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Abstract. Thread level speculation (TLS) has shown great promise as a strategy
for fine to medium grain automatic parallelisation, and in a hardware cotetetxt
niques to ensure correct TLS behaviour are now well establishetv&efand
virtual machine TLS designs, however, require adherence to highleguage
semantics, and this can impose many additional constraints on TLS behaso
well as open up new opportunities to exploit language-specific informalien
present a detailed design for a Java-specific, software TLS systéropbetes
at the bytecode level, and fully addresses the problems and requiremgosed
by the Java language and VM environment. Using SableSpMT, ourrobs€hS
framework, we provide experimental data on the corresponding eostdene-
fits; we find that exceptions, GC, and dynamic class loading have onlyad sm
impact, but that concurrency, native methods, and memory modekcas do play
an important role, as does an appropriate, language-specific runtiBisdpport
system. Full consideration of language and execution semantics is daticat-
rect and efficient execution of high level TLS designs, and our werk lprovides

a baseline for future Java or Java virtual machine implementations.

1 Introduction

Thread level speculation (TLS), also known as speculatiuttithreading (SpMT), is a

technique for automatic program parallelisation that feentinvestigated from a hard-
ware perspective for several years, and current systemsagable of showing good
speedups in simulation based studies [1, 2]. As a hardwal#gm, the issues of ensuring
correctness under speculative execution have been welkdefand different rollback or
synchronization approaches are sufficient to guarantegalbuerrect program behaviour.
Software approaches to TLS, however, need to take into attioe full source language
semantics and behaviour to ensure correct and efficientiggacand in general this is
not trivially ensured by low level hardware mechanisms.

In this paper we provide a detailed description of the reanents and performance
impact of various high level aspects of Java TLS executioa.cdhsider the full Java
semantics, including all bytecode instructions, garbagdjection (GC), synchronization,
exceptions, native methods, dynamic class loading, andaielJava memory model [3].
These requirements are often dismissed or ignored in egidtiva TLS work, but in fact
are crucial to correct execution and can significantly affecformance.

Language and VM level speculation also produce design @int due to efficiency
concerns; for instance, Java programs tend to have fredpgam accesses, object allo-
cations, and method calls. Our runtime TLS support systeraraodates this behaviour,
and we evaluate the relative importance of dependencermgfestack buffering, return
value prediction, speculative allocation, and priorityegaing.

General purpose software and intermediate, VM level implatiations of TLS are
difficult goals, but have significant potential advantagesluding the use of high level
program information and the ability to run on existing muiticessor hardware. Rather
than describe a series of optimisations to eliminate pteshocharacterized thread over-
heads [4], our work here is intended to provide a thorougla JE&MS design and an
understanding of the requirements and relative impactgif fével language semantics.



1.1 Contributions
We make the following specific contributions:

e We provide a complete design for TLS at the level of Java lmgec We modify
existing instructions for speculative safety and intraonly two new bytecodes,
SPMTFORKand SPMTJOIN. We also present software implementations of various
runtime support components suitable for the Java virtuahim& environment.

e We provide a detailed exposition of how high level Java lagguconstructs and se-
mantics affect TLS design. This includes object allocatgarbage collection, native
methods, exceptions, synchronization, and the new Javeoryanodel.

¢ We analyse the impact of high level safety consideratiomstha benefits derived
from our runtime support components using an implememtatiothis design, the
SableSpMT analysis framework [4].

In the following section we present related work on TLS anehJdesigns in that
context. Then we describe our basic TLS threading model aodide an overview of
SableSpMT in Section 3. Details of our design for Java TLSdaseribed in Section 4,
and intricacies of the Java language are considered indBegtiExperimental analyses
of both the impact of safety constraints and mechanismsthgiort Java TLS execution
are given in Section 6. Finally, we conclude and discusséutvork in Section 7.

2 Related Work

Thread level speculation has been the subject of hardwagstigations for over a decade,
and a variety of general purpose machines have been proposedimulated [5-7].
These have also been tailored to specific speculation gieatéoop levelspeculation
focusses on loop iterations [8], whereasthod levespeculation ospeculative method
level parallelism(SMLP) [9] speculates over method calls. SMLP has been ififht
as particularly appropriate for Java, given the relativeiyh density of method calls in
Java programs, and simulation studies have shown quite gutedtial speedup [9]. The
impact of frequent method calls was further explored andvigéd by Huet al.in their
study of return value prediction [10].

Most current hardware designs could in fact be classifiedyasic hardware/soft-
ware approaches since they rely to various extents on saftassistance. Most com-
monly, compiler or runtime processing is required to heleniify threads and insert
appropriate TLS directives for the hardware [11, 12]. Jrpakes further use of several
code optimisations that reduce variable dependenciesuifit] other recent designs such
as STAMPede [2] and Mitosis [13] are based to a large degremoperative compiler
and software help.

Speculative hardware, even with software support, largbljiates the considera-
tion of high level language semantics: correct machine a@eution implies correct
program behaviour. Pure software architectures based oifrORTRAN also have rela-
tively straightforward mappings to speculative executenmd thus systems such as Soft-
spec [14], thread pipelining [15], and others [16, 17] domeojuire a deep consideration
of language semantics.

