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Abstract

Analysis of dynamic data structure usage is useful for
both program understanding and for improving the accu-
racy of other program analyses. Static analysis techniques,
however, suffer from reduced accuracy in complex situa-
tions, and do not necessarily give a clear picture of run-
time heap activity. We have designed and implemented
a dynamic heap analysis system that allows one to exam-
ine and analyze how Java programs build and modify data
structures. Using a complete execution trace from a pro-
filed run of the program, we build an internal represen-
tation that mirrors the evolving runtime data structures.
The resulting series of representations can then be analyzed
and visualized, and we show how to use our approach to
help understand how programs use data structures, the pre-
cise effect of garbage collection, and to establish limits on
static data structure analysis. A deep understanding of dy-
namic data structures is particularly important for modern,
object-oriented languages that make extensive use of heap-
based data structures.

1 Introduction

Data structure, heap andshapeanalysis techniques sum-
marize dynamic data connectivity, with the goal of improv-
ing alias analysis [9], automatic parallelization [11], opti-
mizing garbage collection [23], debugging, or as part of
a general understanding of program behaviour. Investiga-
tion of data structure shape and usage is particularly impor-
tant for programs which make extensive use of heap data,
such as in Java and other object-oriented languages. Static
approaches to data structure analysis, however, potentially
suffer from overly-conservative approximations, easily in-
duced by temporary data structure inconsistencies during
updates and modifications.

In this paper we investigate heap data analysis from the
perspective of dynamic analysis. Using complete traces of
Java program executions, we reconstruct the entire history

of heap-based data as it is changed through program mod-
ifications. For smaller programs this allows for the con-
struction of data structure snapshots and animations, vi-
sually illustrating evolution of program data, and also en-
coding a variety of properties of interest, including shape,
age of data, node types, connectivity, and so on. For large
benchmarks the results of analyses run at each data struc-
ture change are graphed to summarize overall behaviour.
This permits larger scale investigations of data structureus-
age, and using a selection of standard Java benchmarks we
demonstrate the extraction and analysis of various data that
can extend detailed, runtime heap analysis to reasonably
sized programs.

Data on number and size of data structures, their gen-
eral shape, connectedness and entrypoints, all supply use-
ful information on how programs use dynamic data struc-
tures, and we show how analysis of such data can provide
insights into program behaviour. This includes aspects of
data reachability—by analyzing which heap objects are ac-
tually reachable from program variables we can easily in-
spect the extent of and variation in unreachable, garbage
data carried through program execution (GCdrag [22]). A
complete tracking of heap data also allows us to determine
upper limits on the potential accuracy of a more traditional
static, conservative tree/dag/cycle data structure analysis,
under different assumptions of available alias analysis infor-
mation. Most programs in our study are surprisingly simple
with respect to heap usage and our results show that static
approaches can be quite accurate, at least for common in-
dustry benchmarks.

Specific contributions of our work include:

• The design and implementation of a framework for cap-
turing the complete dynamic evolution of data structures
in Java programs. Our system includes a wide variety of
analyses that expose interesting and useful benchmark
properties.

• We compare accurate runtime data structure analysis
data with that achievable by both optimal and simple
static approaches. This establishes limits on accuracy
for static heap analyses.
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• We give and discuss experimental results on the ac-
tual data structure usage of a number of benchmark
programs, including non-trivial programs in the SPEC
JVM98 [24] and JOlden [3] suites.

In the next section we discuss background and related
work on data structure and dynamic analysis. In Section 3
we describe the general design of our analyzer and the kinds
of analyses and information we can gather. Section 4 dis-
cusses a simple representation, and Section 5 gives results
from more detailed and larger benchmarks. Finally, we dis-
cuss future work and conclude in Section 6.

2 Related Work

Our approach combines two main techniques, dynamic
analysis and shape analysis. These have historically been
relatively orthogonal pursuits, and so we discuss them sep-
arately below.

