
A Practical MHP Information Analysis for

Concurrent Java Programs

Lin Li and Clark Verbrugge

School of Computer Science, McGill University
Montréal, Canada

{lli31,clump}@sable.mcgill.ca

Abstract. In this paper we present an implementation of May Hap-

pen in Parallel analysis for Java that attempts to address some of the
practical implementation concerns of the original work. We describe a
design that incorporates techniques for aiding a feasible implementation
and expanding the range of acceptable inputs. We provide experimental
results showing the utility and impact of our approach and optimizations
using a variety of concurrent benchmarks.

1 Introduction and Motivation

Although specific techniques for handling problems related to compiling mul-
tithreaded languages are being actively researched, e.g., synchronization re-
moval [7], and race detection [4], more general techniques that also allow one
to compute the impact of concurrency on other compiler analyses or optimiza-
tions are still desireable. Such a more general approach for Java is provided by
Naumovich et al’s May Happen in Parallel (MHP) analysis [15]. This analy-
sis only determines which statements may be executed concurrently, but from
this information on potential data races and synchronization problems can be
derived.

The original MHP algorithm relies on a simplified program structure. All
methods need to be inlined, and cloning is necessary to eliminate polymorphism
and aliasing. Unfortunately, while these limitations still allow a variety of ap-
plications to be analyzed, they cannot be feasibly applied to more complex pro-
grams. Whole program inlining is not possible for non-trivial programs, and
moreover excludes many recursive programs. Cloning further expands the pro-
gram size, and even in the presence of good alias resolution is likely to cause
space concerns. Thus although Naumovich et al’s results are encouraging, it is
important to also know how well the analysis would work in a more practical
compiler setting.

In this paper we present an implementation of MHP for Java that attempts
to address such practical concerns. Our implementation of MHP incorporates
several simple analyses as well as modifications to MHP structures in order to
reduce many of the practical limitations. We provide experimental results and
show how simple optimizations on the MHP internal data structures can make
MHP analysis of even moderate size programs quite feasible.

2

In the next section we describe the basics of Naumovich et al’s MHP analysis
and its accompanying Parallel Execution Graph data structure. Further details
on our implementation and context are given in section 3. Improvements to this
implementation are then developed in section 4, and experimental results and
analysis are given in section 5. Related work is described in section 6 and we
describe future work and conclude in section 7.

2 PEG and MHP Analysis

MHP analysis first requires the construction of a Parallel Execution Graph
(PEG) data structure, an augmented control flow graph for the input program.
The actual analysis is then on the PEG, with a fairly trivial mapping back to
the original CFG. We sketch out the major steps and structure definitions here;
complete details are of course provided in Naumovich et al’s original paper [15].
First, however, we give further details on the practical constraints.

MHP analysis relies on a simplified and constrained input program structure,
including limits on thread creation, method and variable aliases and method call
structure. Some constraints such as having a known and bounded number of
runtime threads represent reduced generality, but have no impact on efficiency.
Others however imply significant cost, and severely impact practicality.

One main requirement is that alias resolution be done, and code cloning used
to eliminate polymorphism and ensure precise variable and method targets are
known. This simplifies the analysis at a potentially very large cost in data size
and thus overall running time. More complex programs with larger alias sets
cannot be efficiently represented or analyzed under these constraints.

MHP analysis is not defined over most method calls, and requires all methods
except specific communication methods (Thread.start(), wait(), notify()

etc) to be inlined. This eliminates the need to consider issues of disentangling
information propagated back from multiple call sites to the same callee (the
calling context problem). However, recursive programs cannot then be analyzed
without prior conversion to iterative forms. More critically, and particularly in
conjunction with cloning, the space requirements of this approach can easily be
excessive for even moderate programs, and so is not feasible in general.

2.1 Parallel Execution Graph

The Parallel Execution Graph or PEG is a superstructure of a normal control
flow graph. Special arrows and nodes are incorporated to explicitly represent
potential thread communication and synchronization. Since thread bounds are
known, the actions of each thread are also uniquely represented in the graph.
Figure 1 gives an example of a PEG for a simple program that launches 2 threads
(t1 and t2) from a main thread and then attempts to signal them using a global
lock and a wait/notify pattern.