For Java stronger guarantees must be provided. In the ¢aftéesigning JVM roll-
back for debugging purposes some similar semantic isswedidegn considered [18], but
much less so for Java TLS. As part of their software threattjgaring strategy, Chen
and Olukotun do discuss Java exceptions, GC, and synchtanizrequirements [1].
However, they do not consider class loading, native methmrdsopying GC behaviour,
and nor does their handling of speculative synchronizdijosimply ignoring it correctly
enforce Java semantics. Pure Java source studies, suehpastihlly or fully hand-done
examinations by Yoshizoet al. [19] and Kazi and Lilja [20], focus on small execution



traces in a limited environment or rely on human input retpely. In the former case
the environment is too constrained for Java language igsuasse. In the latter, excep-
tions, polymorphism, and GC are discussed, though not sed)yand assumptions about
ahead-of-time whole program availability are contrarydeals dynamic linking model.
These are nad priori clearly insignificant differences; the effect of dynamiass loading
in Java, for instance, has spawned a large number of naahHojgtimisation considera-
tions [21], and despite Kazi and Lilja’s dismissal of GC agmportant for applications
with small footprints, many Java applicatiods have large memory requirements [22,
23]. Differences and omissions such as these make it diffioucdompare Java studies,
and leave important practical implementation questiorenppur work here is meant to
help rectify this situation.

3 Background and System Overview

In our design for Java TLS we emplapeculative method level parallelil@MLP), as
depicted in Figure 1. SMLP uses method callsites as forkipoihe parent thread enters
the method body, and the child thread begins execution dirtanstruction past the
callsite. When the parent returns from the call, then if theeno violations the child
thread is committed and non-speculative execution coasimthere speculation stopped,
otherwise the parent re-executes the child’s body. SMLPmctodates Java’s dense
object-oriented method invocation structure, and hasipuely been demonstrated as a
useful TLS paradigm for the language [1, 10].

Tl Tl

INVOKE<X> INVOKE<X>
fork T2

X>RETURN X>RETURN D pre-invoke instructions
<X>| <X>|
(b) —Join

method body
. post-invoke instructions
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Fig. 1. (a) Sequential execution of Java bytecodlke target method of ailNVOKE<X>instruc-
tion executes before the instructions following the return pointS{culative execution of Java
bytecode under speculative method level parallelism (SMUEYn reaching a method callsite, the
non-speculativgparentthreadT1 forks a speculativehild threadT2. If the method is non-void,
a predicted return value is pushed ©2's Java operand stack2 then continues past the return
pointin parallel with the execution of the method body, buffering main mgraccesses. WheFi
returns from the call, it join¥2. If the actual return value matches the predicted return value, and
there are no dependence violations between buffered reads andyms-valuesT2'’s buffered
writes are committed and non-speculative execution jumps ahead to Whdedt off, yielding
speedup. If therare dependence violations or the prediction is incorr&etjs simply aborted.

An overview of the SableSpMT execution environment and Jaanalysis frame-
work [4] is shown in Figure 2. SableSpMT is an extension of‘gwitch” bytecode in-
terpreter in SableVM [24], a Free / open source software Jiaitgl machine. SableVM
adheres to the JVM Specification [25], and is capable of nmgiclipse and other large,
complex programs. Static analysis with Soot [26] occuradhaf-time, and SableSpMT
uses the results to prepare special speculaie arraysfor Java methods from their
non-speculative equivalents in SableVM; code arrays anergged from Java bytecode,
and are contiguous sequences of word-sized instructiahgatruction operands repre-
senting method bodies. SableSpMT forks and joins childailseat runtime, and these
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Fig. 2. The SableSpMT thread level speculation execution environi@abteSpMT is an exten-
sion of SableVM. Soot is used to transform, analyse, and attach attrioutdass files in an
ahead-of-time step. SableVM reads in these classes during class lopdisimng attributes and
preparing method bodies. Sequential execution depends only theoroukstive code arrays, and
interacts with normal JVM support components. Speculative execweprires preparation of spe-
cial speculative code arrays, and depends on additional TLS suppoponents. SableSpMT’s
single-threaded execution mode shares processors with non-gpecebecution, whereas the
multithreaded mode splits single non-speculative threads across multyskesgors.

depend on the speculative code arrays for safe out-of-esdsaution. Various TLS run-
time support facilities are needed, including priority gemg, return value prediction,
dependence buffering, and stack buffering. SableSpMT iatevacts with SableVM'’s
runtime support components, including a semi-space cgpyatbage collector, native
method execution, exception handling, synchronizatiow, the Java memory model.
Outside of thread forking and joining, speculation hasigégk impact on and is largely
invisible to normal multithreaded VM execution, with= max(n — p,0) speculative
threads running on free processors, wheris the number of processors apds the
number of non-sleeping non-speculative parent Java thread

4 Java TLS Design

We now describe the main Java TLS structures in our desigiSKbrP at the virtual
machine level. These can be broadly classified into spéegilatethod preparation com-
ponents, speculative runtime support components, andilsige execution modes.

4.1 Speculative Method Preparation

The preparation of method bodies for TLS can be broken intersésteps. Static analy-
sis takes place and classfile attributes are parsed, forfjoangoints are inserted, byte-
code instructions are modified, and parallel speculatiée @rays are generated. Some
of these steps take place ahead of time as a matter of tetknivgenience, and may
overlap with each other.

The final stages of preparation occur when a method is inviwdbe first time. Once
primed for speculation, a child thread can be forked at amigitmwithin the method
body. Furthermore, speculation can continue across meibaddaries as long as the
methods being invoked or returned to have been similarlganed.