2.1 Shape Analysis

Shape analysis techniques vary from implementing a
whole new language for identifying data structures to sum-
marizing them using specialized graphs.

A frequent, and early approach to identifying data struc-
tures is to allow the programmer to provide high-level in-
formation through program annotations. Hummel et al., for
instance, define static annotations to data structures in order
to help the compiler identify opportunities for parallelizing
transformations [12]. A similar approach is described by
Fradet and Le Ḿetayer, who define a new language annota-
tion that integrates the notion of shapes into the C language
[8].

Many have tried identifying data structure shape with-
out modifying the source code. Ghiya and Hendren show
how the conceptually simple categorization of data struc-
tures intotree, DAG, or cycle can be sufficient for com-
piler optimization [9]. More detailed approaches attempt to
model data using various kinds of graph abstractions. Klar-
lund and Schwartzbach’sgraph typesbuild a representation
as a grammar describing data structures having a backbone,
such as doubly-linked lists [14]. Wilhelm et al. [25] define
shape graphsto represent structural properties of data struc-
tures. Three valued logichas also been applied to express
and prove shape properties [15]. Corbera et al. combines
static shape graphs with abstract storage graphs to give a
more precise shape analysis [4]; their techniques were im-
proved by Navarro et al. by approximating the data struc-
tures in a graph combining memory locations having sim-
ilar patterns [17]. Recently, Hackett and Rugina described
a way of breaking down the entire shape abstraction into
smaller component and analyzing them separately [10]. Ra-
man and August [20] examine complete dynamic traces to

generate abstract shape information; this is a similar general
approach to ours, although they concentrate on identifying
recursive structures, and derive their information from low-
level, binary analysis.

While most work done on shape analysis has been done
statically on C code, Bogda and Singh have done some ex-
ploratory work on shape analysis for Java code at run-time
[1]. They analyze the dynamic call graph to help identify
thread local and shared objects in order to perform synchro-
nization removal. This technique focuses on the optimiza-
tion property more than shape per se, but does illustrate an
application of heap connectivity information.

Our own work here also includes aspects of data struc-
ture visualization. Visually representing the heap is an ex-
isting concern for debuggers [26], heap analysis tools [19],
and visualizing profilers in general [21]. Most shape analy-
sis studies, however, concentrate on the analysis more than
depicting the analysis results, although there is recent work
on defining structural shape properties suitable for visual-
ization [13].

2.2 Dynamic Analysis

Dynamic program analysis can be performed online, or
offline through the analysis of program execution trace files.
Given the large resource demands of our precise shape anal-
ysis we have focused on the latter technique; inroads have
been made to the former [1], however.

Trace extraction from Java programs often relies on the
use of the Java’s built-in Virtual Machine Profiling Inter-
face (JVMPI), or its new replacement JVMTI (Tracing In-
terface). Brown et al. describe a framework, STEP, for pro-
filer developers to encode general program trace data in a
flexible and compact format [2]. JVMPI is also used by
Dufour et al. in the implementation of *J [5], a tool for
dynamic analysis of Java programs used to generate Java
program metrics [6]. Our work here builds on the *J frame-
work.

The Daikon project from MIT [18] and the Dynamo
project from Indiana University [7] both provide online
forms of dynamic analysis, differing mostly in usage. Both
projects are based on observing runtime values and invari-
ants to perform diverse analyses and optimizations. The
Daikon project uses the information to report properties that
were true over the observed period, which can then be used
for testing and verification for example. Dynamo is a com-
piler architecture that uses the information to do runtime
optimizations. The challenges of efficient online dynamic
analysis are quite different from our exhaustive approach to
trace analysis, but the invariant-based approach may be a
useful basis for determining specific data structure proper-
ties.
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Figure 1. Design overview.

3 Design

We begin with an overview of our design, followed by
a description of the properties we can represent in the out-
put, and the analyses that we can perform. Fully accurate
dynamic data structure analysis implies significant research
challenges in handling and representing large amounts of
information; this is discussed further in section 4.1.