Nodes in PEG’s are structured as triples; e.g., for communication methods the
triple (object, name, caller) is used, where the field object represents the monitor

3

main

(*, if , t2)

t1

(*,begin, main)

(t1, start, main)

(*, begin, t1) (*, begin, t2)

(lock, entry, t2)(lock, entry, t1)

t2

(t2, start, main)

(lock, entry, main)

(*, end, t1)

(lock, exit, t1)

(lock, notified−entry,t1)

(lock, waiting, t1)

(lock, wait, t1)

(*, if , t1)

(lock, notifyAll, main)

(lock, exit, main)

(t1, join, main)

(t2, join, main)

(*, end, main)

 (lock, waiting, t2)

(lock, notified−entry, t2)

(lock, exit, t2)

(*, end, t2)

(lock, wait, t2)

(*, if , main)

Fig. 1. An example of a PEG, a simplified version of figure 3 in [15].

object controlling the communication, name is the method name, and caller is
the thread name. For nodes that do not represent communication methods, a
wildcard symbol (*) is used for the object field.

Certain new nodes are added to aid in later analysis. Most simply, (*,begin,t)
and (*,end,t) nodes are inserted to mark the beginning and end of each thread t,
and (lock, entry,t) and (lock, exit,t) nodes indicate monitorenter and monitorexit
operations for operations by t on object lock. Condition synchronization is only
slightly more complex. A wait() method call is broken down into a chain of wait,
waiting and notified-entry nodes, representing the substeps of starting the call
to wait(), actually sleeping after the lock is released, and having been notified
and trying to reacquire the lock, respectively.

PEG edges fall into one of four different categories: local, start, wait and
notify edges. The first three are statically constructed, and the last is created
during the analysis. A local edge represents normal, intra-thread control flow, not
dependent on thread communication. These edges are inherited from the base
CFG, and are shown as solid edges in Figure 1. A start edge is created to indicate
a must-precede relation between a call to Thread.start() and the first action
of the initiated thread. These edges are shown in Figure 1 as the dotted edges
with solid arrowheads between the (ti,start,main) nodes and the corresponding
(*,begin,ti) node. A waiting edge models the control flow dependent on thread
notification. These are inserted between waiting nodes and notified-entry nodes,
and are shown as dotted edges with empty arrowheads in Figure 1.

4

Notify edges are created dynamically during the analysis process. They al-
low precedence information to flow from the notifier to the waiting thread,
and since they are inserted during analysis, this information flow can be more
precise than a static approach. Notify edges are only inserted from an (ob-
ject,notify/notifyAll,t1) node to a (object,notified-entry,t2) node if the same
object is involved, the threads are distinct, and the analysis has computed that
these two events may indeed happen in parallel.

2.2 A Worklist Flow Analysis Algorithm

MHP analysis is performed using a worklist dataflow algorithm. The goal is
to find for each PEG node the set of other PEG nodes which may execute
concurrently. For each PEG node a set M(n) is initialized to the empty set, and
a least fixed-point based flow algorithm propagates set information around the
PEG. Although this largely follows the template of a standard dataflow analysis,
with special modifications to create notify edges and flow information across
and through the various special edges and nodes, the algorithm also includes
a “symmetry step” to guarantee that if m ∈ M(n) then n ∈ M(m). This non-
standard component of the analysis ensures information is accurately maintained
as the actions of concurrently executing threads are analyzed. Note that as with
most static analyses the computed information is a conservative approximation.

3 MHP Analysis in the context of Soot

3.1 Soot Framework

Our implementation is based on Soot [22], a free compiler infrastructure written
in Java. The Soot framework was designed to provide a common infrastructure
for analyzing and transforming Java bytecode, and in particular includes a num-
ber of useful analyses, transformations and representations we used to simplify
our effort. Major components are described below.

Jimple The main internal program representation in Soot is Jimple. Jimple is
a typed, “3-address” code representation of input, stack machine based byte-
code, and Soot provides control flow graph construction and various control flow
analyses on Jimple. Since a stack-less, CFG form is also convenient for MHP
analysis, we based our analysis on Jimple. This also simplifies interaction with
other analyses in the Soot framework.

Intra-procedural Analysis Soot has two built-in intra-procedural analysis
schemata: ForwardFlowAnalysis and BackwardFlowAnalysis. Due to the sym-
metry step MHP analysis is strictly speaking neither a forward flow analysis nor
a backward flow analysis; we implemented our MHP analysis based on the For-
wardFlowAnalysis framework, modified to incorporate the symmetry step.

