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Speculative multithreading (SpMT) is a promising optimisation tech-
nique for achieving faster execution of sequential programson multipro-
cessor hardware. Analysis of and data acquisition from suchsystems is
however difficult and complex, and is typically limited to a specific hard-
ware design and simulation environment. We have implemented a flexible,
software-based speculative multithreading architecture within the context of
a full-featured Java virtual machine. We consider the entireJava language
and provide a complete set of support features for speculative execution,
including return value prediction. Using our system we are able to gener-
ate extensive dynamic analysis information, analyse the effects of runtime
feedback, and determine the impact of incorporating static, offline informa-
tion. Our approach allows for accurate analysis of Java SpMTon existing,
commodity multiprocessor hardware, and provides a vehicle forfurther ex-
perimentation with speculative approaches and optimisations.

Keywords Java, virtual machines, speculative multithreading,
thread level speculation, profiling, static and dynamic analysis.

1. Introduction
Speculative multithreading (SpMT), also known as thread level
speculation (TLS), is a promising technique for dynamic paral-
lelisation of sequential programs. It has been investigated through
many hardware proposals and simulations [2, 4, 5, 8, 11, 14, 16,
17, 20, 21, 24, 25, 30, 31, 34, 35, 36, 37, 39, 41], and a smaller but
not insignificant number of software designs [3, 6, 18, 19, 26, 27,
28, 32, 40, 42], each offering its own analysis of various implemen-
tation and optimisation techniques. However, it is difficult to eval-
uate these proposals with respect to and in combination with each
other, as there are multiple source languages, thread partitioning
schemes, SpMT compilers, and hardware simulators being used.
Even if these variables remain fixed, it is highly unlikely that an
identical software architecture and/or set of simulation parameters
will be used.

We present SableSpMT as a common framework and solution
to these problems, as an extension of the SableVM Java virtual ma-
chine [13]. SableSpMT provides a convenient hardware abstrac-
tion layer by operating at the bytecode instruction level, takes the
full Java language and VM specification into account, supports
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static analysis through the Soot bytecode compiler framework [38]
and parsing of Java classfile attributes [29], and works on existing
multiprocessor systems. SableSpMT provides a full set of SpMT
support features, including genericspeculative method level par-
allelism (SMLP) andreturn value prediction(RVP). Our work is
designed to facilitate SpMT research, and includes a unique debug-
ging mode, logging, and portability amongst the features that make
it appropriate for experimentation and new designs.

We report on both Java benchmark and framework behaviour to
illustrate the forms of experimental and design analysis we support.
Through dynamic measurements we show that whilespeculative
coverage, the percentage of sequential program execution that oc-
curs successfully in parallel, can be quite high in Java programs, the
overhead costs are significant enough in our initial implementation
to preclude actual speedup. However, we are able to perform ex-
periments to determine upper bounds on speedup in the absence of
all overhead, and our execution times are still better than those of-
fered by hardware simulators providing similar functionality [20].
We also break down the SpMT overhead costs to determine per-
formance bottlenecks and set optimisation goals. In our case over-
head is dominated by verification of speculative threads and the
concomitant interprocessor memory traffic, lock and barrier syn-
chronization, and update costs for return value prediction (RVP),
a runtime optimisation technique that can improve SMLP perfor-
mance by up to 2-fold [16]. With regards to RVP, results gathered
within our framework extend previous studies to include more re-
alistic benchmark runs, offer further data on the relative benefits,
requirements and costs of various prediction strategies, and expose
the potential benefits of exploiting both static and runtime feedback
optimisation information.

Hardware simulations have already demonstrated the great po-
tential in speculative multithreading. We contend that the same
techniques, however, can be investigated more generally and ef-
ficiently at the virtual machine level using commodity multipro-
cessor hardware, given an appropriate analysis framework. Virtual
machines allow for exploration of complex design changes, facil-
itate detailed instrumentation, provide high level information that
is not generally available to hardware approaches, and are able to
interact directly with the underlying architecture. Our work is in-
tended to enable SpMT investigations by providing an execution
and analysis environment, a general design and componentry, and
real data from a working implementation.

