
Relative Factors in Performance Analysis of Java Virtual
Machines

Dayong Gu Clark Verbrugge
School of Computer Science

McGill University
Montréal, Québec, Canada

{dgu1, clump}@cs.mcgill.ca

Etienne M. Gagnon
Département d’informatique

Université du Québec à Montréal
Montréal, Québec, Canada

egagnon@sablevm.org

Abstract
Many new Java runtime optimizations report relatively small,
single-digit performance improvements. On modern virtual and
actual hardware, however, the performance impact of an optimiza-
tion can be influenced by a variety of factors in the underlying
systems. Using a case study of a new garbage collection optimiza-
tion in two different Java virtual machines, we show the relative
effects of issues that must be taken into consideration when claim-
ing an improvement. We examine the specific and overall perfor-
mance changes due to our optimization and show how unintended
side-effects can contribute to, and distort the final assessment. Our
experience shows that VM and hardware concerns can generate
variances of up to 9.5% in whole program execution time. Consid-
eration of these confounding effects is critical to a good, objective
understanding of Java performance and optimization.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Measurement Techniques, Design Studies

General Terms Experimentation, Measurement, Performance

Keywords performance analysis, Java, garbage collection, hard-
ware counters, caches

1. Introduction
Compiler and runtime optimizations are typically deemed success-
ful if a measurable, reasonably stable performance improvement
can be shown over a selection of benchmarks, even if the effect is
relatively small or not uniformly positive. In the case of Java virtual
machine (VM) or software level optimizations, low-level hardware
and VM effects are often presumed amortized through the com-
plexity of interaction, or by considering average case behaviour.

Many optimizations, however, result in small, single-digit per-
formance changes, and in these cases uncontrolled factors aris-
ing from lower levels of execution may account for a significant
amount of the performance difference, greatly distorting the per-
ceived effect of an optimization. Unfortunately, not only is the
breadth of potential influences not always obvious, but it is also
not always clear which factors are most important with respect to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-332-6/06/0006. . . $5.00.

perturbing performance measurements. This resulting lack of guid-
ance often means that optimization researchers do not always give
a sufficiently wide or deep consideration to potential confounding
factors from the underlying systems.

In this paper we focus on two main concerns. First, an expo-
sition of various external, and benchmark specific factors that can
influence a VM or source-level optimization, and second a quanti-
tative evaluation and comparison of the different influences. Using
an in-depth case study of a simple garbage collection optimization
we are able to show that a combination of instruction cache changes
due to trivial code modifications, and subtle, consequent data lay-
out and usage differences can induce almost a 10% whole program
performance variation. We are able to show significant variations
in both interpreter and JIT environments. As the largest contribu-
tors to variance are not unique to our case study, other optimiza-
tions achieving single-digit performance improvements (or degra-
dations) may thus be affected by the same issues.

Previous studies on the complexity of measuring performance
in modern VMs have argued for the importance of a holistic view
of program performance [19], or have pointed out some of the fac-
tors that can directly affect and distort the measurement of specific
optimizations, such as garbage collection [4]. In this paper we ex-
tend these concerns showing the wide range of issues that must be
addressed to ensure a well-informed interpretation of performance
change due to optimization, and the surprisingly large potential im-
pact of low-level concerns on high level performance.

Specific contributions of our work include:

• We give experimental results from both an interpreter and a JIT
environment showing that side-effects of lower level execution
can account for almost 10% of measured performance.

• We provide guidance on which factors are most critical by giving
a quantitative and comparative analysis of a variety of potential
confounding factors in assessing JVM performance.

• Using both VM and low-level hardware counter information, we
provide an analysis and unique characterization of the SPECjvm98
[28] and the DaCapo [23] benchmarks with respect to their in-
struction and data cache sensitivity.

• Our optimization case study is also a new garbage collection
optimization that can improve GC performance in both JIT (Jikes
RVM) and interpreter (SableVM) environments.

The remainder of this paper is organized as follows. In Section
2, we discuss related work on GC and Java performance measure-
ment and analysis. Section 3 then describes our garbage collection
optimization, and Section 4 gives initial data on its performance. In
Section 5, we refine our investigation and give more detail on the

impact of various performance influences. Section 6 provides di-
rections for future work in this area and presents our conclusions.

2. Related work
Measuring the performance and understanding the behaviour of
Java programs is challenging. Many factors, from program charac-
teristics, VM techniques and implementations, and OS strategies,
to hardware platform performance, can affect the final measured
performance. B. Dufour et al. provides a set of concise and pre-
cisely defined dynamic metrics for Java programs [10]. At a lower
level, L. Eeckhout et al. [11] analyze the interaction between Java
virtual machine and microarchitectural platform factors by using
principal component analysis to reduce the data dimensionality. M.
Hauswirth et al. suggest an approach named vertical profiling [19]
to understand how Java programs interact with the underlying ab-
straction levels, from application, virtual machine, and OS, to hard-
ware. To understand the behaviour of a particular program execu-
tion, they first obtain profiling data from different levels, then visu-
alize the data and discover the correlations between the anomalous
performance and the profiling data visually or using statistical met-
rics. Our examination here is in the same spirit of a multi-levelled
view of performance, though focusing on the variance due to opti-
mizations rather than for program development.