5

Inter-procedural Analysis Soot also provides several inter-procedural anal-
yses important to our implementation:

– Call Graphs For a multithreaded program, the CallGraph must include all
the methods that can be reached from the main method, as well as the run

method in a class that implements java.lang.Runnable.
– Class hierarchy analysis (CHA) Class hierarchy analysis [5] conserva-

tively estimates the run-time targets of method calls by using the class-
subclass relationships in the type hierarchy.

– Points-to analysis Points-to analysis [6] computes the set of concrete lo-
cations to which each variable may point. Points-to information identifies
variable aliasing, and in object-oriented languages like Java, method targets
too. Soot includes SPARK [14], a points-to analyzer that provides fast and
precise points-to data.

Figure 2 shows how our MHP analysis is integrated with Soot. Java class
files are first input into Soot framework, producing Jimple files, the Call Graph,
as well as CHA and Spark analysis information. These are all used as input to
the MHP module, which computes the may happen in parallel information for
each PEG node. MHP information can subsequently be used for further program
analyses and optimization.

MHP
Analysis or Optimization

Other Analysisclass

CallGraph

CHA

Spark

Jimple
Files

SOOT

Fig. 2. MHP Analysis in Soot.

4 Practical MHP Analysis

Our MHP implementation is composed of a few steps; Figure 3 shows an overview
of the process. There are three phases in our MHP analysis. The first phase is
a PEG Builder which uses Jimple and takes input from CallGraphs, CHA, and
SPARK. We get PEGs after the PEG builder phase, then a PEG Simplifier
works on PEGs to get a smaller PEG by aggregating some nodes into one node.
The final phase is an MHP analyzer which runs the worklist algorithm based on

6

the simplified PEG. Each of these processes has performance-affecting practical
considerations or goals, and we describe the salient features below.

A process Data

Builder PEG
PEG MHP

AnalyzerPEG
Simplified

Simplifier
PEG

Information
MHP

Fig. 3. Overview of our MHP analysis.

Note that many of our simplifications are based on the observation (made
in [15]) that code not containing synchronization does not need to be explic-
itly modelled. Here, by interesting statements we refer to statements related to
modeling execution of threads and synchronization of Java programs, i.e., the
communication methods wait(), notify(), notifyAll, Thread.start(), and
Thread.join(), as well as monitorenter, monitorexit bytecode operations (in-
cluding entry/exit of synchronized methods). A method is interesting if it either
contains an interesting statement, or any callee is interesting.

4.1 Efficient PEG Construction

Conceptually, building PEG’s from a CFG is straightforward. In practice, non-
obvious information needs to be computed to make correct decisions. In order to
keep the data size manageable, a realistic implementation must also incorporate
techniques to limit the size of the resulting data structures.

One obvious way of restricting data size is to focus attention on application
code only. Java includes a very large standard class library, and so even for a
very small program a complete call graph tends to be quite large. However, in
many cases the application itself is of main interest, and so if external actions
are assumed safe enough, greater efficiency can be derived by excluding library
and startup information. We therefore define a PegCallGraph to be a call graph
restricted to methods inside application classes, i.e., user defined classes.

Constructing the PEG can involve a lot of duplicated effort, as the same
method is inlined in various places. Our strategy is to build small PEGS, one
for each method a thread may invoke, and then combine these small PEGs into
a PEG for the whole program. This of course doesn’t change the final PEG
size, and other techniques are necessary for that. Methods without interesting
statements are good candidates for pruning, and so our PEG construction first
proceeds with a simple, fast interprocedural analysis to identify and compact
such methods, followed by a standard inlining operation.

Finding Interesting Methods Clearly methods that will never execute any
interesting statements are of little interest to the MHP analysis: any MHP in-

7

formation true on entry to such a method is true at exit, and at all points in
between. Since thread communication code is typically a small part of any sig-
nificant program, restricting the PEG to useful parts of the program is very
effective.

Unfortunately, knowing whether a method is interesting is recursively depen-
dent on the status of all callee methods. A precise, flow-sensitive interprocedural
analysis would be most effective, but is of course both complex and expensive.
We have elected for a more pragmatic flow-insensitive approach, implemented in
two stages.

The body of each method in the PegCallGraph is first scanned to see if con-
tains an interesting statement. If so the method node in the PegCallGraph is
marked interesting. Once all methods are examined, marks are propagated in
the reverse direction of call graph edges, and logically OR’d at each merge point
using a depth first search of the PegCallGraph. The result is a conservative
overapproximation of interesting methods. During actual PEG construction un-
interesting methods are represented by single node placeholders, greater reducing
PEG size.