1.1 Contributions

We make the following specific contributions:

• We describe SableSpMT, a complete implementation of SpMT
for Java that runs on real multiprocessor hardware, and present
its suitability as an analysis framework. This is the first com-
plete such work within a virtual machine.



• We simplify the implementation and analysis of new SpMT de-
signs by providing a deterministic, single-threaded uniproces-
sor mode, as well as logging facilities, statistics gathering, and
full JVM support.

• We demonstrate that high level analysis information can be eas-
ily exploited by our framework. Ahead-of-time results com-
puted by Soot as well as runtime profiling-based feedback can
passed to our execution engine to improve performance, and
we illustrate the technique using our work on RVP.

• We provide detailed data on the speculative execution of non-
trivial programs, which include a breakdown of overhead costs,
the impact of highly accurate RVP, two different measurements
of dynamic parallelism, and overall running times.

In Section 2 we discuss related work on the analysis of specu-
lative multithreading. In Section 3 we describe the general SpMT
model we have used and give an overview of how our framework
is constructed and its main features. This includes an exposition
of the components required for Java SpMT, our multithreaded exe-
cution and single-threaded debugging modes, system configuration
options, and the data logging and trace generation features. In Sec-
tion 4 we analyse actual data and show the flexibility of our system
in terms of data gathering. Finally, we discuss future work and con-
clude in Section 5.

2. Related Work
Speculative multithreading approaches have been developed pri-
marily in the context of novel hardware environments. A number
of general purpose speculative architectures such as the Multiscalar
architecture [11], the Superthreaded architecture [37], MAJC [36],
Hydra [14], and several other designs [21, 34] have been proposed,
and simulation studies have generally shown quite good potential
speedups. Steffanet al. give a recent implementation and good
overview of the state of the art in [35].

From the speculative hardware level, an executing Java vir-
tual machine does not have distinguished performance in com-
parison with other applications [39]. As an interpreted language,
however, Java can provide higher level abstractions and informa-
tion than generic machine code. High level program information
is used in a few hybrid software/hardware studies, including Chen
and Olukotun’s thread level speculation system for Java [5]. Java
traces applied to simulated architectures have been used by several
researchers, including Huet al. in their study of the impact of re-
turn value prediction [16], and Whaley and Kozyrakis’ recent study
of heuristics for method level speculation [41].

Software architectures for SpMT are less common. Rundberg
and Stenstr̈om describe a software approach to speculation in
C [32]. Their prototype implementation shows good speedup, but
is verified only through hand done transformations and greatly lim-
ited real world testing. Kazi and Lilja describe a software library for
coarse-grained thread pipelining[19], demonstrated through man-
ual parallelisation of loops in C programs. The “Softspec” software
speculation environment [3] concentrates purely on loop-based
speculation. The approach depends on machine code level runtime
profiling to identify independent loop bodies suitable for specula-
tive execution. Cintra and Llanos have developed a FORTRAN-
based system that also speculates on loop bodies [6]. These ap-
proaches all achieve good performance results, but none are based
on Java or designed specifically as experimental frameworks.

Only very limited studies on language level speculation for Java
have been done previously. Yoshizoeet al. give results from a
partially hand-done loop level speculation strategy implemented
in a rudimentary (e.g., no GC) prototype VM [42]. They show
good speedup for simple situations, but lack of heap analysis lim-
its their results. A more convincing analysis is given by Kazi and

Lilja through manual Java source transformations [18]; similarly
Welc et al.demonstrate good speedup of loops in easily parallelis-
able benchmarks, through application ofsafe futuresfor Java [40],
source level annotations that provide SpMT-like functionality and
depend on VM support for parallelisation. Opposingly, Warg and
Stenstr̈om argue that Java-based SpMT has inherently high over-
head costs which can only be addressed through hardware sup-
port [39]. Our data and analysis are significantly more comprehen-
sive than prior studies, and suggest that while overheads can be
quite high, there is sufficient potential parallelism to offset the cost.

We have analysed return value prediction as part of our investi-
gation into SpMT behaviour. Value prediction for SpMT has been
explored by several groups [4, 8, 25], and is generally well-studied.
The specific utility of return value prediction for method level spec-
ulation in Java was shown by Huet al. [16], with further prediction
accuracy investigated by the authors [26, 27]; our value prediction
approach here is based on these designs.