Our investigations are motivated through a case study of a
garbage collection (GC) optimization. GC has been a target of
optimization for decades, and from a variety of directions. Ungar’s
generational scavenging [32] technique and more recent works on
Age-based GC [30] Older-first GC [29] and Beltway GC [5], for
instance, all aim to improve performance by adjusting collection
time according to object lifetimes. Alternatively, live objects can be
aggregated into regions in the heap based on a selection of object
attributes. This either aims to improve data locality in the program
[20, 17], or to reduce the memory access overhead of the collector
[24]. Optimizations on data prefetching and lazy sweeping [8, 6]
aim to improve data cache performance. Our approach tries to
reduce the GC workload, although the implementation design is
also helpful in reducing data cache misses.

Some other works specifically study GC performance. S. Black-
burn et al. [4] discuss performance myths of canonical GC algo-
rithms on widely used Java benchmarks. They compare the perfor-
mance of classic GC and memory allocation algorithms in differ-
ent configurations and environments. The impact of special imple-
mentation factors, such as “write barriers” and the size of nursery
space of generational collectors, on mutator and GC performance
are carefully studied. In this paper we extend their results to a fur-
ther range of factors and influences, particularly unintended cache
effects. The large impact of instruction cache changes has been no-
ticed in other contexts as well [18], although our treatment is more
in depth.

In order to fully analyze our benchmarks we have correlated in-
struction cache, data cache, and other low level events with pro-
gram behaviour. Similar analyses have been done for C bench-
marks [22, 9], and recently for Jikes as well [26]. Our data is gath-
ered using the hardware performance counters found in modern
processors, and used in numerous low-level performance studies
[2, 33, 25, 16, 31]. In our case we used the PCL [3] and PAPI [7]
libraries for this low-level access.

3. Case study: GC optimization
In this section we briefly describe a simple GC optimization and its
implementation in both SableVM and Jikes RVM. We will use this
example optimization to show the number and subtlety of factors
that need to be considered when examining performance results, as
well as give concrete evidence of their relative impact.

Our optimization case study is based on a simple and general
improvement to tracing garbage collectors. Tracing GCs are found
in most Java virtual machines.

Starting from a set of root references (static variables, stack ref-
erences), a tracing GC visits each reachable object seeking refer-
ences to other reachable objects. Once the live set is determined
the memory storage of non-reachable objects is reclaimed. Gagnon
and Hendren proposed a bi-directional object layout [14] aiming
to improve the performance of GC tracing, and here we present a
reference section tracing strategy that attempts to validate and im-
prove that work.

3.1 Bi-directional layout and reference section scanning

Bi-directional layout is an alternative way of physically represent-
ing objects in memory. Traditionally, all the fields of an object are
located after the object header. The left graph in Figure 1 shows the
traditional layout of an object of type C extending type B extend-
ing type A. The right graph in Figure 1 shows the bi-directional
layout of the same object. The basic idea of bi-directional layout
is to relocate reference fields before the object header and group
them together in a contiguous section; we denote these sections as
reference sections. The main advantage of the bi-directional layout
is the simplicity of locating all references in an object during GC.
References are contiguous, and only a single count of reference
section size must be stored (usually in the object header). There is
no need to access a table of offsets in the object’s type information
block to identify references, as must be done with the traditional
layout.

Figure 1. An instance of type C extending type B extending type
A in both traditional and bi-directional object layouts

Based on the bi-directional layout, we developed a new refer-
ence section based (RS) scanning strategy to further reduce the re-
quired work for tracing from per object to per reference section:
When a new reachable object is found, the location of its reference
section (if it does have one) is stored in a work list. The collector
then uses this work list, which only contains relevant information,
to copy or mark referents.

Compared to normal bi-directional layout tracing, our solution
has the following advantages:

• The collector skips tracing of all reachable objects that have no
references.

• The compactness of the work list may help improve cache local-
ity while GC is in progress.

• In copying collectors, using a work list allows for depth-first
tracing instead of default breadth-first tracing. This usually leads
to better cache locality [21].

3.2 Implementing RS scanning

We have implemented RS scanning in both SableVM[12] and Jikes
RVM[1]. Here we give a brief overview; more implementation
details can be found in [15].

SableVM

SableVM has a semi-space copying GC which uses a two-pointer
scanning algorithm [21]. The scan pointer is used to trace refer-
ences in copied objects, while the free pointer tracks the location
of unallocated memory in the target semi-space.

In our RS scanning implementation, the location of reference
sections is saved in 512-entry blocks organized in a work list. We
use the higher address end of the to-space to store these blocks,
and unused blocks are maintained in a free list, ready to be reused.
Compared to the total size of the heap, the space required for
this work list is very small. For SPECjvm98 [28] benchmarks, we
needed at most five blocks (in javac), or 20K at the end of the to-
space (and another 1K for headers) to perform GC on a two 16M
semi-space heap.

Since our RS scanning strategy can reduce GC workload and
improve data cache locality, we expect a significant GC perfor-
mance improvement in SableVM.

Jikes RVM

We also implemented the bi-directional layout and the RS scanning
strategy in Jikes RVM version 2.3.4 by modifying both the RVM
and the Memory Management Toolkit (MMTk). Modifications to
the RVM are straightforward. We modified the object model com-
ponent and the routines that compute the offset of fields. In the type
information block, we replaced the array storing the offset of refer-
ences with a single integer indicating the number of the references.
We also moved the hash code from before the object header to the
end of the object in order to avoid changing the location of refer-
ences when the object is hashed.

Our GC work integrates with Jikes through the MMTk. In
our current RS scanning implementation we largely reuse exist-
ing MMTk routines—this is not always optimal for pure reference
section scanning, but is sufficient for an initial implementation.