The overall flow for our shape analysis system is shown
in Figure 1. The first part of the process is data gathering.
Java programs are executed in the JVM (Java Virtual Ma-
chine), and an attached *J agent produces execution trace
files of the running program. Trace files are then fed into
the *J shape analyzer. Here the input event trace is used
to reconstruct the program data structures and their evo-
lution over time. The *J shape analyzer may apply vari-
ous analyses such as tree/DAG/cycle analysis, topological
shape analysis, etc. The last part of the process is the output
representation of the analysis data. Results can be commu-
nicated as literal snapshot or animated representations of
graph structures, or in the case of larger outputs in more
abstract and aggregated forms.

3.1 *J Shape Analyzer

The *J shape analyzer is built on top of *J, a tool for dy-
namic analysis of Java programs [6, 5]. *J comes in two
parts: the first part is the *J agent, which produces trace
files containing events obtained from the JVM through the
JVMPI (Java Virtual Machine Profiling Interface). The sec-
ond part is the *J analyzer, a framework for reading trace
files and performing different analyses on that data. The *J
shape analyzer extends the basic analysis facilities of *J.

For a complete and accurate analysis of runtime data
structures we need complete data on heap objects and ref-
erences, and all values which may be stored in reference
fields. *J provides both a complete trace of all instruc-

tions executed, and unique identifiers for all objects. We
are thus able to reconstruct heap connectivity by tracking
which object identifiers are subject and target of reference
field writes; this includes reference arrays. The *J shape
analyzer reads events from the generated trace file and pro-
cesses them one by one. For each event processed a corre-
sponding update is applied to an internal structure that mir-
rors the program’s heap nodes and their connectivity. This
includes the removal of nodes due to GC. At each of these
modification points, analyses are then run to determine the
evolving properties of the data structure.

In order to construct an internal data structure that mir-
rors the program’s heap nodes and their connectivity, we
model the complete execution of each thread and method
by interpreting bytecode events. The system is built follow-
ing the Java Virtual Machine Specification [16]. Overall, it
can be seen as mimicking the behaviour of a JVM in terms
of object passing.

We must note that the amount of data that can be ac-
quired through the JVMPI interface in *J is limited. Early
events in the virtual machine startup are not available (oc-
curring before JVMPI is initialized), and data from native
method executions is not reliably delivered. In our investi-
gations we have restricted our analyses to application code,
not startup in order to ensure we have a complete event
trace.

3.2 Data Properties

From the mirrored representation of the program data
structures we are able to find and show a variety of
interesting and useful properties. Certainly type, or other
node information can be easily included in most visual
representations. We can further determine and encode
complex, historical node properties such as relative age of
its component nodes, and the data structure can also be
examined more abstractly, e.g., in terms of reachability.

3.2.1 Node Information. An example of representing
useful node information is shown in Figure 2. Here we
display type data textually, and also through colour, which
we use to distinguish application from library objects.
These kinds of properties and visualizations are straight-
forward to extend; Figure 2 also shows nodeage through
colour: as an object ages, meaning that it lives longer
within the program, its colour becomes darker (in Figure
2 this is applied only to application objects, not library
objects). Observing age and type can be a useful way of
understanding how a structure is constructed; in Figure 2,
for example, it is evident that the data structure is mostly
built bottom-up, with application nodes near the tree root
younger than nodes deeper in the structure.
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Figure 2. A data structure showing the aging property.
Nodes are coloured according to their age (and type); all
leaf nodes here are library objects, and all internal nodes
application objects. The rectangular and pentagonal nodes
are entry points.

reference: 1147617424, 
=> BinaryNode

reference: 1147618600, 
=> BinaryNode

reference: 1147618584, 
=> java.lang.Integer

reference: 1147618760, 
=> java.lang.Integer

reference: 1147618776, 
=> java.lang.Integer

reference: 1147617824, 
=> SplayTree

reference: 1147618560, 
=> BinaryNode

reference: 1147618544, 
=> java.lang.Integer

reference: 1147617808, 
=> java.lang.String[]

reference: 1147618640, 
=> BinaryNode

reference: 1147618624, 
=> java.lang.Integer

Figure 3. Showing garbage nodes in the data structure.
Here unreachable nodes are drawn in dotted lines.