3. Framework
We begin with an overview of our framework, followed by a brief
exposition of our speculative execution model, and some of the fea-
tures of our framework that help with implementation and debug-
ging of such a complex undertaking.

Figure 1. The overall SableSpMT execution environment.

The overall SableSpMT execution environment is shown in
Figure 1. SableVM prepares special speculative and normal non-
speculative versions of methods at runtime from dynamically
loaded classes, which are read in from Java.class files. Soot [38]
is used to transform, analyse, and attach attributes to these classes
in an ahead-of-time step [29], although this could also occur at run-
time. Two execution modes are provided, a single-threaded “sim-
ulation” mode and a true multithreaded mode, both of which can
exploit a return value prediction framework. The multithreaded
mode splits single Java threads across multiple processors on an
SMP machine.

3.1 Speculative Method Level Parallelism

Threads are created using the SpMT variant known asspecula-
tive method level parallelism(SMLP) [4, 5, 16, 39, 41], depicted
in Figure 2. Ordinary sequential bytecode execution is shown in



Figure 2. Sequential and SMLP-based bytecode execution.

Figure 2a, where the target method of anINVOKE<X> instruction
executes before the instructions following the return point. Specu-
lative SMLP-based execution is shown in Figure 2b. Upon reach-
ing a method callsite, the non-speculative parent threadT1 forks
a speculative child threadT2. If the method is non-void, a pre-
dicted return value is pushed onT2’s operand stack.T2 then con-
tinues past the return point in parallel with the execution of the
method body, buffering all reads from main memory. WhenT1 re-
turns from the call, it joinsT2. If the actual return value matches the
predicted return value, and there are no dependence violations be-
tween buffered reads and post-invoke values,T2’s buffered writes
are committed and non-speculative execution jumps ahead to where
T2 left off, yielding speedup. If thereare dependence violations or
the prediction is incorrect,T2 is simply aborted.

Figure 3. Multithreaded mode.

Many components are needed for SMLP to work properly in
a JVM, the full details of which are given in [28]. A high level
view of the multithreaded mode that brings together all of these
components is shown in Figure 3. Adependence bufferprotects
main memory from out-of-order and possibly invalid speculative
operations, and some form ofstack bufferingis necessary to give

child threads a protected execution context. NewSPMT FORK and
SPMT JOIN instructions surround every callsite; the fork instruction
inserts child threads into a priority queue, which are dequeued and
executed on separate processors by SpMThelper threads, and the
join instruction stops and validates children, either committing or
aborting them. While executing speculative code, we needmodified
bytecode instructionsto protect against unsafe control flow; for
example,GETFIELD is modified to read from a dependence buffer,
andMONITOREXIT causes speculation to come to an abrupt halt,
although it does not automatically force abortion. Finally, we need
to make sure speculation interacts safely with exception handling,
garbage collection, native method execution, synchronization, class
loading, and the new Java memory model [23].

We make several different optimisations to these components in
SableSpMT, some of the more notable ones being aggressive return
value prediction [26, 27], improvements to the dependence buffer,
allowing for speculative threads to enter and exit methods, better
enqueuing algorithms, speculative object allocation, and reduction
of interprocessor memory traffic. Most of the techniques we have
encountered in the literature can also be implemented within our
framework; in Section 4 we illustrate typical data gathering and
analysis using our work on return value prediction and the specula-
tive engine itself as examples.

3.2 Single-threaded Mode

Figure 4. Single-threaded simulation mode.

One of the unique features of our design is a single-threaded
simulation mode that mimics the process of speculative execution
in a single thread. Early on in the development of SableSpMT, we
found ourselves wanting some way to test the components we had
written in the context of an executing JVM, without introducing the
complexity of actual concurrency into our debugging process. The
resulting deterministic design is shown in Figure 4. In this mode
a single thread of Java execution follows the complete speculative
control flow. Upon reaching a fork point, the method call is skipped,
and the ensuing code is executed speculatively; when a terminat-
ing condition is reached, the same thread jumps back to the non-
speculative execution of the method call, and upon returning from
the call, it attempts to join with its own speculative result.



