 – p.13/23

Road map

• Motivation

• Constructing call graphs using profiling stubs

• Constructing call graphs using type analysis

• Evaluation

◦ Dynamic XTA

◦ Related work and conclusion

VM 2004 – p.14/23

Call graph sizes

benchmarks CHA RTA ITA Prof

compress 458 432 (94%) 380 (83%) 240 (52%)

javac 8141 7706 (95%) 6376 (78%) 2775 (34%)

jack 1131 1062 (94%) 997 (88%) 785 (69%)

jbb 2802 2663 (95%) 2379 (85%) 1734 (64%)

Table 0: the number of call edges from invokevirtual

calls at the end of benchmark runs.

VM 2004 – p.15/23

Call graph sizes at runtime (jbb)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300th
e

nu
m

be
r

of
 c

al
l e

dg
es

 fr
om

 in
vo

ke
vi

rt
ua

ls
 (

jb
b)

virtual time (the number of opt compiled methods)

Dynamic CHA
Dynamic RTA

ITA
Profile

VM 2004 – p.16/23

Road map

• Motivation

• Constructing call graphs using profiling stubs

• Constructing call graphs using type analysis

• Evaluation

• Dynamic XTA

◦ Related work and conclusion

VM 2004 – p.17/23

Static XTA (Tip & Palsberg 2000)

• models method calls, field and array accesses

• ignores intraprocedural data-flows

foo():
Set s = new MySet();
it = s.iterator();
it.hasNext()
it.next()

MySet.iterator():
return new MyIterator();

foo MySet

MySet.init MySet.iterator

MyIterator.hasNext

MyIterator.next

MyIterator

MyIterator.init

MySet MySet

MyIterator

MyIterator

MyIterator

MyIterator

VM 2004 – p.18/23

Dynamic XTA

compilers

constructors
call graph

classloader

analysis

dependency
databases

XTA
graphs

1

2

3
4

5
6

• the dynamic XTA is event-driven

• unresolved field/array references are handled by
dependency databases

• results are optimistic

VM 2004 – p.19/23

Related Work

• Static call graph construction algorithms (CHA, RTA,
VTA, etc.)

• Dynamic optimistic interprocedural analysis (DOIT by
Perchtchanski & Sarkar OOPSLA 2001)

• Pointer analysis in the presence of dynamic class
loading (Hirzel et.al. ECOOP 2004)

• Online shape analysis (Bogda et. al. JVM 2001)

VM 2004 – p.20/23

Conclusion

• Proposed a new, inexpensive, call graph profiling
mechanism

• Studied several dynamic type analysis for call graph
construction

• Presented a model of dynamic interprocedural
analysis

• Working on more advanced interprocedural analysis

• How to use the analysis results? and what kind of
speculative optimizations can we do?

VM 2004 – p.21/23

Questions

?

VM 2004 – p.22/23

	Motivation
	Dynamic call graphs
	Road map
	Background: virtual method calls in JikesRVM
	Incorporating call graph profiling stubs
	CTB arrays
	Call graph profiling code stubs
	Optimizations
	Road map
	Dynamic type analysis
	Dynamic CHA, RTA, and ITA
	Handle dynamic expansion of type sets
	Road map
	Call graph sizes
	Call graph sizes at runtime (jbb)
	Road map
	Static XTA (Tip & Palsberg 2000)
	Dynamic XTA
	Related Work
	Conclusion
	Questions