As Jikes RVM already used work lists for tracing, we do not
expect as much improvement in Jikes RVM as in SableVM.

4. Initial experimental results
To examine the effect of using the bi-directional layout and
the RS scanning strategy, we collected performance data on the
SPECjvm98 benchmarks [28] run with input size “s100” and on
five benchmarks, antlr, bloat, fop, pms, and ps of the DaCapo suite
[23] using the default input size. We excluded mpegaudio from the
SPEC benchmarks as it needs no garbage collection in SableVM’s
default heap settings. We excluded the batik, chart, jython and
xalan DaCapo benchmarks as they either required unsupported
graphical bindings or had reflection issues unsupported in the ver-
sion of SableVM used for testing. We also excluded hsqldb as its
execution time is mostly dependent on the thread scheduler of the
underlying operating system. Experiments were run under the de-
bian Linux operating system on an Athlon 1.4G workstation with
1G memory, with some earlier results from a Pentium III 733MHz
workstation with 512M memory. Both environments were isolated

and minimized for testing, and each benchmark data points repre-
sent the average of the medium 3 values in 5 runs.

4.1 SableVM results

SableVM uses a simple semi-space copying GC. Yet, it delivers
good GC performance due to the implementation of a number of
efficient memory access techniques and an efficient algorithm for
computing and retrieving GC maps [13].

Figure 2 shows the GC speedup obtained in SableVM by using
RS scanning on our benchmarks with a 32MB initialize heap. A
significant speedup, 16% in average, is obtained with a maximum
of about 30% improvement on db.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

ps

pm
d

fo
p

bl
oa

t

an
tlrrt

m
tr

t

je
ss

ja
va

c

ja
ckdb

co
m

p

(Org-RS)/Org

Figure 2. GC speedup in SableVM. Time is measured as cycles
spent during GC execution. The vertical axis shows speedup, mea-

sured as:
(ExecutionTimeOriginal−ExecutionTimeOptimized)

ExecutionTimeOriginal

We also measured the impact of RS whole program execution
time, shown in figure 3. Although, the overall performance speedup
is still positive in general, we notice an anomalous performance
decline in some benchmarks, most obviously raytrace. Equally
surprising are the > 2% performance improvements shown by
compress and db. GC usually takes less than 1% of execution time
in the SableVM interpreter environment, and so this indicates a
significant, unintentional impact on the mutator.

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08
ps

pm
d

fo
p

bl
oa

t

an
tlrrt

m
tr

t

je
ss

ja
va

c

ja
ckdb

co
m

p

(Org-RS)/Org

Figure 3. Whole program execution speedup in SableVM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

ps

pm
d

fo
p

bl
oa

t

an
tlrrt

m
tr

t

je
ss

ja
va

c

ja
ckdb

co
m

p

(Org-RS)/Org

Figure 4. SS GC speedup in Jikes RVM

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

ps

pm
d

fo
p

bl
oa

t

an
tlrrt

m
tr

t

je
ss

ja
va

c

ja
ckdb

co
m

p

(Org-RS)/Org

Figure 5. GenMS GC speedup in Jikes RVM

4.2 Jikes RVM results

We tested the RS scanning strategy in two types of GC in Jikes
RVM: SemiSpace (SS) copying (basebaseSemispace configura-
tion) and Generational-copying-Marksweep (GenMS) hybrid GC
(basebaseGenMS configuration). We chose these two because they
are representative GC configurations. The former is the classic trac-
ing GC which can give better performance for some benchmarks
when the heap size is large enough [27]. The latter is the best choice
for most benchmarks in most heap configurations of Jikes RVM.

We show the GC performance speedup for both collectors in
Figures 4 and 5, and the results for whole program execution in
Figures 6 and 7. The heap size was set to 32MB when testing
SPECjvm98 benchmarks, the same as SableVM’s default setting.
For the DaCapo benchmarks, the heap size was set to 80MB, due
to the larger data workloads than SPECjvm98. Note that our results
here are not overly sensitive to heap size, and testing on other
reasonable heap sizes produces similar results.

For semi-space copying (SS), we obtained a stable improvement
on the speed of GC for all benchmarks, similar to SableVM. At the
same time we also show an overall positive performance for whole
program execution time. We note that when using SS GC in Jikes
RVM, GC takes a large portion of execution time (up to 40%, us-
ing SS GC and the baseline compiler). Whole program execution
performance is therefore highly dependent on the collector’s per-
formance.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

ps

pm
d

fo
p

bl
oa

t

an
tlrrt

m
tr

t

je
ss

ja
va

c

ja
ckdb

co
m

p

(Org-RS)/Org

Figure 6. Whole program execution speedup when using SS GC
in Jikes RVM

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

ps

pm
d

fo
p

bl
oa

t

an
tlrrt

m
tr

t

je
ss

ja
va

c

ja
ckdb

co
m

p

(Org-RS)/Org

Figure 7. Whole program execution speedup when using GenMS
GC in Jikes RVM

In the case of GenMS garbage collection performance results
for both GC and whole program execution are less consistent.
In the SPECjvm98 suite, the RS strategy still delivered overall
GC improvement on most benchmarks (except javac), but in the
DaCapo benchmarks we only see an improvement for the antlr
benchmark. For other benchmarks GC performance is either similar
to the original version or worse. Whole program execution time
shows no obvious stable trend, positive or negative.