There are three primary advantages to having this single-
threaded simulation mode. First, it allows for testing of SpMT
components in an incomplete system, most importantly one with-
out multiprocessor support. It does so by providing state saving
and restoral, and interleaving the execution of speculative and non-
speculative code. Second, by not running multiple threads it pre-
vents race conditions, deadlocks, and memory traffic from inter-
fering with development, helping to minimize the search space
when faced with debugging. We were able to alternate coding with
designing support for SpMT according to the full JVM Specifica-
tion [22], and only after we had completed a requirements analysis
in this manner did we develop the multithreaded execution mode.
Third, it means we have the foundations for Java checkpointing
and rollback within a virtual machine. This has utility for Java
outside of SpMT, in traditional debugging [7], database transac-
tions (e.g. injava.sql.Connection()), formal verification [10],
fault-tolerance [12], and software transactional memory [15].

3.3 System Configuration

System properties specified on the command line are used to se-
lect different SpMT algorithms and data structures, which facil-
itates experimental analysis by eliminating the need for multiple
VM builds. As changes to SableSpMT are introduced, rather than
outright replace old control flow or adjust constants to optimal val-
ues, system properties are used wherever possible, and thus it is
straightforward to make controlled comparisons and revert to old
configurations. In finalized builds, these properties can be automat-
ically converted to constants via preprocessor directives and a sin-
gle Autoconfconfigure option, so that the added runtime over-
head of conditionals testing them will be optimised away. At the
time of writing, there are over 50 such properties, controlling ev-
erything from maximum RVP hashtable sizes to the number of ex-
ecuting SpMT helper threads, and it is easy to introduce new ones.
The only other significant compile-timeconfigure options in Sa-
bleSpMT allow the user to 1) enable SpMT in the first place, 2)
enable debugging and assertions, and 3) enable statistics gathering
for post-execution analysis.

3.4 Logging and Trace Generation

T1:P16384 - @0x2a976bad68 ALOAD_0
T1:P16384 - @0x2a976bad70 SPMT_FORK
T1:P16384 - ENQUEUE SPMT CHILD @0x5ed850
T1:P16384 - @0x2a976bad88 INVOKESPECIAL
T1:P49156 S DEQUEUE SPMT CHILD @0x5ed850
T1:P49156 S START SPMT
T1:P16384 - entering java/lang/Object.<init>()V
T1:P49156 S @0x2a976baf38 ALOAD_0
T1:P16384 - @0x2a976baf90 RETURN
T1:P49156 S @0x2a976baf40 ALOAD_1
T1:P16384 - exiting java/lang/Object.<init>()V
T1:P16384 - @0x2a976badb0 SPMT_JOIN
T1:P49156 S @0x2a976baf48 SPMT_PUTFIELD
T1:P16384 - signalling spmt thread halt @0x5ed850
T1:P49156 S STOP SPMT - SIGNALLED_BY_PARENT
T1:P16384 - SPMT PASSED @0x5ed850

Figure 5. SpMT execution trace.

Finally, SableSpMT provides a comprehensive logging and
trace generation system that can present Java SpMT events by
themselves, or interleave them with existing execution traces of
class loading, method invocation, garbage collection, synchroniza-
tion, and bytecode execution. An example trace with interleaved
method invocation, bytecode, and SpMT events is shown in Fig-
ure 5. These traces are primarily useful for debugging purposes

when implementing new techniques. SableVM supports only the
JVMDI and JDWP for integration with debuggers at this time,
and although we do not provide trace compression or an imple-
mentation and extension of the related JVMPI or JVMTI profiling
interfaces, these facilities could be incorporated to permit detailed
analysis of SpMT execution traces, using a dynamic metrics tool
such as *J [9].

4. Experimental Analysis
In this section we describe our return value prediction framework,
the integration of static analyses into SableSpMT, and various kinds
of dynamic analysis available to the researcher. We provide exper-
imental results to demonstrate how these analyses give insight into
the runtime behaviour of individual benchmarks, components of the
framework, and the framework as a whole, and how they suggest
interesting areas for future investigation and optimisation research.