Recursive method calls will result in the failure of inlining, and so naturally
must be avoided. The call graph is thus also analyzed to locate recursive cy-
cles, and rejects the input program if so. Of course cycles are only problematic
if interesting methods are involved, since uninteresting methods are not actu-
ally included in the PEG. Our algorithm ensures any detected call graph cycles
involve at least one interesting method before rejecting the program.

Inlining Actual inlining is straightforward, and proceeds in a bottom up fashion
on the PegCallGraph. Each inlining operation involves creating a new local scope
for the code and mapping local variable, parameter and return value usage. In
the case of Java, care must also be taken to ensure appropriate monitorenter
and monitorexit instructions are inserted in the case of inlining synchronized

method calls.
Note that because inlining is used in computing MHP information, finding

precise method targets is very important. Imprecision in the destination of vir-
tual calls can have a large impact on call graph size. To get a more precise
call graph than that provided by CHA alone, we used Spark to help resolve ob-
jects used in invocation calls, and hence method polymorphism. In places where
the method target was still ambiguous all potential callees must be presumed
invoked.

4.2 PEG Simplification

We can proceed to use the MHP algorithms to compute MHP information once
the PEG is built. However, even with the above inlining strategy we may still
have a large PEG. Further optimization techniques can still be useful to simplify
the PEG before running the MHP algorithms, and so we applied two straightfor-
ward graph reductions as optimizations: merging lists, and collapsing strongly

8

connected components. Since the MHP analysis manipulates sets of PEG nodes,
reductions in PEG size can have a significant effect, and we give some results on
the effect of PEG reductions in Section 5.

Merging Strongly Connected Components This is based on an observa-
tion: suppose a strongly connected component (SCC) S inside a PEG does not
contain interesting statements. If a statement A can be concurrently executed
with a statement B inside S, it should also be possible for A to be concurrently
executed with all the other nodes inside S. Thus, we can merge the nodes inside
this SCC and create a new node to represent the entire SCC. The new node is
simply a reference to the list containing all the nodes inside the SCC.

After finding SCCs, we check if they contains interesting statements. If not,
we can merge the nodes in the SCC into one node.

Merging Sequential Nodes A sequence of nodes with no interesting state-
ments, and no branching in or out except at the beginning and end respectively
necessarily has the same MHP information at each node in the sequence. We
thus locate all maximal chains of this form, and as with SCC’s collapse them
into a single node. Again, these new nodes are references to lists of the replaced
nodes.

4.3 Practical MHP Analysis

The efficient PEG construction described above incorporates inlining, but avoids
resolving variable aliases through cloning. The latter technique is quite expensive
in an allocation-intensive setting such as Java.

Specifically handling object aliases in the MHP analysis would significantly
complicate the algorithm, and certainly increase its actual running time. It is
further unclear whether this extra effort is worthwhile, given that even a set
of 2 potential object targets for a monitor operation may make a conclusion of
success or failure of the operation impossible. We have thus chosen to focus on
detecting situations in which precise conclusions can be made rather than on a
general inclusion of aliasing. Below we describe our technique for handling this
problem..

Finding Runtime Target Objects MHP analysis relies on knowing the value
of the Object field in PEG triples for determining lock ownership and monitor-
based information flow. In Soot and by using SPARK, it is possible to find
the potential textual allocation sites corresponding to a given object reference.
Allocation sites are locations in the code, and thus one can easily determine a set
of potential types of an object reference, and this is sufficient for many analyses
(including call graph refinement).

For MHP analysis, however, decisions as to whether synchronization has oc-
curred requires knowing that an object involved in a monitorexit is the same run-
time object involved in a previously examined monitorenter . SPARK computes

9

may-alias information, and so even the same singleton allocation site sets for the
respective objects are not sufficient for this conclusion, since allocation sites in
loops may spawn more than one runtime object. A form of interprocedural value
numbering analysis is thus required. Again for simplicity of implementation and
as well as asymptotic complexity concerns we have elected for a custom analysis,
composed of an intraprocedural analysis and a flow-insensitive interprocedural
step.

An allocation site that is only ever executed at most once of course does
represent one runtime object. Thus an obvious guarantee that two or more syn-
chronization operations are operating on the same value can be provided if the
computed sets of allocation sites are both the same singletons, and the allocation
site is only ever executed once.