4.3 Summary

Viewed in isolation, and even overall in some cases, our RS scan-
ning improves GC performance in both interpreter and adaptive
JIT compiler environments. These results, however, are not well
reflected in a general sense and anomalous measurements suggests
significant variation in the performance of the mutator. A more de-
tailed examination to determine and compare the responsible influ-
ences is the subject of the next section.

5. Detailed performance analysis
To explain program performance on real platforms is tricky. Perfor-
mance is affected by a variety of factors at different levels. Some
factors have system-wide effects, such as available physical mem-
ory, fragmentation, number of simultaneously executing processes,

network bandwidth, disk usage, etc. While it is desirable, in the-
ory, to study the effect of system factors on performance, it is also
difficult to do so—such factors are very dependent on the specific
system used and the workload at measurement time. In our exper-
iments we perform our tests on a newly restarted, isolated system
with a minimal workload, so as to minimize system-wide effects.

Other general factors affect the performance of Java programs.
These factors can be divided into two sub-categories: code related
such as overall instruction workload, hashcode location, and code
positioning, and data related such as heap organization, data lo-
cation, and scan order. In Section 5.1, we will study these general
factors.

Finally, there are additional factors which can significantly af-
fect the performance of particular Java benchmarks. We call these
benchmark-specific factors. The selection of GC points, for in-
stance, as well as the high level choice of GC algorithm can affect
different kinds of benchmarks in different ways. Individual pro-
grams may also show a biased affinity or disaffinity for specific
hardware or software designs or components. We study these fac-
tors in Section 5.2.

To measure low-level performance variations, we integrated the
PCL [3] and PAPI [7] libraries into SableVM and Jikes RVM
respectively.

5.1 General Factors: Code and Data Management

5.1.1 Instruction workload

As the source code of a virtual machine is compiled, an obvious
source of performance difference is in the generated code. Even
improved source code can generate an increase in hardware work-
load due to code generation patterns or downstream optimizations.

We used hardware performance counter data to investigate the
changes due to our implementation of RS. The final version of RS
(used in our measurements) actually reduces the number of instruc-
tions executed during GC instructions for most benchmarks on both
virtual machines. Furthermore, there is no noticeable difference
in the executed instruction count for the mutator (variations were
about 0.03% in average). In general, the RS strategy reduces the
workload of GC and does not increase the workload of the mutator,
and so is not a significant contributor to the performance differ-
ences.

5.1.2 Hash code location

In support of the java.lang.Object.hashCode() method, many
virtual machines derive object hash codes from heap addresses, and
may also store calculated hashes in the object header. Use of hash
code’s thus can have an indirect effect on performance if the heap
memory is laid out differently, and the position and value of an
object’s hash code is another implementation difference between
our RS/bi-directional implementation and the original Jikes RVM
implementation.

In practice, however, our profiling results indicate that the num-
ber of objects that actually use a hash code is quite small for these
benchmarks. For example, in the SPECjvm98 benchmarks (mea-
sured on SableVM, which uses a similar lazy hash code creation
approach to Jikes RVM), most objects are not hashed. Even in the
javac benchmark, which exhibits the largest number of hashed ob-
jects, no more than 0.5% of copied objects are hashed. Measuring
the precise effect of different hash values is of course quite diffi-
cult, but the limited use of hash codes in our benchmarks strongly
suggests that any differences have a minimal impact.

5.1.3 Code positioning

Any change to the source code of the mutator or the collector is
likely to change the precise location of parts of compiled code,

Benchmark In Mutator In GC
Inst. Data Inst. Data

compress 239 871 128K 77
db 725 400 341K 152

jack 145 244 38K 123
javac 201 259 264K 138

jess 176 376 80K 146
mtrt 534 312 264K 159

raytrace 475 311 242K 161
antlr 183 316 44K 150
bloat 150 205 132K 175

fop 203 269 200K 163
pmd 196 191 124K 148

ps 191 291 288K 200

Average 285 337 179K 150

Table 1. Benchmark characteristics: average number of cycles be-
tween cache misses in SableVM on a Pentium III workstation.

Benchmark L.V.F.(%) of L.V.F.(%) of
Code Shifting Extra Component

compress 2.78 1.24
db 6.09 4.80

jack 2.04 5.19
javac 2.00 4.40

jess 2.69 6.39
mtrt 3.69 4.70

raytrace 3.21 6.42

antlr 0.89 5.75
bloat 1.49 9.46

fop 1.14 2.94
pmd 1.39 3.31

ps 1.89 1.62

Table 2. Impact of the code shifting in SableVM and adding an
extra never executed component in Jikes RVM (L.V.F. for Largest
Variation Found in execution time)

possibly affecting the instruction cache success rate. Our final code-
related effect is thus a consideration of the effect of minor changes
in code positioning on performance.

Table 1 shows that during GC very few instruction cache misses
occur. In fact, in the GC phase the collector mostly works by
iterating over a small set of instructions; it is thus unlikely for
code position differences to cause any significant impact on GC
performance.

On the other hand, Table 1 also shows that instruction cache
misses are more frequent in the mutator. To gain additional insight
on the issue, we performed two experiments.

The second column of Table 2 shows the largest performance
changes we found in SPECjvm98 benchmark on a series of code
shifted versions of SableVM. The only difference between these
versions is the length of some extra useless space, varying from
0 bytes to double the size of a cache line, reserved in the string
table section of the executable binary. This causes later binary
executable code to be shifted, without actually changing the binary
code. Surprisingly, such a trivial modification triggered significant
performance differences, up to 6.09%.