3.2.2 Graph Information. Non-local properties of data
structures can also calculated; graph reachability, for in-
stance, is easily determined in our system. By tracking all
object references we also know the set of all root objects,
or entry points to the structure. Root objects include static
variables, live local variables, and live method parameters.
Thus by comparing the transitive closure of references with
the set of all allocated but currently uncollected objects we
can determine the set of dead objects, not reachable from the
root set. This information can be visualized, showing the
exact amount and (remaining) connectivity of dead, garbage
objects the heap contains. Figure 3 shows a visualization
of a data structure containing garbage data. Here dead ob-
jects are drawn with dotted lines, and we can easily see how
many there are and exactly how they are connected to each
other and to the rest of the structure. Understanding how
much data is carried in this way can be useful for garbage
collector optimization [22].

3.3 Analyses

As well as basic node and connectivity information, the
*J shape analyzer has all necessary information to support
the implementation of various analyses, including different
summary and shape graph approaches, topological shape
analysis, etc. We have implemented a basic tree/DAG/cycle
analysis as a proof of principle, and also to investigate the
quality and utility of this simple data structure categoriza-
tion.

3.3.1 Tree/DAG/Cycle. Dynamically, a tree/DAG/cycle
categorization is quite trivial to compute. From each en-
try point we simply do a depth-first search to determine
whether the nodes reachable from that entry point repre-
sent a tree, a DAG or a cyclic graph. This process has one
important practical caveat: single, unconnected nodes are
considered trees. While this is true in a technical sense,
many programs make extensive use of single node objects,
and this obfuscates any understanding of more realistic tree
usage. For this reason we actually make use of a 4-way
categorization, with single nodes distinct from trees.

Note that a given data structure may appear differently
from different perspectives: it is common to think of data
structures as connected graphs, but analysis information
can be distinct for each entry point (reference variable),
or generic to the entire connected data structure. Figure 2
shows examples of distinct tree and DAG entry points into
the same connected structure. In most of our work we use
entry point information as fine grain data; connected data
structure information, however, is also determined.

3.3.2 Purity. Lastly, in order to measure the potential accu-
racy of a static analysis of the same program, we also define
apurity metric on all data structure references.

Definition Let “v” be a partial order on data structure
shapes; e.g., treev DAG v cycle. If the shape computed
from a particular referencer at each heap change forms a
sequences1, s2, . . . , sn wheresi ∈ {tree, DAG, cycle} and
n is the total number of heap changes observable fromr.
thenr is pure if si v si+1 for all i = 0..n − 1.

Data structure purity is meant to capture the relative abil-
ity of a static shape analysis to accurately determine shape.
If despite any changes the data structure is perceived to have
the same, constant shape then static analysis may be able
to give an accurate shape designation. If, however, the data
structure shape changes then any static shape result is neces-
sarily an approximation. Of course data structures are built
incrementally—all data structures evolve from trees (single
nodes). To avoid considering nearly all DAGs and cycle
references as impure we categorizemonotonicreferences,
ones that never progress downward in shape order, as pure.

4



Purity thus over-approximates the accuracy of a static ap-
proach.

Based on the above, we compute two measurements on
our runtime data. The entry point purity determines purity
for each runtime reference. This provides a rough upper
bound for static approaches, corresponding to the presence
of perfect alias (points-to) information. Less than perfect
alias information implies a need to merge information for
multiple entry points, necessarily reducing, or at least not
improving accuracy.

In the absence of good alias information, a static shape
analysis can minimally separate references according to the
static class type. To see how well even such a simple ap-
proach can determine data structure shape we compute a
type-based purity metric; here, shape data for runtime fields
with the same static signature are merged together. Purity is
then determined from changes in the merged entity.