Static Analysis and Attribute Parsing An advantage to language level TLS is the abil-
ity to use high level program information. In our case we mpooate information from
the Soot compiler analysis framework [26], and include twalgses for improved re-
turn value prediction [27]. The first isgarameter dependen@malysis that determines
which method parameters will affect the return value; thisised to reduce the mem-
ory requirements and improve the accuracy of a memoizatiedigtor. The second is a



return value usanalysis that detects return values that are unconsumegupeaaonly
inside boolean and branch expressions; this is used to celastraints on predictor ac-
curacy. The results are encoded using Soot’s attributergtoe framework [28], and
parsed by SableVM during class loading. During method pedjzm, the analysis data
are associated with callsites for use by the return valudigiien component.

Fork and Join Insertion The SableSpMT TLS engine needs the ability to fork and join
child threads. We introduce ne8PMTFORKand SPMTJOIN instructions that provide
this functionality. Under SMLP threads are forked and jdimmmediately before and
after method invocations, and so these instructions aextad around callsites, repre-
sented by théNVOKE<X>instructions.

Soot is used in another AOT pass to perform the insertion. Mtepcalls to dummy
static voidSpmt.fork() andSpmt.join() around every callsite, and during runtime
method preparation these are replaced with the appro@irEFORKandSPMTJOIN
instructions. This approach has several advantages:tfassformed classfiles will run
in the absence of TLS support, the dummy methods being ltyividined; second, in-
tegration with a static analysis to determine good fork {woin facilitated; and third,
bytecode offsets are automatically adjusted.

Table 1. Java bytecode instructions modified to support speculafi@eh instruction is marked
according to its behaviours that require special attention during speeuttecution. These be-
haviours are marked “once”, “maybe”, or “yes” according to theatyabilities of occurring within

the instruction. “Forces stop” indicates whether the instruction may forogration of a spec-

ulative child thread, but does not necessarily imply abortion and faiNio¢.shown are branch
instructions; these are trivially fixed to support jumping to the right

instruction reads| writes| locks | unlocks| allocateg throws enters loads | orders | forces
global| global| object| object| object |exceptior native codeclass(es)memory| stop
GETFIELD yes maybe once | maybe |maybe
GETSTATIC yes once | maybe |maybe
<X>ALOAD yes maybe maybe|
PUTFIELD yes maybe once | maybe |maybe
PUTSTATIC yes once | maybe |maybe
<X>ASTORE yes maybe maybe|
(I|L)(DIVIREM) maybe maybe
ARRAYLENGTH maybe maybe|
CHECKCAST maybe once maybe|
ATHROW yes yes
INSTANCEOF once maybe|
RET maybe|
MONITORENTER| yes | yes | yes maybe yes yes
MONITOREXIT yes | yes yes maybe yes yes
INVOKE<X> maybe maybe maybe maybe maybe once | maybe|maybe
<X>RETURN | maybe maybe maybe maybe maybe once | maybe|maybe
NEW yes yes maybe once maybe
NEWARRAY yes yes maybe maybe|
ANEWARRAY yes yes maybe once maybe
MULTIANEWARRﬁ{[Y yes yes maybe once maybe
LDCSTRING | once once

Bytecode Instruction Modification The majority of Java’'s 201 bytecode instructions
can be used verbatim for speculative execution; howevaghly 25% need modifica-
tion to protect against potentially dangerous behavicassshown in Table 1. If these
instructions were modified in place, the overhead of extragime conditionals would
impact on the speed of non-speculative execution. Insteadjfication takes place in
a duplicate copy of the code array created especially forigptive execution. Indeed,
the only significant change to non-speculative bytecodkeeasrtsertion of fork and join
points. Problematic operations include:



e Global memory accesfReads from and writes to main memory require buffering,
and so the<X>A(LOAD|STORE) and(GET|PUT)(FIELD|STATIC) instructions are
modified to read and write their data using a dependencerbafealescribed in Sec-
tion 4.2. If final or volatile field access flags are set, thesgrictions may require a
memory barrier, as described in Section 5, in which caseudgien must also stop.

e Exceptionsin unsafe situations, many instructions must throw exoaptto ensure
the safety of bytecode execution [25], includi(fy.)(DIV|REM) that throw Ar-
ithmeticExceptions upon division by zero, and others thedw NullPointerExcep-
tions, ArraylndexOutOfBoundsExceptions, and ClassCasftions. Application or
library code may also throw explicit exceptions uskitHROWN both cases, specu-
lation rolls back to the beginning of the instruction andostonmediately; however,
the decision to abort or commit is deferred until the pareirtg the child. Excep-
tions must also be handled safely if thrown by non-specidagtiarent threads with
speculative children, as discussed in Section 5.

e Detecting object reference3he INSTANCEOFinstruction computes type assigna-
bility between a pre-specified class and an object referendbe stack. Normally,
bytecode verification promises that the stack value is adveayalid reference to the
start of an object instance on the heap, but speculativeugeccannot depend on
this guarantee. Accordingly, speculation must stop if #Hfenence does not lie within
heap bounds, or if it does not point to an object header; otlyrgve insert a magic
word into all object headers, although a bitmap of heap warddject headers would
be more accurate and space-efficient.

e SubroutinesJSR (jump to subroutine) is always safe to execute because et tad-
dress is hardcoded into the code array. However, the retlahreas used by its partner
RETIs read from a local variable, and must point to a valid ingian. Furthermore,
for a given subroutine, if th&SR occurs speculatively and tfRETnon-speculatively,
or vice versa, the return address must be adjusted to us@gttieode array. Thus a
modifiednon-speculativRETis also needed.