As a second experiment, we changed the position of some code
in Jikes RVM by hand, and we generated a set of variances. We then
compiled two versions of Jikes RVM: one with and one without the
Hardware Performance Monitoring (HPM) component. In these
measurements no HPM code was executed; i.e., we simply added a
piece of non-executed code to Jikes RVM. The results are shown in

the third column of Table 2. Note how the simple addition of some
non-executed component to Jikes RVM can affect performance by
up to 9.46%! Performance changes due to changing code position
clearly have potential to be quite large relative to other “noise”
effects.

5.1.4 Data location factors

Our case study optimization changes the position of fields in the
object layout, and this has an obvious potential impact on the
data cache. For the majority of objects with relatively few fields,
however, proximity of data is maintained, and at least within the
mutator these changes are expected to be both minor and amortized
throughout execution.

A more subtle and important data cache effect can arise from
the use of scanning GCs. In a tracing collection based system
the order in which references are scanned has a direct impact on
the new location of reachable objects in the heap after collection.
Minor changes to scan ordering can result in a widely different
distribution of objects in the heap, and can thus affect data locality
in the mutator and in later collection cycles.

As the bi-directional layout changes the natural scan order of
references, we define two scan orders:

• Original favourite order (OFO): This is the natural reference
scan order in the traditional layout, where references of super
classes are scanned first.

• Bi-directional favourite order (BFO): This is the natural ref-
erence scan order in the bi-directional layout, where references
of super classes are scanned last (after those of subclasses).

Figure 8 shows a data cache miss comparison between BFO
and OFO RS implementations in Jikes RVM. Switching the scan
order leads to a new heap layout that changes data locality in
the mutator. However, there is no obvious winner between the
two orders. Most changes in data cache misses are lower than the
variance in the execution time. Table 1 shows the average number
of cycles between two consecutive L1 data or instruction cache
misses. Given the low data cache miss density in the mutator part, it
is safe to assert that data locality changes due to scan order are not
the key issue for the performance anomalies observed in Section 4.

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

ps

pm
d

fo
p

bl
oa

t

an
tlrrt

m
tr

t

je
ss

ja
va

c

ja
ckdb

co
m

p

Data cache misses variation (OFO- BFO)/OFO

Figure 8. The effect of scan order on data cache performance in
Jikes RVM

5.2 Benchmark specific factors

It is also the case that individual benchmarks may have properties
that produce very different reactions to a given optimization. Below
we extend our analysis to benchmark-specific factors which can

also influence the performance. These properties include the rela-
tive number and distribution of reference fields (relatively unique to
our particular optimization), and more generic effects such as vari-
ation in GC collection points and GC strategy, and relative cache
sensitivity of the benchmarks.

5.2.1 Reference field usage

Section 3.1 presents the potential advantages of the RS strategy. By
its nature, RS scanning will bring larger benefits when accessing
long, contiguous reference sections. For objects with a single ref-
erence, however, the cost of RS scanning is greater than the cost of
normal scanning. The number of reference fields typically found in
objects can also thus influence performance, and so we measured
the number of reference fields in scanned objects in SPECjvm98
benchmarks.

We found that db, mtrt and raytrace have more than 40% objects
with no reference at all. These objects are skipped by the RS
strategy, leading to a significant improvement in GC speed over
the original SableVM implementation. A relatively large number
of single-reference objects are found in jack and especially jess
(43.4%), for which our RS strategy brings less improvement. The
behaviour of compress, which has the lightest GC workload of all
analyzed SPECjvm98 benchmarks, and of javac, which triggers
four forced GCs, however, cannot be completely explained from the
reference composition data alone. For this we need to also consider
more general properties of GC behaviour.

5.2.2 GC frequency and workload

Our code and data modifications have strong potential to adjust the
workload given to GC during program execution. This can have
both obvious and subtle consequences. Jikes RVM’s garbage col-
lector, for instance, manages both application data and VM-specific
data. Thus purely internal VM changes can be reflected in the work-
load experienced by applications; this may be a primary source for
the anomalous behaviour of some of the DaCapo benchmarks un-
der the GenMS GC strategy.

Our modifications to the Jikes RVM object model in the im-
plementation of the RS strategy also causes a slight change in GC
workload. In particular, the size of surviving objects after a collec-
tion for these benchmarks is slightly different (by only a few Kilo-
bytes) between the original and the RS implementations. Given the
large heap size, we would not expect any significant impact from
this when using a semi-space copying collector. However, in the
case of a generational collector, where most of the work is done in-
crementally, a small size difference can have a much larger impact;
e.g., the bloat benchmark has 27 GCs with the RS version and 33
with the original.

As a further complication, a lower number of GCs does not
necessarily mean lower total GC time. In this case, the nursery-
GC that follows a full-heap GC is much longer than other nursery
GCs. The RS version is actually faster in this benchmark until near
the end of the execution, when after a full-heap GC, one extra
longer nursery-GC is triggered, eliminating all the prior gains. The
aggregate GC time of bloat for both original and RS versions in
two heap size settings (80M and 160M) are shown in Figure 9. In
both heap settings, the RS version is faster than the original version
at every step. In the 80M case, RS wins over the original version
consistently until the last step where an extra long nursery GC cycle
is triggered. In the 160M case, RS reduces total garbage collection
time by 4.4%. It is well known of course that changing heap sizes
can alter GC performance results; here we see that generational
approaches can make GC performance very sensitive to relatively
small variations in heap usage.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40 50 60

G
C

 a
m

ou
nt

 ti
m

e
(m

s)

Execution time (s)