4 Literal Representations

We have two main ways to represent the data gathered.
The most obvious and direct representation of data struc-
ture evolution is as series of literal snapshots of the en-
coded data structures, as in Figures 2 and 3. In this model
the information from various analyses is encoded in the vi-
sual output, as described above for age and reachability.
Shape (tree/DAG/cycle) categorization is also encoded: if
the reachable nodes form a tree then the entry point is drawn
as a rectangle, if the structure is a DAG then the entry point
is drawn as a “house shape” (pentagon), and for cyclic struc-
tures a hexagon entry point is used.

By performing our analyses at each structure modifica-
tion we obtain an evolving view of the data, appropriate for
animation. Snapshot animation itself, however, is surpris-
ingly difficult, even with external tools. In order to have a
nice animation of the snapshots, we need to be able to incre-
mentally add/subtract nodes and edges to an existing draw-
ing while ensuring existing nodes and edges do not move.
This preserves the location of nodes between snapshots,
making node identity trivially obvious as frames change.
Current open source and commercial tools for graph lay-
out, however, focus on optimal, static representations, and
do not in general attempt to locate nodes in the same place
between drawings. This results in animation frames where
graphs in successive frames may bear little visual relation
to each other, and thus are not useful as a visual replay of
data structure behaviour. Improvements to this situation are
part of our future work.

4.1 Scaling Concerns

While it is quite natural, if not trivial, to represent data
structure evolution as series of literal snapshots of the en-

coded data structures, it is not feasible as a general approach
to most benchmarks. The large data sets that must be ma-
nipulated in the context of the analyzer impose strong con-
straints on the style of presentation, and also on the kind of
data that can be gathered.

Tiny, test programs modify data structures only a rel-
atively small number of times. More realistic programs,
however, can perform a very large number of updates; the
Jess benchmark from SPECjvm98, for instance, performs
more than 48 million heap modifications. Examining all
these snapshots is physically unrealistic for humans, and
can generate significant analysis costs as well. Instead of
generating snapshots for each modification we therefore
only generate a snapshot everynth changes, for different
n depending on the scale of investigation required. This
trades off space for accuracy, but can also help in reducing
the computational cost of the analysis.

Unfortunately, many programs also produce large
data structures, whether or not they are modified fre-
quently. Even a simple program such as BiSort from the
JOlden benchmark suite generates more than 120 thousand
objects—far too many objects for a drawing tool to handle,
or to meaningfully show on a screen or in an animation.
Interactive visualization techniques can improve this situa-
tion, but it is clear that animations, and even representative
snapshots are appropriate for only very small programs. For
the non-trivial benchmarks we analyze in the subsequent
section we have thus concentrated on alternative representa-
tions that draw only reduced, aggregate information on data
structure properties, and not the data structures themselves.

5 Experiments

We have analyzed a number of benchmarks from the
SPECjvm98 and JOlden benchmark suites. Below we de-
scribe the programs analyzed, and present analysis exam-
ples based on the various data gathered using our frame-
work. These discussions demonstrate both the kind of data
we can collect, and also how it relates to relevant program
features and behaviour.

The JOlden programs illustrate our analysis on non-
trivial, but small and easily verified programs, whereas the
SPECjvm98 benchmarks represent larger programs with
more complex heap usage. For space reasons we cannot
show results for the entirety of both benchmarks suites, or
for all defined analyses. Here we discuss BiSort, Barnes-
Hut, and TSP (Travelling Salesman Problem) from JOlden,
and Jess, MpegAudio, and Compress from SPECjvm98.
All benchmarks are run in Sun’s 1.4.0 JVM, server mode
(128M heap); the SPEC benchmarks are run at size 10 for
Compress and MpegAudio, and size 100 for Jess.

5



5.1 Data and Analyses

Non-trivial benchmarks are not amenable to literal data
structure representations, and so we present aggregated data
from the analyses run in the shape analyzer at each data
structure modification. We use data from three main anal-
yses: a tree/DAG/cycle shape classification, reachability
analysis, and purity.