4.1 Return Value Prediction

Method call return values are often used relatively soon after a
method call. Return value prediction (RVP) allows a speculating
thread to proceed further without failing due to such a dependency
by heuristically predicting the return value. It was previously shown
that accurate RVP is critical for Java SMLP performance [16],
and on this basis we set out to explore highly accurate RVP in
SableSpMT [27]. We implemented several well-known predictors,
including a context predictor that uses a per-callsite hashed history
of the last five return values, and a hybrid predictor that selects
the best of several sub-predictors at runtime. We also introduced a
powerful new memoization predictor that associates return values
with hashed method arguments. When existing predictors were
combined in a hybrid we achieved an average accuracy of 72%
over SPECjvm98, and the inclusion of the memoization predictor
increased this average to 81%. Exploiting VM level knowledge
about the width of primitive types allowed us to reduce hashtable
memory by 35%.

Full details on the analyses performed in our initial RVP study
are available in [27]; two of the neater results obtained were how
the context and memoization predictors exhibited dramatically dif-
ferent accuracy depending on benchmark, and how we were able
to identify a small percentage of callsites as being responsible for
either the production or consumption of highly variable data, ac-
cording to final context or memoization predictor sizes respectively.
The RVP system is now a key part of SableSpMT; it is easily ex-
tendable to support new types of return value predictors, and could
even be used for general purpose load value prediction by specula-
tive threads.

4.2 Static Analysis

The Soot bytecode compiler framework [38] is a convenient tool
for ahead-of-time static analysis and transformation in the absence
of the runtime static analysis support typically found in JIT com-
pilers. In Figure 6 we show the use of Soot to transform the base
input Java classfiles in order to insertSPMT FORK andSPMT JOIN
instructions. The same process can also be used to append static
analysis information as classfile attributes [29], which are then in-
terpreted by the SpMT engine.

We use side effect and callgraph information derived from
Soot’s points-to analysis in two compiler analyses for improved
RVP, and study the effect on runtime predictor behaviour using our
framework [26]. The first analysis is areturn value useanalysis
(RVU), that determines how return values are used after return-
ing from a method call. We find statically that an average 10%
of non-void callsites generateunconsumedreturn values, and 21%
of callsites generateinaccuratereturn values, which we define as



Figure 6. Static analysis integration.

those that are used only inside boolean or branch expressions. Ac-
tual runtime measurements show less improvement: only 3% of
dynamic method invocations return unconsumed values, whereas
14% return inaccurate values. This analysis does reduce hashtable
collisions, saving 3% of predictor memory and increasing accuracy
by up to 7%.

The second analysis computesparameter dependence(PD), a
form of slicing that determines which parameters affect the return
value. Statically, we observe that 25% of consumed callsites with
one or more parameters have zero parameter dependences, and
23% have partial dependences, such that the return value does not
depend on one or more parameters. At runtime, however, we find
that 7% of dynamic method invocations have zero dependences
and only 3% have partial dependences. The results of this analysis
are exploited to eliminate inputs to the memoization predictor,
and the accuracy of memoization alone forjack, javac, and
jess increases by up to 13%, with overall memory requirements
being reduced by a further 2%. Although these analyses yield only
incremental improvements, at least in their current form, they do
demonstrate how new static analyses can be easily incorporated
into SableSpMT and both validated and employed at runtime.

4.3 Dynamic Analysis

We now describe dynamic analysis of the SableSpMT engine, an
extension of the SableVM 1.1.9 switch interpreter. All experiments
were performed on a 1.8 GHz 4-way SMP AMD Opteron machine
running Linux 2.6.7, using native 64-bit binaries and running the
SPECjvm98 benchmark suite [33] at size 100 (S100). Children
were forked at every callsite reached non-speculatively, all free pro-
cessors were occupied by speculative helper threads, and an opti-
mal return value prediction configuration was used, unless other-
wise stated.

4.3.1 Speculation Overhead

The overhead of thread operations in any SpMT system is a major
concern [39], and this is especially true in a pure software environ-
ment. We introduced profiling support into our framework in order
to provide a complete breakdown of SpMT overhead incurred by
both parent and speculative child threads; refer to Tables 1 and 2
respectively. As shown in Figure 7, parent threads suffer overhead
when forking, enqueuing, joining, and validating child threads, and
child threads suffer on startup and when they reach some stopping
condition.