Org(80M)
RS(80M)

Org(160M)
RS(160M)

Figure 9. Bloat GenMS performance can be changed because of minor code and heap usage differences

5.2.3 GC algorithm

A final consideration is with respect to the overall GC algorithm
performed; specific benchmarks respond differently to different GC
strategies. Jikes RVM’s GenMS GC, for instance, treats objects dif-
ferently according to their potential lifetime, and in most cases pro-
vides better performance than SemiSpace GC. Many benchmarks,
such as jack, jess and ps, are suitable for generational GC, where
they can operate more than 10 times faster in ordinary heap size set-
tings. On the other hand, the performance gains are sometimes lost
when operating on large heaps. In some cases, such as db and pmd,
SemiSpace is actually nearly as fast or even faster than GenMS
in normal heap settings. Since the performance of GC is strongly
correlated with heap size, we examined how much GenMS can
win over SS at different heap sizes. Figure 10 shows results for
SPECjvm98 and Figure 11 shows the DaCapo benchmarks. The
y-axis expresses the GC time of SemiSpace normalized to that of
GenMS, and the heap size is shown as a multiple of the smallest
heap size setting. Note that there is no SemiSpace GC on compress
and db when the heap size is larger than 3.5X and 4X the minimum
setting respectively.

Obviously the specific choice of GC strategy and heap size has
a significant affect on performance. The impact on measuring op-
timizations is more subtle, and depends on the varying benchmark
responses to these parameters. An optimization to a strategy be-
ing used in a sub-optimal situation may be more or less effective,
affecting different benchmarks to different degrees.

5.2.4 Hardware related benchmark characteristics

Not all benchmark characteristics of interest are most easily seen as
high level considerations, and so we also use an instrumented Jikes
RVM to study benchmark behaviour through a variety of hardware
events. Here we briefly discuss results on L1 instruction and data
cache misses for some sample benchmarks, compress, db and jack.
The corresponding cache miss data is shown in Figures 12, 13 and
14 respectively, and represent data gathered at each thread context
switch.

 0.1

 1

 10

 100

 1 2 3 4 5

S
S

/G
en

M
S

 G
C

 ti
m

e
(lo

g)

Normalized heap size

compress
db

jack
javac

jess
mtrt

raytrace

Figure 10. Performance comparison between SS and GenMS on
SPECjvm98 benchmarks, the minimal heap size is 32M

All these benchmarks show recurrent patterns, particularly in
the instruction cache miss rate. This corresponds to the various ex-
ecution phases of these benchmarks. More interesting is the pro-
portion of cache misses attributed to instruction or to data. In
compress data cache misses dominate, whereas in jack instruction
cache misses dominate; db lies between, with both kinds of misses
equally important. Relative dominance of cache misses should cor-
relate with the general sensitivity of benchmarks to instruction ver-
sus data cache effects; e.g., a benchmark with a dominant and
tightly recurrent pattern of instruction cache misses likely contains
a small but very “hot” section of code, and could be strongly af-
fected by small changes in code positioning.

Figure 15 extends the idea of a cache sensitivity “bias” (I-
Cache versus D-Cache) to all our benchmarks. In this graph a
benchmark’s position is determined by the I-Cache (x-axis) and
D-Cache (y-axis) miss density. Benchmark compress, for instance,
is quite biased toward the data cache, while a large number of

 0.1

 1

 10

 100

 1 2 3 4 5

S
S

/G
en

M
S

 G
C

 ti
m

e
(lo

g)

Normalized heap size

antlr bloat fop pmd ps

Figure 11. Performance comparison between SS and GenMS on
DaCapo benchmarks, the minimal heap size is 40M

benchmarks, such as antlr, are highly biased toward the instruction
cache. The performance of db, mtrt and bloat have similar relative
dependencies on these two caches.

The rectangular area for each benchmark data point functions as
error-bars, showing the size of one standard deviation in the varia-
tions between consecutive measurements. A box elongated in one
direction represents a benchmark that has a larger variation in the
corresponding hardware event, and thus a larger potential for varia-
tion due to optimizations; e.g., in compress data cache performance
varies much more than I-Cache. The arrows associated with each
point show the average of the top 10% largest cache miss varia-
tions between two consecutive sample points. A very long arrow
thus means that the largest performance variation is very different
from the more typical case, whereas a small arrow indicates a more
uniform and stable result. The length of this arrow is thus a rough
indicator of the validity of the measurement for detecting program
phase transition points: a measurement that varies little will not be
a good indicator of program behaviour changes.

The results in these figures are heuristic indicators only, but
show that individual benchmarks may have very different proper-
ties with respect to how they respond to a particular optimization,
even at a very low-level: these effects are not obviously and trivially
amortized away by a long or complex execution. An optimization
may be viewed quite differently given a set of benchmarks that are
primarily I-Cache (resp. D-Cache) driven, and this can easily result
in a spurious overall evaluation of the optimization effect.

5.2.5 Summary

The above investigations and coarse taxonomy provides a number
of insights into the sources of different influences on program and
optimization performance. We have attempted to be exhaustive
with respect to influences related to our specific optimization case
study, while demonstrating both general principles and a typical,
relative weighting of factors. From the analyses in this section we
can summarize that:

• The performance of Java virtual machines can be significantly af-
fected by unintended code motion side-effects. Instruction cache
effects are not typically deeply considered in modern, high level
optimization studies, but even in cases where an optimization
does not intentionally alter I-Cache behaviour minor code po-
sition changes can induce a misleading understanding of the op-
timization effect.