Intraprocedurally, a statement is surely executed at most once if it is not
included in any control flow cycles, and so is the complement of knowing what
may be executed more than once. This information is computed for each alloca-
tion site of every method in the PegCallGraph. To find out which methods are
called more than once interprocedurally, we use a modified depth-first search on
the PegCallGraph to detect whether a node is potentially reachable more than
once from main. Methods that can be called more than once conservatively imply
each statement in them can be executed more than once, regardless of internal
control flow. Our algorithm actually computes both intra and interprocedural
information together, performing intraprocedural analysis as the interprocedu-
ral analysis proceeds, and only if required. This allows the conclusions of each
analysis to be merged and propagated together.

Finding Monitor Nodes Computation of MHP information is partially based
on knowing which PEG nodes may be contained within a Java monitor lock.
However, as well as the need to determine the exact runtime identity of a locked
object, an analysis of Java locks must also account for recursive locking—a
thread that owns a lock may relock it repeatedly, and is required to unlock
it a corresponding number of times in order to release it. Simply identifying
nodes dominated by an enter node without reaching an exit node is thus insuf-
ficient to determine whether a node outside this region is or is not protected by
a monitor—lock level must also be tracked.

To model locking state we have implemented a simple, forward, flow-sensitive
analysis on the PEG. This analysis conservatively tracks locking depth for ob-
jects used in monitor operations by associating a lock count with each such
object. These structures are propagated through the PEG, incrementing the
count for the object specified at each monitorenter operation and decrement-
ing counts at monitorexit ’s. Unbounded recursive locking, as in general merge
points with unmatched locking depths for corresponding objects (not possible
with Java programs) and are not handled, so this is guaranteed to reach a fixed
point.

With lock depth information the MHP analysis can make sound judgements
as to whether a PEG node is truly in a monitor or not.

10

5 Experimental Results

5.1 Benchmarks

We collected our benchmarks from several sources. Most of the benchmarks
are multithreaded benchmarks from the Java Grande Benchmark Suite [21]:
ForkJoin, Sync and Barrier represent low level benchmarks that test syn-
chronization, Series, LuFact, Sor, Crypt and SparseMult test specific
“kernel” operations, and MonteCarlo, RayTracer and MolDyn are larger,
more complete applications. mtrt is the only multithreaded benchmark from the
SPECjvm98 [1] suite. In order to fit our input requirements, we modified most
of these benchmarks by manually unrolling all the loops containing method calls
to communication methods.

For comparative purposes we have also attempted to collect some of the
same benchmarks used in Naumovich et al’s paper. However, most of the code
we have been able to acquire is in the form of incomplete program fragments
that require a driving main program to analyze in our system. Fine-grained com-
parisions are thus not likely to be meaningful. We therefore include AuBank-

ing and PeBanking, programs based on the examples AutomatedBanking and
PessimBankAccount from Doug Lea’s book [11]. We have focussed on these two
examples since in [15] Naumovich et al’s version of these benchmarks had the
largest PEG sizes and also had the largest MHP analysis times (by an order of
magnitude) of all their benchmarks. Cyclic is a smaller benchmark from the
CyclicBarrier example in the second edition of Lea’s book [12]. In each case we
added an appropriate main method, modifying them to be complete applica-
tions. All tests were run on a Pentium 4 1.8GHz, using the Sun HotSpot VM
1.4.1 (maximum 1500Meg heap) under Debian Linux.

5.2 Results

Tables 1 and 2 present the experimental results of our MHP analysis. In Table 1
the first column gives the names of the benchmarks, the second column gives
the number of threads (including the main thread), and the next two columns
give the number of nodes and edges in the PEGs representing each program
respectively. In the fifth and sixth columns, we specify the average and maxi-
mal number of nodes in the computed M() set for each node, i.e., how many
nodes were determined may be executed in parallel with each node. This gives
some notion of analysis accuracy, at least in the absence of measuring a con-
suming analysis. The seventh column gives the total number of node pairs found
in the entire PEG—as well as the PEG itself, this represents the total space
requirements of the analysis.

The remaining columns measure time for the various stages of the analysis.
PEG time is the time to build the PEG, MHP is the subsequent analysis time,
and Spark time is the total cost of points-to analysis. Total time is greater than
the sum of the these stages; the remainder represents time required to load and
initialize and shutdown the Soot environment.

11

The timings and data in Table 1 already represent application of many of
the previously discussed simplification and implementation techniques (excessive
data sizes prevented computation of totally unoptimized data), we only exclude
the PEG node merging techniques of Section 4.2. Note that mtrt contains re-
cursive method calls. Method inlining for such a benchmark would normally fail;
however, using the techniques of Section 4.1 we determined that the recursive
calls do not involve interesting statements, and so we are still able to get results.