Figure 7. Speculation overhead.Both non-speculative parent and spec-
ulative child threads suffer wasted cycles due to overhead at fork at join
points.

parent executioncomp db jack javac jess mpeg mtrt rt

USEFUL WORK 39% 24% 29% 30% 21% 59% 49% 58%
initialize child 2% 5% 3% 4% 4% 2% 1% 2%
enqueue child 4% 10% 10% 9% 7% 3% 2% 2%

TOTAL FORK 6% 15% 13% 13% 11% 5% 3% 4%
update predictor 7% 13% 12% 11% 12% 6% 7% 7%

delete child 5% 5% 5% 4% 5% 2% 2% 2%
signal and wait 15% 14% 11% 11% 19% 8% 26% 11%

validate prediction 4% 4% 4% 5% 7% 3% 2% 3%
validate buffer 4% 6% 6% 5% 5% 3% 1% 2%
commit child 5% 5% 7% 6% 6% 3% 2% 3%

abort child <1% <1% <1% <1% <1% <1% <1% <1%
clean up child <1% <1% <1% <1% <1% <1% <1% <1%

profiling 11% 10% 10% 12% 11% 7% 5% 6%
TOTAL JOIN 53% 59% 57% 56% 67% 34% 47% 36%
PROFILING 2% 2% 1% 1% 1% 2% 1% 2%

Table 1. Non-speculative thread overhead breakdown.Parent execution
consists of useful work, fork overhead, and join overhead, and also the
profiling overhead inherent in delineating these three broad tasks. Profiling
in the join process includes the cost of gathering overhead info for the other
eight sub-tasks, and of updating various SpMT statistics.

helper executioncomp db jack javac jess mpeg mtrt rt

IDLE 86% 82% 78% 78% 78% 55% 53% 71%
INITIALIZE CHILD 3% 4% 4% 4% 4% 2% 5% 4%

startup <1% <1% <1% <1% <1% <1% 1% <1%
query predictor 3% 5% 4% 4% 6% 5% 15% 8%

useful work 5% 6% 10% 10% 10% 34% 20% 13%
shutdown <1% <1% <1% <1% <1% <1% <1% <1%
profiling <1% <1% <1% <1% <1% 1% 2% 1%

EXECUTE CHILD 9% 12% 16% 16% 17% 41% 40% 24%
CLEAN UP CHILD <1% <1% <1% <1% <1% < 1% <1% <1%

PROFILING 1% 1% 1% 1% <1% 1% 1% <1%

Table 2. Speculative thread overhead breakdown.Helper SpMT threads
execute in a loop, idling for an opportunity to dequeue children from the
priority queue, and then initialize them, execute them, and clean them
up. The child execution process itself consists of startup,querying the
return value predictor, useful work (currently only bytecode execution),
and shutdown, induced by reaching some termination condition. There
is profiling overhead both when executing speculative code,and when
switching between tasks in the helper loop.

The striking result in Table 1 is that the parent spends so much
of its time forking and joining speculative threads that its opportu-
nities for making progress through normal Java bytecode and na-
tive code execution are reduced by up to 5-fold. We see that join-
ing threads is significantly more expensive than forking threads,
and that within the join process, predictor updates and waiting for
the speculative child to halt execution are the most costly sub-
categories. Other overhead sub-categories are not insignificant, and



in general, optimisations to any of them will improve performance.
The cost of profiling is high, but disappears in a final build.

In Table 2, we can make several observations about the execu-
tion of speculative children. First, the SpMT helper threads spend
the majority of their time being idle, waiting to dequeue tasks from
the priority queue, the implication being that the queue is often
empty. In these experiments, we allow for out-of-order spawn-
ing [31], in which multipleimmediatechildren are attached to a
non-speculative parent, one per Java stack frame. However, we do
not allow for speculative children to fork speculative children of
their own, which greatly limits the available parallelism. Once sup-
ported, we will use the same profiling system to analyse the effect
that forking several generations of children has on both parent and
child overhead, and hope to see a decrease in the number of idle
helper cycles.

