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Motivation

Thread level speculation (TLS) / speculative multithreading
(SpMT) is a promising dynamic parallelisation technique.

The TLS variant speculative method level parallelism (SMLP) has
good potential for both numeric and irregular Java programs.

Previous work has shown 2–4x speedup on 4–8 CPU systems.

On this basis, it seems reasonable to extend a Java virtual machine
to support speculation at the bytecode level.



Speculative Method Level Parallelism (SMLP)



Problems in Thread Level Speculation

Two kinds of TLS research, both face significant challenges.

Problems with hardware-dependent TLS approaches:
1 TLS hardware does not exist.
2 Hardware simulators are needed to run experiments.
3 Accurate simulation is extremely slow.
4 All hardware studies make simplifying abstractions.

Problems with software-only TLS approaches:
1 Thread overheads are a much greater barrier to speedup.
2 Correct language semantics are not trivially ensured.
3 Generic software studies cannot make simplifying abstractions.
4 Need software versions of hardware circuits, e.g. value predictors

and dependence buffers.



Goals

Our ultimate goal is to achieve speedup of Java programs using a
software-only JVM interpreter that supports TLS running on
commodity, off-the-shelf multiprocessor hardware.

Specific sub-goals:
1 Determine correct semantics, implement them, characterise impact

of language features and runtime support components: this paper.
2 Build a suitable analysis framework, characterise system

performance and overhead: SableSpMT: A Software Framework for

Analysing Speculative Multithreading in Java, PASTE’05.
3 Optimise SableSpMT and achieve speedup: future work.



Contributions

Specific contributions:

1 Complete design for TLS at the level of Java bytecode.

2 Exposition of high level safety requirements:

object allocation, garbage collection, native methods, exception
handling, synchronization, and the new Java Memory Model.

3 Analysis of the cost of safety considerations and benefit of runtime
support components, using the SableSpMT analysis framework.
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Java TLS System Overview



Method Preparation

Need special method bodies for speculative execution.

Insert fork and join bytecodes around every invoke.

Duplicate normal methods, replace unsafe bytecodes with
speculative versions. Instructions might:

Load classes dynamically
Read from and write to main memory
Lock and unlock objects
Enter and exit methods
Allocate objects
Throw exceptions
Require a memory barrier

25% of Java’s instruction set needs non-trivial changes.

Speculation terminates on unsafe operations.



Method Preparation



Speculative Thread Execution

Threads are forked at every callsite.

Out-of-order forking is permitted, but not nested speculation.

Forking heuristics are implemented, but not currently used.

Speculative execution depends on runtime support components.

Threads are joined when parents return to callsites.



Priority Queueing

Children enqueued at fork points on O(1) priority queue.

Priority = min(l × r/1000, 10)

l : historical thread length at callsite in bytecodes
r : speculation success rate

Queue supports enqueue, dequeue, and delete.

Helper OS threads run on separate processors, and compete for
TATAS spinlock on the queue.

Helper threads only run if processors are free.



Return Value Prediction

Return values are consumed by method continuations early on.

Must abort children with unsafe return values on the stack.

Accurate return value prediction benefits Java SMLP.

Provide context, memoization, and hybrid predictors.

Exploit static analyses to reduce memory and increase accuracy.

Previously explored RVP in depth; now a system component.



Dependence Buffering

TLS designs usually buffer speculative memory accesses in a
cache-like structure.

Here we buffer heap/static reads/writes in a software dependence
buffer, using open addressing hashtables.

Upon joining a thread, validate all reads and then commit writes.

Instructions touching only the stack are buffered differently.



Stack Buffering



Stack Buffering



Stack Buffering



Stack Buffering



Stack Buffering



Stack Buffering



Stack Buffering



Stack Buffering



Object Allocation

Allocate objects and arrays speculatively:

Compete for global or thread local heap mutexes.
Instead of triggering GC or an OutOfMemoryError, just stop.
No buffering needed for speculative objects.
Increased collector pressure, but negligible overall impact.
Cannot allocate objects with non-trivial finalizers.
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Bytecode Verification

Speculative execution cannot depend on verification guarantees:

Object references on the stack might be junk pointers

Check reference is within heap bounds.
Check object header is valid.

Virtual method calls might enter the wrong target

Check target type is assignable to receiver type.
Check target stack effect matches signature.

Subroutines might be split by speculation

Non-speculative JSR, speculative RET

Speculative JSR, non-speculative RET

RET needs to jump back to the right place.



Garbage Collection

Simple semi-space stop-the-world copying collector

Children are invisible to the collector, and can continue execution
during GC:

Ignore stop-the-world requests
Never trigger collection

Child threads started before GC are invalidated after GC.

Might consider pinning objects, or updating buffered references.



Native Methods

Java allows for execution of non-Java, i.e. native code.

Native methods can be found in:

Class libraries
Application code
VM-specific method implementations

Native methods are needed for (amongst other things):

Thread management
Timing
All I/O operations

Speculatively, unsafe to enter native code.

Non-speculatively, always safe to enter native code, even for
parents with speculative children.



Exceptions

Speculatively, exceptions simply force termination because:
1 Writing a speculative exception handler is tricky.
2 Exceptions are rarely encountered.
3 Speculative exceptions are likely to be incorrect.

Non-speculatively, exceptions can be thrown and caught.

If uncaught, children are aborted one-by-one as stack frames are
popped in the VM exception handler loop.

Can safely fork child threads in exception handler bytecode.



Synchronization

Java allows for per-method and per-object synchronization.

Safe non-speculatively, unsafe speculatively

However, we can fork child threads once inside a critical section;
only entering and exiting is prohibited.
In principle, this encourages coarse-grained locking.

Speculative locking is part of our future work.



Java Memory Model

The new Java Memory Model (JSR-133) gives specific rules about
reordering, and memory barrier requirements.

Speculation might reorder reads and writes during thread validation
and committal.

Unsafe operations we considered:

Locking and unlocking
Volatile loads and stores
Final stores in constructors
Speculation past a constructor with a non-trivial finalizer
java.lang.Thread.*

Conservatively, terminate speculation on these conditions.

In the future, could record barriers in dependence buffers.
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Child Termination Reasons



Child Success and Failure



Importance of TLS Support Components
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Conclusions

We provide a thorough and complete design for Java SMLP.

Able to handle SPECjvm98 at S100 without simplifying abstractions.

Language and software VM contexts affect TLS designs:

Non-trivial safety considerations for Java
Most have minimal impact on performance.

However, synchronization can impede speculative progress

significantly, as can JMM requirements.

Results also show an appropriate set of runtime support components
is critical, and suggest relative importance.



Future Work

Immediate performance optimisations:

Reduce previously characterised overhead
Investigate forking heuristics
Allow for nested speculation
Enable speculative locking
Record memory barriers in dependence buffers
Develop general load value prediction

Higher level static analyses and dynamic optimisations

Implementation in IBM’s Testarossa JIT and J9 VM
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