Shape classification data is based on the number of en-
try points that reach single-node, tree, DAG, and cycle type
data structures, plotted over time. For portability of results
time is measured abstractly, as either bytecodes executed,or
in terms of number of data structure modifications. To com-
press the visual representation our graphed data is some-
times a sampled subset; sample periods vary up to every
100K updates, and are indicated in the individual descrip-
tions.

Reachability is given both in terms of the number of live
versus dead objects, and in terms of number of connected
structures. The former makes it easy to see general trends
in volume of data and garbage, and for a limited visual in-
spection of GC drag. The latter gives a better impression of
the number of connected data structures (of size at least 2)
actually used in the program.

Purity data is used in two forms, entry point purity and
type-based purity, as described in section 3.2.

5.1.1 BiSort. BiSort performs two bitonic sorts, one for-
ward and one backward. It works in two phases. The first
phase is the tree construction, and the second phase is the
sorting.

In Figure 4, we can easily see the first phase, where the
tree is being constructed. A number of single nodes are al-
located, and then consumed by construction of the base tree.
At about 1/3 of the way through execution the program en-
ters its second phase; here many changes are performed on
the tree, and the number of tree structures becomes quite
variable. As the tree is modified the data types fluctuate be-
tween DAG types and tree types in a complementary fash-
ion: nodes are being rearranged, and not copied or deleted.
Note that there are not in fact as many disjoint structures as
the number of trees and DAGs would indicate; call chains
allow for the stack to contain multiple entry points to the
same structure, magnifying the apparent number of struc-
tures. This is more evident in the top graph of Figure 5—in
the second phase there is only ever 1 or 2 connected struc-
tures.

The bottom graph of Figure 5 gives an indication of
how well a static analysis could do in identifying the data
structure shape, assuming perfect alias information. Most
references are pure, but the second phase of execution con-
tains several impure variables due to the tree modifications.
Statically these references would have to be considered
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Figure 4. BiSort analysis results by bytecode for ev-
ery 10k updates. The top figure shows single nodes and
trees over bytecodes executed, and the bottom figure shows
DAGs. There are no cycles in BiSort.
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Figure 5. BiSort analysis showing the number of con-
nected data structures (top) and the number of pure vs. im-
pure entry points (bottom) for every 10k updates.

DAGs. Less optimal alias information may spread this
conservative approximation.

5.1.2 Barnes-Hut. Barnes-Hut solves the classic N-body
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gravitational attraction problem. Barnes-Hut also works
in two phases; first tree construction, where a quad-tree is
built, and second a force computation, where the tree is tra-
versed. From the graphs in Figure 6 it is evident that this
program is quite dynamic in behaviour, including either fre-
quent data structure changes or allocations. As with BiSort
there are no cyclic data structures at all. This is unsurprising
for tree-based programs, but is also informative: it implies,
for instance, that the quadtree does not make use of parent
pointers in child nodes.

The phases are not obvious in the shape information,
but are clearly shown in the GC results graph of Figure
7. The large spikes in number of dead objects indicate a
rapid accumulation of garbage data, and the short-lived
nature of the spikes suggests this is temporary data, quickly
collected. The frequent variation in number of tree and
DAG entry points is in this case mainly due to the use of
allocated, intermediate data; purity data (not shown) in
terms of both entry points and types shows all references
pure, further supporting the conclusion that the shapes of
existing data structures are not generally altered.
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Figure 6. Barnes-Hut analysis results by bytecode for ev-
ery 1k updates. On the top is shown the number of tree entry
points over time (bytecodes executed), and on the bottom
the number of DAGs. Again, there are no cyclic structures.

5.1.3 Travelling Salesman Problem. TSP computes an
estimate of the best Hamiltonian circuit for the Travelling
Salesman Problem. There are two clear phases evident in
both graphs of Figure 8: a short initial phase constructing
the problem, and a longer phase of analysis.