We also note that when the helper threadsare running spec-
ulative children, they spend a majority of their time doing useful
work, which is bytecode execution only for speculative threads; in
fact, if idle times are ignored, more cycles are spent doing useful
work speculatively than non-speculatively. Outside of bytecode ex-
ecution, we see that predictor lookup is quite expensive, most likely
because of synchronization on dynamically expanding hashtables.

4.3.2 Parallelism Analysis

SableSpMT allows for investigation into runtime speculative par-
allelism at a fairly fine granularity. Speculative thread lengths are
recorded on a per-callsite basis and can be analysed in both the
single-threaded simulation (ST) and multithreaded (MT) modes.
Thread length information, particularly when associated with spe-
cific callsites, can be quite instructive as to the effect of SpMT op-
timisations on the system. In the ST mode, children run until either
an unsafe operation occurs or an arbitrary limit on sequence length
is reached. Using a sequence length limit of 1000 instructions, we
find that over all speculative children, 30% are successful and in
the 0–10 bytecode instructions range, with very few failures, and
15% are successful and run for 90+ instructions. On the other hand,
25% of all threads are accounted for by failures at 90+, which de-
rives from the correspondance between thread length and risk of
dependence violation or unsafe execution [28].

In the MT mode, child threads are also stopped when parents
return to fork points or pop frames in the exception handler, and
80% of speculative threads are accounted for by success in the 0–
10 range, with only 1–2% found in subsequent 10 instruction buck-
ets. As we reduce overhead costs, we expect children to run longer,
and for parallelism to increase. An interesting point to note is that in
hardware simulations, thread lengths of 40machineinstructions are
considered impressive [17], and although uncommon, some chil-
dren in our MT mode can run for hundreds ofbytecodeinstructions.

In Figure 8, we examinespeculative coverage, that is, the per-
centage of sequential program execution that occurs successfully in
parallel. Adding processors to the system has an effect on all bench-
marks, and with just 4 processors and no support for speculative
children of speculative children, the amount of parallel execution
is quite high, nearly 33% on average. Disabling the RVP frame-
work brings the average speculative coverage on four processors
from 33% to 19%, and thus we can confirm the result previously
obtained by Huet al., namely that RVP plays an important role in
SMLP.

4.3.3 Runtime Profiling

SableSpMT provides a facility for runtime profiling and feedback-
directed optimisation. This is often crucial to performance in run-
time systems; for example, JIT compilers typically depend on in-
terpreter profiling to determine hot execution paths [1]. We make
various measurements of the dynamic performance of our system
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Figure 8. Speculative coverage with and without RVP.The SPECjvm98
benchmarks are shown running with 2, 3, and 4 processors, and the dark
regions indicate the improvement as return value prediction is enabled.

available to optimisations by associating data with the fork and join
points surrounding invokes. Currently our optimisations are writ-
ten to exploit per-callsite information and thus context-sensitivity,
although the data does generally remain available on a per-target
basis.

In the context of return value prediction, our hybrid predic-
tor selects the best sub-predictor over the last 32 return values,
predictor hashtables expand according to load factors and perfor-
mance, and future work will address disabling sub-optimal pre-
dictors after a warmup period. In the context of choosing optimal
fork points, we assign child thread priorities or disable speculation
completely according to various dynamic profiling data, includ-
ing transitive method size, speculation success and failure, spec-
ulative sequence lengths, and premature child termination due to
over-frequent forks.

It is worth noting that we have not discovered an optimal heuris-
tic for forking new threads, although others have done work in this
field on simulated hardware [41]. As we disable speculation at un-
desirable fork points, our system exhibits significant speedup, but
the source of this speedup is both better opportunity for specula-
tion as well as reduced overhead. Given that significant reductions
in overhead are likely possible without reducing the number of dy-
namic forks, we defer this investigation until no further speedup
can be made on that front.