For most benchmarks the time to build the PEG is small, and in all but one
case well under a second. MHP analysis time clearly dominates PEG construction
time. This is unsurprising given the O(n3) time complexity of MHP analysis, but
was considerably less evident in the data presented in [15], where the majority
of benchmarks were very small (mostly < 100 PEG nodes) and so PEG time
generally appeared to dominate. For larger programs the cubic behaviour of
MHP becomes more evident: MolDyn, the largest benchmark we examined
at 2173 nodes takes less than 2 seconds to build the PEG, but over 12 hours
to analyze. These running times are clearly still excessive for even moderate
programs, and further steps are necessary to reduce PEG size, and thus MHP
analysis time.

|M()| PEG MHP Spark Total
Programs Threads Nodes Edges

Ave Max
Pairs

(s) (s) (s) (s)

ForkJoin 4 308 331 64 173 6105 0.18 4.46 67.2 88.5

Sync 5 656 712 118 459 28944 0.40 51.51 68.2 136.8

Barrier 5 561 716 175 339 34651 0.34 72.72 68.7 160.4

Crypt 5 1025 1061 672 772 297220 0.52 6812.68 67.2 6917.7

MonteCarlo 3 405 433 104 182 11340 0.28 14.15 68.0 102.3

RayTracer 3 660 724 125 318 25188 0.37 57.58 67.5 143.42

Series 3 315 342 109 130 9660 0.24 8.84 67.8 93.3

LuFact 3 465 510 202 224 32032 0.23 87.86 68.8 163.08

Sor 3 662 673 289 363 66430 0.29 259.26 68.0 347.9

SparseMult 3 305 329 81 120 6180 0.21 3.98 67.2 88.1

MolDyn 3 2173 2295 1093 1866 1088392 1.86 44313.44 69.2 44553.9

Cyclic 5 162 201 69 124 4580 0.14 1.13 67.8 86.2

mtrt 4 188 211 43 108 2819 0.33 1.53 139.7 232.9

AuBanking 3 170 203 31 92 4114 0.17 1.14 66.5 86.4

PeBanking 3 154 270 63 137 4414 0.14 1.17 66.4 85.3

Table 1. Experimental results without PEG simplification

Table 2 shows similar experimental results when the PEG is optimized using
the techniques of Section 4.2. The second and third columns give the PEG size
reductions supplied by the two techniques of merging SCCs and merging sequen-
tial nodes respectively; the resulting graph size is given in the fourth and fifth
columns. In smaller programs sequential node contractions are most effective,

12

Sim. MHP Total Total PEG+MHP
Programs Sim.Scc Sim.Seq. Nodes Edges

(s) (s) (s) Speedup Speedup

ForkJoin 0 199 109 132 0.02 0.41 84.4 1.05 4.76

Sync 2 389 255 307 0.07 8.81 94.1 1.45 5.95

Barrier 12 287 262 411 0.06 21.21 108.8 1.47 3.71

Crypt 662 240 121 149 0.10 0.93 105.1 65.82 4395.80

MonteCarlo 26 247 132 158 0.03 0.53 88.7 1.15 17.13

RayTracer 18 431 211 267 0.07 6.66 92.5 1.55 8.48

Series 26 180 109 134 0.03 0.64 85.0 1.09 9.98

LuFact 166 194 105 130 0.04 0.53 87.9 1.91 110.06

Sor 298 223 101 124 0.04 0.39 89.0 3.91 360.37

SparseMult 55 165 85 104 0.02 0.09 84.5 1.04 12.65

MolDyn 1482 547 144 174 0.18 1.18 90.0 495.04 13763.80

Cyclic 0 51 11 150 0.02 0.74 85.8 1.00 1.40

mtrt 3 107 78 95 0.02 0.10 231.8 1.00 3.73

AuBanking 2 71 97 126 0.02 0.53 85.8 1.01 1.75

PeBanking 0 66 88 204 0.02 0.62 84.7 1.01 1.68

Table 2. Experimental results after optimization

but in the bigger programs the volume of modular, synchronization independent
sections of code sometimes made SCC merging quite valuable. In every case
our PEG optimizations were able to reduce the graph, and in some cases quite
dramatically: MolDyn is reduced from 2173 nodes to 144.