e SynchronizationThe INVOKE<X> and <X>RETURNnstructions may lock and un-
lock object monitors, anMONITOR(ENTER|EXIT) will always lock or unlock ob-
ject monitors; they furthermore require memory barrierd are strongly ordering.
These instructions are also marked as reading from anchgiiiti global variables,
as lockwords are stored in object headers. Speculativénig@nd unlocking is not
currently supported, and always forces children to stop.

e Method entry.Speculatively,INVOKE<X> are prevented from entering unprepared
methods and triggering class loading and method prepardtiarthermore, at non-
static callsites, the receiver is checked to be a valid ¢hjestance, the target is
checked to have the right stack effect, and the type of tlgetarclass is checked
for assignability to the receiver’s type. Invokes are alsavpnted from entering na-
tive code or attempting to execute abstract methods.

o Method exit.After the synchronization check, thex>=RETURNnNstructions require
three additional safety operations: 1) potential buffgiaf the non-speculative stack
frame from the parent thread, as described in Section 4\@&r#fying that the caller is
not executing @reparation sequencea special group of instructions used in SableVM
to replace slow instructions with faster versions [24]; 8hdnsuring that speculation
does not leave bytecode execution entirely, which wouldmdeaa thread death, VM
death, or a return to native code.

e Object allocation Barring an exception being thrown or GC being triggered NBEW
and ((MULTI|)A|)NEWARRAY instructions are safe to execute. THRC STRING
specialisation of DCallocates a constamstring object upon its first execution, the



address of which is patched into both non-speculative ardwsative code arrays,
and forces speculation to stop only once. Allocation and @&&cussed in greater
detail in Section 5.

To the best of our knowledge, Table 1 is comprehensive. Thaed modifications
are enough to support TLS for the SPECjvm98 benchmarks andossistent with our
understanding of the JVM Specification [25].

‘kung.Foo.bar()V ‘ ‘ ‘code‘spmt_code‘ ‘
GETFIELD SPMT_GETFIELD
ALOAD 1 ALOAD 1
SPMT_FORK SPMT_FORK
INVOKEVIRTUAL SPMT_INVOKEVIRTUAL
JOIN SPMT_JOIN
IFNULL IFNULL

AASTORE SPMT_AASTORE
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Fig. 3. Parallel code arrays(a) non-speculative code array prepared for metiarq) ; (b) spec-
ulative version of the same code array with modified instructions.

Parallel Code Array Generation The goal of this extensive bytecode modification is
to prepare parallel code arrays for speculative execuéi®shown in Figure 3. The non-
speculative array is duplicated, branch targets are ajusind modified instructions
replace ordinary non-speculative versions where necgegsdditionally, SPMTFORKand
SPMTJOIN surround everyNVOKE<X>in both code arrays. Transitions between non-
speculative and speculative execution are facilitateddeyptical instruction offsets in
each array.

4.2 Speculative Runtime Support

In addition to preparing method bodies for speculative etien, the speculation en-
gine provides various support components that interatt bwitecode and allow for child
thread startup, queueing, execution, and death to take plaide ensuring correct exe-
cution through appropriate dependence buffering.

Thread Forking Speculative child threads are forked by non-speculativerga and
also by speculative children 8PMTFORKinstructions. Speculating at every fork point
is not necessarily optimal, and in the context of SMLP vasibauristics for optimising
fork decisions have been investigated [12]. SableSpMT jtemalatively arbitrary fork
heuristics; however, we limit ourselves to a simple “alwéyk” strategy in this paper
as a more generally useful baseline measurement.

Having made the decision to fork a child, several steps ayaired. First, those vari-
ables of the parent thread environmentiEnv ) that can be accessed speculatively are
copied to a childINIEnv struct; in this fashion, the child assumes the identity of it
parent. Second, a child stack buffer is initialized and theept stack frame is copied
to the child, giving it an execution context. Third, a depemck buffer is initialized;
this protects main memory from speculative execution, dlodva for child validation
upon joining. Fourth, the operand stack height of the childdjusted to account for the
stack effect of the invoke following the fork point, and the of the child is set to the
first instruction past the invoke. Fifth, a return value isgicted for non-void methods;
technically, any arbitrary value can be used as a “predittialthough the chance of
speculation success is greatly reduced by doing so. In theeasteps, memory reuse
is critical in reducing the overhead of thread environmdependence buffer, and stack
buffer allocation.

Priority Queueing In the default multithreaded speculative execution modédien
are enqueued at fork points on a glola&l1) concurrent priority queue; higher priority



threads are those that are expected to do more useful woglqUdue consists of an array
of doubly-linked lists, one for each priority from 0-10, asupportenqueue , dequeue ,
and delete operations. Helper OS threads compete to dequeue and rignechbn
separate processors. There is a single testestdnd-set (TATAS) lock protecting
the queue, and queue synchronization is a small but norigitegl source of overhead.
Priorities 0—10 are computed asin(/ x /1000, 10), where! is the average bytecode
sequence length andis the success rate. We find that this function gives acchptab
distributions, if somewhat biased towards lower priositie

Shavitet al. considered scalable concurrent priority queues [29], andd that for
a small number of priorities and processors that this desigiptimal, except that syn-
chronizing per-priority and using MCS [30] queue locks @zst of TATAS spinlocks may
afford some improvements. Closely related CLH locks [3&]arailable in SableSpMT;
we find that although they distribute queue access much mrerdyeamongst competing
threads, no speedup over TATAS locks is achieved.