4.3.4 Execution Times

experiment comp db jack javac jess mpeg mtrt rt mean

SpMT must fail 1297s 931s 293s 641s 665s 669s 1017s 1530s 722s
SpMT may pass1224s 733s 211s 468s 405s 662s 559s 736s 539s
relative speedup1.06x 1.27x 1.39x 1.37x 1.64x 1.01x 1.82x 2.08x 1.34x

vanilla SableVM 368s 144s 43s 108s 77s 347s 55s 67s 120s
actual slowdown 3.33x 5.09x 4.91x 4.33x 5.26x 1.91x 10.16x10.99x4.49x

Table 3. Execution times and relative speedup.Geometric means do not
includeraytrace (rt), the single-threaded version ofmtrt.

Although the focus of this work is in demonstrating the utility
of SableSpMT as a research and analysis framework, measurable
speedup remains the ultimate goal of any speculative system, and
we provide overall performance data in Table 3. We compare our
multithreaded results against executions where SpMT failure is ar-
tificially forced at every join point, and are thus able to provide a
dynamic upper bound on speedup by factoring out overhead con-
cerns. The geometric mean speedup over SPECjvm98 of normal
speculation against a forced failure baseline is 1.34x. It is worth
emphasizing again that as speculative threads become able to fork
their own children, this upper bound is expected to expand. Al-
though this approach is not perfectly accurate for obvious reasons,



our results do lean towards being somewhat pessimistic in terms of
calculated speedup: Table 1 shows that SpMT failure is slightly less
expensive than success, and the fact that we compute a speedup of
only 1.01x formpegaudio despite a speculative coverage of 9%
derives from this.

Finally, we can compare the performance of our system against
SableVM’s vanilla switch interpreter upon which our framework is
based. From an analysis perspective, experiments run in acceptable
times, well suitable for normal, interactive usage. In general, these
execution times are within one order of magnitude of sequential
execution, and compare favourably with those of hardware simu-
lations providing the same level of functionality and architectural
detail, which can be within three orders of magnitude [20]. Clearly,
however, there are significant improvements required in order to
achieve actual speedup with our SMLP design. Our overhead anal-
ysis suggests a number of potential optimisations to reduce over-
head and increase the relative amounts of speculative execution.
Designing and implementing these further improvements is part of
our future work.

5. Conclusions & Future Work
Investigation of any sophisticated, general optimisation strategy re-
quires significant design, implementation and experimental flexi-
bility, as well as a common ground for investigation. Our system
provides a robust framework for Java SpMT exploration that sim-
plifies the implementation effort and allows for easy data gather-
ing and analysis. We include detailed collection of dynamic data,
but also allow for application of internal feedback at runtime. To
evaluate high level program information we include an interface
to Soot-generated Java attributes, and can thus incorporate static
information as well. We have demonstrated the use of all these fea-
tures through realistic optimisation and performance analyses.

Measurements of speculative sequence length, speculative cov-
erage, and relative speedup all indicate that significant parallelism
does exist in the sequential threads of Java programs, and our anal-
ysis of speculation overhead indicates where to focus optimisation
efforts. We are relatively optimistic as to improving the efficiency
of our initial SpMT implementation, and actual speedup is a goal
for the very near future.

Continued improvements to our framework will also provide
for new research opportunities. We have implemented method
level speculation, but other researchers have also had success with
loop level [32], lock level [24, 30], and arbitrary speculation [2]
strategies. These approaches have largely common internal re-
quirements, and side-by-side implementations within our frame-
work will make direct and meaningful comparisons of the various
techniques feasible, and furthermore enable their composition.

Although the speculation support components in SableSpMT
are fairly modular, they are integrated with SableVM and do not
always provide an abstract interface. As part of our future work,
we plan to move these components into a separate and language
independent runtime support library for SpMT,libspmt. Fea-
tures it will provide include control of SpMT helper threads, prior-
ity queueing, return value prediction, dependence buffering, stack
buffering, fork heuristics, and various dynamic analysis facilities.
Transforming multiple VMs and compilers to use this library will
help to define an appropriate API.

Significant further work is required, but providing JIT compiler
support for software SpMT is the next major challenge. The pres-
ence of a JIT offers both positive and negative opportunities for
SpMT analysis and execution, and will certainly be interesting to
examine. We are currently working on reusing elements of our de-
sign to support SpMT in IBM’s Testarossa JIT and J9 VM.
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