TSP is our first presented benchmark to actually include
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Figure 7. Barnes-Hut GC results by bytecode for every
1k updates, showing the number of live and dead objects
over bytecodes executed.

cyclic data structures. There are also a very large number
of tree data structures, orders of magnitude more than sin-
gle nodes, DAGS, or cycles. In fact the algorithm mainly
builds trees, and the few cycles can be attributed to a double-
linked threading of trees forming partial solutions to the in-
put problem.

TSP, relative to Barnes-Hut, generates minimal garbage,
although references are also uniformly pure. This suggests
a mainly static heap structure; however, since the number
of entry points in different shape categories does fluctuate
the data structures clearly do change. In this program the
use of heap data at different stages in the computation
is well-separated—entry points used in processing and
generating the tree structures are disjoint from those used
for DAGs and for cyclic structures.

5.1.4 Jess. Jess produces a lot of structures. Most of
them, however, are single node objects, as shown in Fig-
ure 9. There are no cycles, and there is a rhythmic pattern
of tree/DAG construction. This behaviour roughly corre-
sponds with the algorithm and input, which does repeated,
tree-based searches to solve a given combinatorial problem.

Memory usage in Jess is more complicated than in the
JOlden programs. From Figure 10 we can see that a large
number of objects are dead, usually many more than are
live at any one time. Moreover, while the live set is overall
stable, the number of dead nodes seems to have a general
upward slant, increasing over time.

We believe this to be an artifact of heap adaptation. Jess
allocates a lot of temporary objects (single nodes), some of
which have non-trivial lifetimes. The heap pressure due to
the use of temporary object allocations results in the heap
being expanded to accommodate the perceived memory
requirements. However, the core, necessary and retained
data is not increasing, and a larger heap merely provides
more room for garbage to accumulate. In this situation the
amount of drag increases as the heap increases, suggesting
that more aggressive GC rather than increasing heap size
may result in more efficient execution.
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Figure 8. TSP analysis results by bytecode for every 1k
updates. On the top are trees, and on the bottom DAGs and
cycles.
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Figure 9. Jess analysis results by bytecode for every 100k
updates. The top graph shows single nodes, the bottom
shows trees and DAGS. There are no cycles.

5.1.5 Compress. Most of the benchmarks produce ex-
tremely similar graphs whether the time axis is formed of
bytecode executions, or expressed in terms of data struc-
ture modifications: data structure updates are quite regular.
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Figure 10. Jess GC results by bytecode for every 100k
updates.

Compress shows this is not always the case. In the bottom
graph of Figure 11 the number of tree and DAG entry points
are plotted against total number of data structure updates.
The results show quite regular behaviour, with three obvi-
ous phases of execution, each consisting of two sub-phases.
This correlates nicely with the known behaviour of Com-
press under our input parameters, which is to compress and
decompress three files.

The top graph shows the same data plotted with respect
to bytecodes executed. Here the phases are considerably
less evident—the time spent compressing and decom-
pressing each file is clearly uneven. Regularity of changes
is a useful property for adaptive program optimization;
Compress is quite deterministic in the sequence of actions
executed, but duration of program phases, a large part of
predicting behaviour, is here an input property.

5.1.6 MpegAudio. MpegAudio demonstrates the poten-
tially large effect of good alias analysis on a static shape
analysis. The top graph of Figure 12 shows that while there
are a large number of entry points, they are entirely pure.
However, a shape analysis that relies on less precise alias
information may not be as successful as this suggests—the
bottom graph of Figure 12 shows that when minimal alias
data is available there are proportionally many impure ref-
erences.