Return Value Prediction Speculative children forked at non-void callsites needrthe
operand stack height adjusted to account for the returreyalnod must be aborted if
an incorrect value is used. Accurate return value predidi®/P) can significantly im-
prove the performance of Java SMLP [10], and we previouglgmed on our aggressive
RVP implementation in SableSpMT [32], the use of two comlealyses for extracting
further accuracy [27], and the integration of RVP analysie bur framework [4].

Return value predictors are associated with individudsitak, and can use context,
memoization, and hybrid strategies, amongst others. Axahdilly, attributes generated
by the compiler analyses are parsed during method prepayaind can be used to relax
predictor correctness requirements and reduce memoryiegrion. Accurate RVP can
incur significant overheads [4], and it is likely that not ekironizing on dynamically
expanding predictor hashtables and disabling sub-optpredictors on a per-callsite
basis can help to minimize the cost.
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Fig. 4. Dependence bufferingVhen a specu- Fig. 5. Stack buffering. fthroughf6 are stack
lative global load instruction is executed, first frames corresponding to Java methods. A spec-
the write buffer is searched, and if it does notulative child is forked af4 in the parent, and
contain the address of the desired value thern turn a second-generation grandchild thread
the read buffer is searched. If the value addresss forked atf5 in the child. Stack frames are
is still not found, the value at that address isbuffered on forking, and additionally when
loaded from main memory. When a speculativechildren return from method$2 in the grand-
global write instruction is executed, the write child is buffered from the non-speculative par-
buffer is searched, and if no entry is found aent, as its immediate ancestor never descended
new mapping is created. belowf3.
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Dependence Buffering Most TLS designs propose a mechanism for buffering reads
from and writes to main memory by speculative threads in or@revent against po-
tential dependence violations. In Java, main memory ctmsisobject instances and
arrays on the garbage-collected heap, and static fieldasis tbader memory.

In hardware, dependence buffers can be built as table baseduses similar to
caches [2], and we propose a similar design for software HsSshown in Figure 4.
Buffer objects are attached to speculative threads ornugtaaind internally consist of
nine read and nine write sub-buffers, specialised for thltgirimitive types and also
for object references. Use of type-specific sub-buffersisimisation possible in high
level TLS environments, and helps reduce buffer space remeints. The sub-buffers are
implemented as open addressing hashtables; values azd s&ing the value address as
a key, and fast lookup is provided by double hashing. A barkirked list allows for fast
iteration during validation and committal.

Stack Buffering As well as heap and static data, speculative threads mapetess lo-
cal variables and data stored on the Java operand stackoW$dhat stack accesses must
be buffered to protect the parent stack in the event of fajlas shown in Figure 5. The
simplest mechanism for doing so is to copy stack frames frarant threads to separate
child stacks both on forking children and on exiting methsgisculatively. Additionally,
children must create new stack frames for any methods they.en

Pointers to child threads are stored one per stack framethesmdllows for conve-
nientout-of-orderthread spawning [33] where each parent can have multiplecishete
children, exposing additional parallelism. Although napported by our SableSpMT
implementation at this time, child threads can also forlrtben children, which when
combined with out-of-order spawning leads to a tree of childor a single fork point.

Thread Joining Upon reaching some termination condition, a speculativi ahill
stop execution and leave its entire state ready for joinypngdparent. The child may
stop of its own accord if it attempts some illegal behavicsisammarized in Table 1,
if it reaches arelder sibling that is, a speculative child forked earlier on by the same
parent at a lower stack frame, or if it reaches a pre-definedusgtive sequence length
limit. The parent may also signal the child to stop if it reasthe join point associated
with the child’s fork point, or if it reaches the child’s fdrlg frame at the top of the VM
exception handler loop. SableSpMT uses a per-instructsynchronous polling strat-
egy within speculative threads to detect parent signaléin@gng poll points to occur
only at backward branches may offer improvements in thedgspéspeculative bytecode
interpretation, at the expense of longer wait times for tept.

The join process involves verifying the safety of child ex@en and committing
results. First, a full memory barrier is issued, and thedcisilthen validated according to
four tests: 1) the predicted return value is checked ag#iesictual return value for non-
void methods, according to the safety constraints of staimlyses [27]; 2) the parent
is checked for not having had its root set garbage-collestece forking the child; 3)
the dependence buffers are checked for overflow or cormipdiod 4) values in the read
dependence buffer are checked against main memory foltiviota

If the child passes all four tests, then the speculationfis; sdl values in the write
buffer are flushed to main memory, buffered stack framesedtey the child are copied
to the parent, and non-speculative execution resumes méttctand operand stack size
set as the child left them. Otherwise, execution continu@sspeculatively at the first
instruction past th&PMTJOIN. Regardless of success or failure, the child’'s memory is
recycled for use at future fork points. Note that buffer caitsrmay result in a reordering
of the speculative thread’s write operations, which mustiin respect the requirements
imposed by the new Java memory model, as discussed in Séction



4.3 Speculative Execution

SableSpMT supports two speculative execution modes, desihgeaded mode where
bytecode interpretation alternates between non-spéikad speculative execution in
a single thread, and a truly multithreaded mode that depenadasultiple processors for
parallelisation. Both modes allow for non-speculativealdweads to coexist with the
speculative sytem. The former mode has previously beerriledcas appropriate for
debugging, testing, porting, and limit analyses [4], antes@ we focus on multithreaded
execution.