The next two columns give the time in seconds taken to perform the PEG
simplifications and run MHP analysis on the smaller PEG. The eighth column
shows the total running time including Spark and Soot overhead. The remain-
ing columns give the relative speedup (old-time/new-time) ratio achieved by the
optimized version versus the base approach, for both total running time, and
the time just to construct and simplify the PEG and run the MHP analysis.
Again, MolDyn speedups were most significant, as running time drops from
half a day to just under 2 seconds. As a general rule, larger benchmarks have
more nodes, and hence more opportunities for PEG compaction, which is quite
encouraging for analysis of reasonable size programs. The benchmarks with the
lowest speedup, Cyclic, AuBanking and PeBanking, also have the fewest re-
ductions due to PEG simplification, both in absolute terms and proportionally.
These are also all relatively small benchmarks with a high proportion of commu-
nication and synchronization statements, and this limits merging opportunities.

SCC and sequential merging has clear benefits, with a fairly minimal cost—
even for MolDyn simplification takes less than 1/5s. Merging in combination
with an already efficient initial PEG construction allows reasonable size pro-
grams to be analyzed. Interestingly, after optimization efforts, the Barrier

benchmark is the most expensive to analyze, and MolDyn time is even less
than Sync. With optimization overall analysis cost is related more closely to
number and density of communication operations than input program size.

13

6 Related Work

Obviously, our work here is based most directly on the MHP analysis originally
designed by Naumovich et al [15]. There are of course other approaches to an-
alyzing and representing concurrent programs, with a variety of specific and
general purposes.

Program Dependence Graphs (PDGs) [8] can be used for general program
optimizations where dependency is a concern; for example, detecting medium to
fine-grain parallelism for sequential programs. They are however not designed
to represent parallel programs. Parallel Program Graphs (PPGs) [18, 19] are a
generalization of PDGs and CFGs and can be used to fully represent sequential
programs and parallel programs. PPGs can be used for program optimization
and detecting data races. Srinvasan et al. [10] proposed a Parallel Flow Graph
(PFG) for optimizing explicitly parallel programs. They provided dataflow equa-
tions for the reaching definitions analysis and used a copy-in/copy-out semantics
for accessing shared variables in parallel constructs. Concurrent Control Flow
Graphs (CCFGs) [13] are similar to PPGs and PFGs, with the addition of con-
flict edges in addition to synchronization and control flow edges. None of these
representations are Java-specific.

Specific problems have engendered more specific, and more efficient results.
For the purpose of data race detection, Savage et al developed Eraser, a race
checker in the C, C++ environment. Jong-Deok Choi et al [4] compute relatively
precise data race information using Inter-Thread Control Flow Graphs (ICFGs).
Flanagan and Freund analyze large Java program for race conditions by examin-
ing user-provided type annotations for code [9]. Improvements to accuracy and
efficiency of data race detection continue to be addressed; e.g., through dynamic
techniques [23], and by combining information from multiple analyses [16]. A
similar concentration of efforts has looked at synchronization removal [3, 7].

Our implementation and optimization techniques largely depend on a com-
bination of well known approaches. Good quality points-to analysis is one of the
more complex and expensive compiler problems, and has been addressed in a
variety of settings [2,6,17,20]. Spark [14] produces precise points-to information,
and this has been quite crucial to our ability to analyze non-trivial programs.
Exclusion and compaction of PEG nodes according to the presence of commu-
nication methods was briefly mentioned, though not developed in [15].

7 Future Work and Conclusions

We have presented a more realistic implementation of MHP analysis for Java.
Our design makes use of a variety of existing and small custom analyses in order
to build a feasible implementation that can analyze programs of a reasonable
size, bypassing a number of previous input restrictions. We have presented ex-
perimental results from such an implementation, and shown how excessive MHP
analysis time can be efficiently handled through simple input compaction tech-
niques.

14

Our work has clear extensions in a number of ways, including analysis and
potential implementation improvements. Certainly accuracy of the resulting in-
formation deserves examination. Naumovich et al compare MHP information to
precise reachability analyses, but this is not feasible for larger programs. Accu-
racy could however be judged by assessing how useful the information is to a
consumer analysis, such as race detection or synchronization removal.

Internal improvements can of course still be done. Our simple value prediction
and interesting method identification algorithms are sufficient to produce results,
but are not especially precise. More accurate strategies could be applied, which
would allow determination of the relative cost versus benefit for this information.
Similarly, further PEG compaction approaches seem worth exploring.

We also aim to expand the range of acceptable input programs. Programs
with an unbounded number of threads, use of timed synchronization constructs,
and so on could be handled, and this would allow more programs to be analyzed
with less manual intervention.