• Our main approach has been to isolate and measure different
influences. The real performance of GC improvements, however,

is difficult to measure in hybrid systems like Jikes RVM, where
internal VM-specific data is stored in the heap, easily perturbing
results.

• The relation between kinds of benchmarks and design choices
can be a complex source of variance, and cannot always be ig-
nored as an amortized, unimportant cost. The reference compo-
sition of the objects, for instance, is an important factor in deter-
mining the suitability of our RS scanning strategy.

• Major VM components optimized for general cases do not give
a consistent improvement across all benchmarks. Generational
versus semi-space GC, for instance behaves differently depend-
ing on the specific benchmark and workload size. This situation
exhibits some potential for adaptively setting the nursery size to
improve performance.

• Benchmarks show a wide variation in sensitivity to code versus
data cache effects. Which factor dominates for a given bench-
mark depends strongly on the benchmark itself. This highlights
the impact of low level system design on high level performance,
as well as the need to apply quantitative methods for ensuring
benchmark representability.

6. Conclusions and future work
Optimizations in a modern virtual machine environment clearly
have the potential for complex interactions with various system
aspects, high and low level. Our GC optimization case study shows
the relative impact of many confounding factors, and we have
given a initial, high level taxonomy for the different sources of
performance variation.

Within our categorization cache effects dominate, and are a well
known source of variance. Their large impact and indirect causality
is, however, much less known. Other effects have less overall influ-
ence, although changes in GC points and the sensitivity of particu-
lar benchmarks to specific system or optimization designs can also
have a significant impact. Our study provides a guideline for the rel-
ative weight of these issues, and an example of the widely varying
factors that must be considered. Different situations, benchmarks,
systems, and optimizations will of course vary in the source and
actual magnitude of performance change; nevertheless, the same
basic concerns will apply to most other performance optimization
analyses, certainly any that affect the placement of code or data,
or alter the parameters or timing of GC. Unless these factors are
appropriately investigated and controlled for, conservatively, real-
time performance changes of up to 10% may be attributable to ex-
ternal factors.

Of course a potential variance is also a potential source of opti-
mization. At a fine grain the cache behaviour shows strong repeti-
tive sequences, and at a coarse grain many benchmarks have a bias
in their sensitivity toward instruction or data cache misses; future
work on adaptive optimizations that branch on early detection of
these qualities may be very applicable. Code layout optimizations
that better exploit the instruction cache are also clearly necessary;
the considerable performance variation we find just by moving code
in a simplistic and arbitrary manner suggests significant perfor-
mance improvements are still possible in the final stages of code
generation and linking.

Acknowledgments
This research has been supported by Le Fonds Québécois de la
Recherche sur la Nature et les Technologies (FQRNT) and the
Natural Sciences and Engineering Research Council of Canada
(NSERC). We also would like to thank the anonymous reviewers
for their insightful comments.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10

M
is

se
s

pe
r

C
yc

le

Elapsed Cycles

Compress, L1 cache performance in 0-6 billion cycles

GCs
L1DCM/Cyc
L1ICM/Cyc

Figure 12. Compress hardware event trace

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 2e+10 4e+10 6e+10 8e+10 1e+11

M
is

se
s

pe
r

C
yc

le

Elapsed Cycles

Db, L1 cache performance in 0-10 billion cycles

GCs
L1DCM/Cyc
L1ICM/Cyc

Figure 13. Db hardware event trace

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10 3.5e+10 4e+10

M
is

se
s

pe
r

C
yc

le

Elapsed Cycles

Jack, L1 cache performance in 0-4 billion cycles

GCs
L1DCM/Cyc
L1ICM/Cyc

Figure 14. Jack hardware event trace

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000 7000 8000

D
-C

ac
he

 d
en

si
ty

 (
M

is
se

s
pe

r
m

ill
io

n
cy

cl
es

)

I-Cache density (Misses per million cycles)

compress

db

jack javac

jess

mtrt raytrace

antlr
bloat

foppmd

ps

Figure 15. Benchmark cache bias

References
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith,

T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen.
Implementing Jalapeño in Java. In OOPSLA ’99: Proceedings of the
14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 314–324, Oct. 1999.
ISBN 1-58113-238-7.

[2] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,
S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger,
and W. E. Weihl. Continuous profiling: where have all the cycles
gone? ACM Trans. Comput. Syst., 15(4):357–390, Nov. 1997. ISSN
0734-2071.

[3] R. Berrendorf, H. Ziegler, and B. Mohr. PCL-the performance counter
library. http://www.fz-juelich.de/zam/PCL/.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
The performance impact of garbage collection. In Proceedings of
the ACM SIGMETRICS Conference on Measurement & Modeling
Computer Systems, pages 25–36, June 2004.

[5] S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B. Moss.
Beltway: getting around garbage collection gridlock. SIGPLAN Not.,
37(5):153–164, June 2002. ISSN 0362-1340.

[6] H.-J. Boehm. Reducing garbage collector cache misses. In ISMM
’00: Proceedings of the 2nd international symposium on Memory
management, pages 59–64, Oct. 2000. ISBN 1-58113-263-8.

[7] S. Brown, J. Dongarra, N. Garner, K. London, and P. Mucci. PAPI.
http://icl.cs.utk.edu/papi.

[8] C.-Y. Cher, A. L. Hosking, and T. N. Vijaykumar. Software
prefetching for mark-sweep garbage collection: hardware analysis
and software redesign. In ASPLOS-XI: Proceedings of the 11th
international conference on Architectural support for programming
languages and operating systems, pages 199–210, Oct. 2004. ISBN
1-58113-804-0.