In the multithreaded mode, children are assigned prigritiefork points based on
speculation histories, and enqueued on@g) priority queue. A minimal amount of
initialization is done to limit the impact of fork overhead mon-speculative threads.
There is a pool of helper OS threads running, one per freeepene, and these dequeue
and execute children according to priority.

If the parent thread joins a child that it previously enqukwnd that child did not
get removed by a helper OS thread, the child is deleted bylgiominking it from the
list for that priority, and its memory is recycled. Othereiisf the child has started, the
parent signals it to stop, and then begins the usual vatidatiocedure. If successful, the
parent jumps ahead, otherwise the parent simply continues.

5 Java Language Considerations

Several traps await the unsuspecting implementor thattiienhance a JVM to support
thread level speculation. These traps are actually cotark=saof the Java language —
object allocation, garbage collection, native method efien, exception handling, syn-
chronization, and the Java memory model — and a Java TLS mgitation must handle
them all safely in order to be considered fully general. Theact of these features is
measured in Section 6.

Object Allocation Object allocation occurs frequently in many Java progrand,per-
mitting speculative allocation significantly increasesxmam child thread lengths. Ad-
ditionally, it is unnecessary to buffer accesses to objalit€ated speculatively. Spec-
ulative threads can either allocate without synchronimafrom a thread-local heap,
or compete with non-speculative threads to acquire a globap mutex. Normally,
speculation must stop if the object to be allocated has atrivat finalizer, i.e. not
Object.finalize() , for it would be incorrect to finalize objects allocated byebd
children; however, in SableVM, finalization is disablecogkther, as permitted by the
JVM Specification [25]. Allocation also forces speculatiorstop if either GC or an Out-
OfMemoryError would be triggered as a result. Object refees only become visible
to non-speculative Java threads upon successful threddtiah and committal; aborted
children will have their allocated objects reclaimed in tiext collection. Although this
does increase collector pressure, we did not observe aieyatite in GC counts at the
default heap size when speculative allocation was enabled.

Garbage Collection All objects in Java are allocated on the garbage-collected eap.
This is one of the main attractions of the language, and &s, suny serious proposal to
extend it must consider this feature; indeed, many Javaranagwill simply run out of
memory without GC. SableVM uses a stop-the-world semi-smapying collector by
default [24], and every object reference changes upon eakhgction; thus, any spec-
ulative thread started before GC must be invalidated after &eculative threads are
invisible to the rest of the VM, and are not stopped or traagthg collection; however,
heap accesses are buffered, and so speculation can safiilyueoduring GC. Threads
are invalidated if the collection count of the parent thresdeases between the fork and
join points. The default collector in SableVM is invokedatlely infrequently, and we



find that GC is responsible for a negligible amount of spdaxdanvalidations. Other GC
algorithms are trickier to negotiate with, and may requitlkex pinning of speculatively
accessed objects or updating of dependence buffer entries.

Native Methods Java provides access to native code through the Java Natesace
(JINI), and native methods are used in class libraries, egipin code, and the VM itself
for low-level operations such as thread management, tingingd I/O. Speculation must
stop upon encountering native methods, as these cannotbated in a buffered envi-
ronment without significant further analysis. However, 1speculative threads can safely
execute native code while their speculative children etespure bytecode continuations.

Exceptions Implicit or explicit exceptions simply force speculatiangtop. Speculative
exception handling is not supported in SableSpMT for thesesons: 1) exceptions are
rarely encountered, even for “exception-heavy” applaailikejack [32]; 2) writing

a speculative exception handler is somewhat complicatedl;33 exceptions in specu-
lative threads are often the result of incorrect computatémd thus further progress is
likely to be wasted effort. In Java source cotle, {} catch() {} andtry {} catch()

{} finally  {} may be compiled to use exception handlers WiR and RET instruc-
tions [25]. The speculative safety of these instructiondissussion in Section 4.1, and
does not depend on their usage for exception handling.

Non-speculatively, if exceptions are thrown out of a metimoskarch of an appropri-
ate exception handler, any speculative children encoedtas stack frames are popped
must be aborted. In order to guarantee a maximum of one chilétack frame, chil-
drenmustbe aborted at thop of the VM exception handler loop, before jumping to the
handlerpc. This prevents speculative children from being forkeddasgithercatch or
finally  blocks while another speculative child is executing in thene stack frame.

Synchronization Object access is synchronized either explicitly by M@NITORENTER
and MONITOREXITinstructions, or implicitly via synchronized method entmd exit.
Different groups have explored speculative locking [34, Bbwhich reads and writes to
global object locks are buffered, and this will be intemnggtio consider in future work. In
the absence of such strategies, speculative synchramzatprohibited and must force
children to stop; somewhat surprisingly, synchronizatias been unsafely ignored by
Java TLS studies in the past [1, 10]. Non-speculativelychyonization always remains
safe, and it is even possible to fork and join speculativeatis inside critical sections.
Thus code which is traditionally considered a parallelisstilbneck can be parallelised,
and this encourages coarse-grained locking, desirahte &rgoftware engineering per-
spective for its easier programmability.