5.2 Overall

Dynamic data structure analysis can illustrate a variety
of program behaviours. Most obviously execution phases
are clearly visible in most of our graphs—programs, espe-
cially industry benchmarks, tend to behave in relatively reg-
ular ways, and data-centric algorithms show a correspond-
ing regularity in data manipulations. Regularity is also seen
in the kind of data used: the composition of trees, dags and
cycles shows that while most of our benchmarks do perform
numerous data structure modifications, they do not gener-
ally tend to be complex in their usage—there are surpris-
ingly few cyclic structures found in our suite. In fact, there
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Figure 11. Compress shape (tree and DAG) analysis re-
sult by both bytecodes executed (above) and number of
heap updates (below).
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Figure 12. MpegAudio purity results per data structure
change. The top graph shows number of pure versus impure
entry points, and the bottom graph shows the purity of fields
merged over all objects of the same class type. Updates are
used as a time axis in this case to emphasize the two phases.

are surprisingly few actual connected structures (as opposed
to entry points) in most programs. This lack of complexity
in data structure usage is further supported by our purity

data—certainly some entry points in some benchmarks do
vary in the shape found, but most entry points are in fact
pure, with many of our programs even having 100% of en-
try points pure. This is less well reflected in type-based
purity, indicating the importance of alias information, but is
still quite encouraging for static approaches.

Of course data structure analysis does not reveal all be-
haviours, not will it be equally effective on all programs.
Scaling concerns require program data be summarized, and
this is necessarily a lossy process; interesting events may
be missed due to sampling interval size or selection. This
is evident in several of our GC graphs, where a reduction
in the number of live objects is not always matched by an
equal rise in garbage objects. Scientific and other programs
that make little use of dynamic data structures will obvi-
ously not show phases or other program behaviour through
a heap analysis. Java programs in general are quite heap in-
tensive, but this is at least partially evident in, for example,
our results from Compress (Figure 11), where the heap is
not altered for quite large portions of execution time. In the
case of Compress the lack of heap activity is still a useful
observation, but in less heap-intensive programs most or all
of a program execution may not discernible.

6 Future Work & Conclusions

Dynamic data structure analysis has the ability to show
detailed information on various aspects of program be-
haviour. This can help identify program characteristics,
heap usage, and provide general understanding of any cal-
culable static or evolving dynamic data structure property,
advancing various optimization, understanding, and analy-
sis goals. By comparing our runtime data with that achiev-
able through static means we have been able to verify that
static approaches have potential to be quite accurate, at least
for many of our example programs. This suggests that
despite the potential complexity of heap activity static in-
terpretations may be generally sufficient for understanding
how heap data is organized.

Our framework design and experience demonstrates the
feasibility of this technique, and also highlights the research
challenges involved. Extracting and reconstructing data
structure changes is itself a non-trivial effort, with further
complexity provided by the need for appropriate, scalable
representations. Literal representations are natural andpro-
vide maximal information, but are not practical for real pro-
gram investigations. More abstract analysis data from larger
programs, however, can still provide useful and interesting
information on program behaviour, while maintaining much
of the accuracy provided by a dynamic, runtime analysis.

There are a great many potential future directions for
this work. More, and larger benchmark programs would
of course be useful, as would an examination of bench-
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marks under different inputs. Our results here suggest data
structure usage is often quite simple; further experimental
evidence is needed, however, to make strong, general con-
clusions. Other languages and environments would also be
interesting to consider. We have primarily focused on Java
programs, due to the relative simplicity of using JVMPI to
trace program execution. With appropriate tracing facilities
we could extend our approach to other languages and envi-
ronments. We are also interested in evaluating the efficacy
and accuracy of more detailed shape analysis techniques,
such as those based on compact graph abstractions [17], or
shape types [25].

Visualization improvements are many of course. We
have been most recently working on improving animation
quality by adapting existing tools to support incremental,
if perhaps sub-optimal, graph drawing. Integration of good
animation with interactive visualization techniques can help
alleviate some of the scaling concerns with literal represen-
tations, and can also be the basis for useful educational and
debugging tools. Further, novel visualizations that com-
pactly summarize graph properties are also important, and
a combined approach that allows inspection of both literal
and more abstract representations of heap activity would
greatly assist the understanding of how programs use data
structures.
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