[9] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing
and predicting program behavior and its variability. In PACT
’03: Proceedings of the 12th International Conference on Parallel
Architectures and Compilation Techniques, page 220. IEEE Computer
Society, Sep. 2003. ISBN 0-7695-2021-9.

[10] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic
metrics for Java. In Proceedings of the ACM SIGPLAN 2003
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 149–168, Oct. 2003. ISBN
1-58113-712-5.

[11] L. Eeckhout, A. Georges, and K. De Bosschere. How Java programs
interact with virtual machines at the microarchitectural level. In
Proceedings of the 18th ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, pages
169–186, Oct. 2003. ISBN 1-58113-712-5.

[12] E. M. Gagnon. SableVM. http://www.sablevm.org/.

[13] E. M. Gagnon. A Portable Research Framework for the Execution of
Java Bytecode. PhD thesis, McGill University, 2002.

[14] E. M. Gagnon and L. J. Hendren. SableVM:A Research Framework
for the Efficient Execution of Java Bytecode. In Proceedings of the
Java Virtual Machine Research and Technology Symposium (JVM
’01), pages 27–40. USENIX Association, Apr. 2001.

[15] D. Gu, C. Verbrugge, and E. Gagnon. Assessing the impact of
optimization in Java virtual machines. Technical Report SABLE-TR-
2005-4, Sable Research Group, McGill University, Oct. 2005.

[16] D. Gu, C. Verbrugge, and E. Gagnon. Code layout as a source of
noise in JVM performance. Studia Informatica Universalis, 4(1):
83–99, March 2005. ISBN 2-912590-31-0.

[17] S. Z. Guyer and K. S. McKinley. Finding your cronies: static analysis
for dynamic object colocation. In OOPSLA ’04: Proceedings of
the 19th annual ACM SIGPLAN Conference on Object-oriented
programming, systems, languages, and applications, pages 237–250,
Oct. 2004. ISBN 1-58113-831-9.

[18] K. Hammond, G. L. Burn, and D. B. Howe. Spiking your caches.
In J. T. O. Donnell and K. Hammond, editors, GLA, pages 58–68.
Springer-Verlag, July 1993.

[19] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind. Vertical
profiling: understanding the behavior of object-priented applications.
In OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-oriented programming, systems, languages,
and applications, pages 251–269, Oct. 2004. ISBN 1-58113-831-9.

[20] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: improving program
locality. In OOPSLA ’04: Proceedings of the 19th annual ACM
SIGPLAN Conference on Object-oriented programming, systems,
languages, and applications, pages 69–80, Oct. 2004. ISBN 1-
58113-831-9.

[21] R. Jones and R. Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley and Sons, Ltd, 1996.

[22] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The
strong correlation between code signatures and performance. In
ISPASS ’05: Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, page 220. IEEE
Computer Society, March 2005.

[23] D. Project. The DaCapo benchmark suite (beta050224). http:
//www-ali.cs.umass.edu/DaCapo/index.html, 2003.

[24] F. Qian and L. Hendren. An adaptive, region-based allocator for java.
In ISMM ’02: Proceedings of the 3rd international symposium on
Memory management, pages 127–138, June 2002. ISBN 1-58113-
539-4.

[25] R. M. Rabbah, H. Sandanagobalane, M. Ekpanyapong, and W.-
F. Wong. Compiler orchestrated prefetching via speculation and
predication. In ASPLOS-XI: Proceedings of the 11th international
conference on Architectural support for programming languages and
operating systems, pages 189–198, Oct. 2004. ISBN 1-58113-804-0.

[26] F. Schneider and T. R. Gross. Using platform-specific performance
counters for dynamic compilation. In Proceedings of the 18th
International Workshop on Languages and Compilers for Parallel
Computing (LCPC’05), oct 2005. to appear.

[27] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selection of
application-specific garbage collectors. In ISMM ’04: Proceedings
of the 4th international symposium on Memory management, pages
49–60, Oct 2004. ISBN 1-58113-945-4.

[28] Standard Performance Evaluation Corporation. SPECjvm98 bench-
marks. http://www.spec.org/osg/jvm98.

[29] D. Stefanovi ć, M. Hertz, S. M. Blackburn, K. S. McKinley, and
J. E. B. Moss. Older-first garbage collection in practice: evaluation
in a java virtual machine. In MSP ’02: Proceedings of the 2002
workshop on Memory system performance, pages 25–36, June 2002.

[30] D. Stefanovi ć, K. S. McKinley, and J. E. B. Moss. Age-based garbage
collection. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, pages 370–381, Oct. 1999. ISBN 1-58113-238-7.

[31] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan,
D. Grove, and M. Hind. Using hardware performance monitors to
understand the behavior of Java applications. In VM’04:Proceedings
of the 3rd Virtual Machine Research and Technology Symposium,
May 2004.

[32] D. Ungar. Generation scavenging: A non-disruptive high performance
storage reclamation algorithm. In SDE 1: Proceedings of the
first ACM SIGSOFT/SIGPLAN software engineering symposium on
Practical software development environments, pages 157–167, Apr.
1984. ISBN 0-89791-131-8.

[33] X. Vera and J. Xue. Let’s study whole program cache behavior
analytical. In International Symposium on High-Performance
Computer Architecture (HPCA 8) (IEEE), pages 175–186, Feb. 2002.