The Java Memory Model Existing proofs on the safety of load and store reordering un
der TLS are correct for single-threaded programs [36], hettew Java memory model
(JMM) [3] imposes additional constraints on multithreaés@cution; in turn, the JSR-
133 Cookbook specifies the insertion of memory barriers dbwa places in order to
meet these constraints [37]. Speculative execution canaamtinue past a memory bar-
rier if the dependence buffer records an exact interleasfingemory accesses and the
relevant barrier operations; that we reuse entries forevatldresses already in the buffer
and do not record memory barriers precludes doing so in aueudesign.

The orderings required for various API calls, including repeculative thread cre-
ation and joining, are provided by our design due to theirlémgntations as native
methods, which already force speculation to stop. For olggochronization several
rules apply; most critically, a memory barrier is requirezgfdre unlock operations to
guarantee that writes in the critical section are visiblfutare threads entering the same
monitor. By disabling speculative locking entirely we pidsra much stronger guarantee
than required; future work on speculative locking will neefiher grained approach.



Loads and stores of volatile fields also require memory esrito ensure interpro-
cessor visibility between operations. Similarly, the Ileadd stores of final fields require
barriers, except that ox86 andx86 _64 these are no-ops [37]. However, speculatively,
we must stop on final field stores, which appear only in constrs, to ensure that a
final field is not used before the object reference has beew miaithle, a situation that is
made possible by reordering writes during commit operati@ur conservative solution
is to stop speculation on all volatile loads and stores asal @l final stores.

In Java, finalizers are executed after object collectiguiclly by a separate finalizer
thread. However, aggressive code optimisations can dadigtshorten object lifetimes,
such that an object finalizer might even run before initatian has completed [38], and
accordingly, the new JMM specifies that finalization can axdgur after the constructor
has exited. This can be problematic for Java TLS if succéspkculation past the con-
structor ends up deleting the object reference, and uneddezmmits allow the finalizer
to run before all of the constructor’s writes are flushed. \bl@ld conservatively disallow
speculative threads to be joined if the parent encounteomdnvial finalizer after fork-
ing; again, a further simplification is afforded by SableViMthat finalizers are not run
at all. Avoiding finalizers is in general part of good Javagyeosnming practice.

6 Experimental Analysis

In this section we employ the SableSpMT framework to analysémpact of both specu-
lation support components and Java language features opxdcstion. All experiments
were performed on a 1.8 GHz 4-way SMP AMD Opteron machineingnhinux 2.6.7,
with all free processors running speculative threads. Véghis SPECjvm98 benchmark
suite at size 100 (S100), and a speculative child threadkedoat every callsite. Nested
speculation is disabled, but out-of-order spawning does pdace. Althoughaytrace

is technically not part of SPECjvm98 and therefore exclulech geometric means, we
include results for purposes of comparison; it is the shtlgieaded equivalent ofitrt .

Table 2. Child thread termination.

termination reasof) comp | db | jack |javac | jess | mpeg | mtrt rt
class resolution and loadifg2.14K | 1.76K| 94.8K| 487K | 3.80K| 14.7K| 4.79K| 5.64K
failed object allocatio 1 3 23 17 39 0 28 40

invalid object referenc 563| 553K| 342K| 280K| 431K 485| 407K | 278K
finals and volatileg 842 1.45M | 2.17M| 1.11M| 1.95M 888| 115K | 68.8K
synchronizatior)| 4.30K|26.8M|6.95M| 17.0M|4.89M| 10.4K| 658K | 351K

unsafe method entry or ex|t 2.66K | 1.55K| 16.0K| 622K | 2.62K| 1.65K| 3.60K| 3.00K
implicit non-ATHROWXxception| 989K | 828K | 9.57K| 572K| 78.6K| 2.00K| 31.2K| 20.8K
explicit ATHROW/xception| 0 0| 187K 82 0 0 0 0
native code entry  332| 28.2K| 1.02M| 1.02M|2.63M| 527K| 259K | 260K

elder sibling reachef 1.24M| 3.81M | 5.06M | 16.1M| 5.62M | 14.1M | 4.03M | 4.23M
deleted from queug 348K | 686| 559K | 3.13M| 2.55M | 4.48M | 34.2M | 1.57M
signalled by parenf 202M | 92.6M | 20.1M| 42.1M| 56.3M | 80.8M | 122M | 124M
TOTAL CHILD COUNT || 204M| 127M| 36.5M| 82.4M|74.5M| 99.9M| 162M| 131M

In Table 2, total counts are given for all child thread teration reasons. In all cases,
the majority of children are signalled by their parent tlokéa stop speculation. Signif-
icant numbers of child threads are deleted from the queuwk ehter siblings are fre-
quently reached. We looked at the average thread lengthspémulative children, and
found them to be quite short, typically in the 0—10 instroictrange. These data all in-
dicate that threads are being forked too frequently, ancansistent with the general
understanding of Java application behaviour: there areyrslaort leaf method calls and
the call graph is very dense [23]. Inlining methods will charthe call graph structure,
and it has previously been argued that inlined Java SMLPutixecbenefits from coarser
granularity [10]. Introducing inlining into our system aedploring fork heuristics are
therefore part of future work. Outside of these categoités, clear that synchroniza-



tion and the memory barrier requirements for finals and ifelaare important; enabling
speculative locking and recording barrier operations @aillbw threads to progress fur-
ther. Native methods can also be important, but are mucteh&rdreat. The other safety
considerations of the Java language do not impact significan speculative execution;
even speculative exceptions are responsible for a minofityread terminations.