Acknowledgements This work has been supported by the National Sciences
and Engineering Research Council of Canada, and the McGill Faculty of Grad-
uate Studies. We would like to thank Ondřej Lhoták for lots of implementation
help and advice.

References

1. SPEC JVM98 Benchmarks. http://wwww.spec.org/jvm98.
2. Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren, and Navindra Umanee.

Points-to analysis using BDDs. In Proceedings of the ACM SIGPLAN 2003 confer-

ence on Programming language design and implementation, pages 103–114. ACM
Press, 2003.

3. J. Bogda and U.Holzle. Removing unnecessary synchronization in Java. In Pro-

ceedings of the ACM SIGPLAN 1999 Conference on Object-Oriented Programming,

Systems, Languages, and Application, pages 35–46, November 1999.
4. Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan Vivek Sarkar,

and Manu Sirdharan. Efficient and precise datarace detection for multithreaded
object-oriented programs. In Proceedings of the ACM SIGPLAN 2002 Conference

on Programming language design and implementation, Berlin, Germany, June 2002.
5. Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented

programs using static class hierarchy analysis. In Walter G. Olthoff, editor,
ECOOP’95—Object-Oriented Programming, 9th European Conference, volume 952
of Lecure Notes in Computer Science, pages 77–101, Åarhus, Denmark, 7-11 Au-
gust 1995. Springer.

6. Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive inter-
procedural points-to analysis in the presence of function pointers. In Proceedings

of the ACM SIGPLAN’94 Conference on Programming Language Design and Im-

plementation, pages 242–256, 1994.
7. E.Ruf. Effective synchronization removal for Java. In Proceedings of the ACM

SIGPLAN 2000 Conference on Programming language design and implementation,
pages 208–218, June 2000.

15

8. Jeanne Ferrante, Karl J.Ottenstein, and Joe D. Warren. The program dependence
graph and its uses in optimization. In ACM Transactions on Programming Lan-

guages and Systems, July 1987.
9. Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java.

In Proceedings of the ACM SIGPLAN 2000 conference on Programming language

design and implementation, pages 219–232. ACM Press, 2000.
10. Ferrante J, K.Ottenstein, and J. Warren. Compile-time analysis and optimization

of explicitly parallel programs. In Journal of Parallel algorithms and applications,
1997.

11. Doug Lea. Concurrent Programming in Java Design Principles and Patterns.
Addison-Wesley, Reading, Massachusetts, 1997.

12. Doug Lea. Concurrent Programming in Java Design Principles and Patterns.
Addison-Wesley, Reading, Massachusetts, second edition, 1999.

13. Jaejin Lee. Compilation techniques for explicitly parallel programs. PhD thesis,
University of Illinois at Unbana-Champaign, 1999.

14. Ondřej Lhoták. Spark: A flexible points-to analysis framework for Java. Master’s
thesis, McGill University, December 2002.

15. Gleb Naumovich, George S.Avrumin, and Lori A.Clarke. An efficient algorithm
for computing MHP information for concurrent Java program. In Proceedings of

the 7th European engineering conference held jointly with the 7th ACM SIGSOFT

international symposium on Foundations of software engineering, Toulous, France,
1999.

16. Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In
Proceedings of the ninth ACM SIGPLAN symposium on Principles and practice of

parallel programming, pages 167–178. ACM Press, 2003.
17. Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for

Java using annotated constraints. In Proceedings of the 16th ACM SIGPLAN

conference on Object oriented programming, systems, languages, and applications,
pages 43–55. ACM Press, 2001.

18. Vivek Sarkar. Analysis and optimization of explicitly parallel programs using the
parallel program graph representation. In Proceedings of the 10th International

Workshop on Languages and Compilers for Parallel Computing, LNCS Springer-

Verlag, Minneapolis, MN, August 1997.
19. Vivek Sarkar and Barbara Simons. Parallel program graphs and their classification.

In Proceedings of ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering, Montreal, Quebec, Canada, 1998.
20. Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of

the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 32–41. ACM Press, 1996.
21. Java Grande Benchmark Suite. http://www.epcc.ed.ac.uk/javagrande/javag.html.
22. Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,

and Phong Co. Soot - a Java optimization framework. In Proceedings of CASCON

1999, pages 125–135, 1999.
23. Christoph von Praun and Thomas R. Gross. Object race detection. In Proceedings

of the 16th ACM SIGPLAN conference on Object oriented programming, systems,

languages, and applications, pages 70–82. ACM Press, 2001.