Table 3. Child thread success and failure.

join status| comp | db |jack |[javac |jess | mpeg | mtrt rt
exception in paren| 0 0| 386K| 23.4K 0 0 0 0
incorrect predictior|| 18.0M| 22.7M| 2.80M| 11.3M|5.80M| 7.73M | 4.85M | 3.72M
garbage collectio 4 20 119 206 470 0 90 68
buffer overflow 0 0 0 10 0 0 0 0

dependence violatiop 1.60M | 1.44K| 160K| 1.53M| 342K|14.7M| 4.14M| 4.00M
TOTAL FAILED |[ 19.6M| 22.7M| 3.34M| 12.9M| 6.14M| 22.4M| 9.00M| 7.72M
TOTAL PASSED| 184M| 103M| 32.6M| 66.4M| 65.8M| 73.0M| 119M| 122M

Data on the number of speculative thread successes anckfaias well as a break-
down of failure reasons, are given in Table 3. Failures dua@o buffer overflows and
exceptions are quite rare, and the majority of failuresdgity come from incorrect re-
turn value prediction. This again emphasizes the impoegafcaccurate RVP in Java
SMLP, and the weak impact of exceptions and GC. Dependentation counts are not
insignificant, and reusing predictors from the RVP framdwfor generalised load value
prediction should help to lower them. In general, failures much less common than
successes, the geometric mean failure rate being 12% dgbedltations. While this is
encouraging, many threads are quite short due to an abumdéneethod calls and there-
fore forked children, and the high overheads imposed byathstartup, so it is likely the
case that had they progressed a lot further, more violatiangd have occurred.

Table 4. Impact of TLS support components on application speetip.priority queue was dis-

abled by only enqueueing threads if a processor was free, retura pegdiction was disabled by

always predicting zero, and the remaining components were disablieddiyg premature thread
termination upon attempting to use them.

experiment| comp | db |jack [javac |jess |mpeg| mtrt rt mean

forced failure baseling 1297s| 931s| 293s| 641s| 665s| 669s| 1017s| 1530s| 722s

no priority queueingd| 0.94x| 1.22x| 1.35x| 1.32x| 1.58x| 0.97x| 1.68x| 2.05x| 1.27x

no return value predictiop 1.03x| 1.17x| 1.28x| 1.24x| 1.44x| 1.03x| 1.72x| 1.70x| 1.25x

no dependence buffering1.04x| 1.22x| 1.12x| 1.05x| 1.16x| 1.02x| 0.95x| 0.97x| 1.08x

no object allocatiory 0.95x| 1.30x| 1.39x| 1.26x| 1.55x| 0.98x| 1.13x| 1.23x| 1.21x

no method entry and exjit 0.94x| 1.02x| 0.97x| 0.98x| 1.02x| 0.95x| 0.79x| 0.91x| 0.95x

full runtime TLS supporf| 1.06x| 1.27x| 1.39x| 1.37x| 1.64x| 1.01x| 1.82x| 2.08x| 1.34x

Currently, thread overheads preclude actual speedup, wrihnes are within one
order of magnitude [4]. This is competitive with hardwanasiations providing full ar-
chitectural and program execution detail [39], but we ase aptimistic about techniques
for achieving real speedup. In order to factor out the effeftfork and join overhead,
we use a baseline execution time where speculation occmarasl, but failure is auto-
matically induced at every join point, calculating a medatiee speedup of 1.34x.

Table 4 shows the impact of disabling individual support porrents on Java TLS
execution times. We note first of all thedmpress andmpegaudio are resilient to par-
allelisation, likely due to our current, hee thread forking strategies. In some cases, dis-
abling components can even lead to slight speedup. Thiophemon occurs if overhead
costs outweigh component benefits; for example, disabktgrm value prediction can
mitigate the cost of committing many short threads. In gaheve can provide a par-
tial ordering of support components by importance: therfisigueue is least important;
method entry and exit, or stack buffering, and dependenffermg are most important;
return value prediction and speculative object allocali@somewhere in-between.



7 Conclusions and Future Work

Language and software based thread level speculatiorresquin-trivial consideration
of the language semantics, and Java in particular imposee strong TLS design con-
straints. Here we have defined a complete system for Javat@kiBg into account var-
ious aspects of high level language and virtual machinebebhial requirements. Our
implementation work and experimental analysis of Javaifipebehaviour show that
while most of these concerns do not result in a significantichpn TLS performance,
conservatively correct treatment of certain aspects cduces potential speedup, most
notably synchronization. Part of our future work is thusrteeistigate different forms of
speculative locking [34, 35] within a Java-specific context

Our design focuses on defining correct Java semantics inrdsepce of TLS, and
demonstrating the associated cost. However, as with amykgiwe system, performance
and TLS overhead are also major concerns, and efforts towempeedup in many fash-
ions are worthwhile, as suggested by previous profilinglte$4i]. We are confident that
overhead can be greatly reduced in our prototype implertienfahrough optimisation
of individual components, greater use of high level prografarmation, and employ-
ment of general and Java-specific heuristics for makingirigriecisions and assigning
thread priorities. Further speedup is also expected byvalfp speculative children to
spawn speculative children, and by supporting load valediption, both increasing the
potential parallelism. Longer term future work includesraplementation of TLS within
the IBM Testarossa JIT and J9 VM, where we hope to incorparademeasure these and
other improvements, and research JIT-specific TLS problemdpportunities.
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