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Abstract. We present the results of an empirical study evaluating tleeigion
of subset-based points-to analysis with several variatarcontext sensitivity on
Java benchmarks of significant size. We compare the uselditaétrings as the
context abstraction, object sensitivity, and the BDD-blasentext-sensitive algo-
rithm proposed by Zhu and Calman, and by Whaley and Lam. @dyshcludes
analyses that context-sensitively specialize only poimgiables, as well as ones
that also specialize the heap abstraction. We measure hatlaateristics of the
points-to sets themselves, as well as effects on the poadidiclient analyses. To
guide development of efficient analysis implementations measure the number
of contexts, the number of distinct contexts, and the nunobelistinct points-to
sets that arise with each context sensitivity variation.eValuate precision, we
measure the size of the call graph in terms of methods andsettgenumber of
devirtualizable call sites, and the number of casts sthtipeovable to be safe.
The results of our study indicate that object-sensitivdyaigimplementations are
likely to scale better and more predictably than the oth@r@gches; that object-
sensitive analyses are more precise than comparableioasaif the other ap-
proaches; that specializing the heap abstraction imprprexssion more than ex-
tending the length of context strings; and that the profusibcycles in Java call
graphs severely reduces precision of analyses that forgahtext sensitivity in
cyclic regions.

1 Introduction

Does context sensitivity significantly improve precisiohirterprocedural analysis of
object-oriented programs? It is often suggested that itd;duut lack of scalable imple-
mentations has hindered thorough empirical verificatiotiizfintuition.

Of the many context sensitive points-to analyses that heee proposed (e.qg. [1, 4,
8,11,17-19,25,28-31]), which improve precision the migtitch are most effective for
specific client analyses, and for specific code patterns®kih variations are we likely
to find scalable implementations? Before devoting resautedinding efficient imple-
mentations of specific analyses, we should have empiricalers to these questions.

This study aims to provide these answers. Recent advanties irse of Binary De-
cision Diagrams (BDDSs) in program analysis [3, 12, 29, 3Mjhmade context sensitive
analysis efficient enough to perform an empirical study oxchenarks of significant size.
Using the &DD system [14], we have implemented three different familiesantext-
sensitive points-to analysis, and we have measured the@igion in terms of several
client analyses. Specifically, we compared the use of @allstrings as the context ab-
straction, object sensitivity [17, 18], and the algorithrogosed by Zhu and Calman [31]
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and Whaley and Lam [29] (hereafter abbreviated ZCWL). Wiitkéch family, we evalu-

ated the effect of different lengths of context strings, ahcontext-sensitively specializ-
ing the heap abstraction. In our study, we compared thewelatecision of analyses both
guantitatively, by computing summary statistics aboutdhalysis results, and qualita-
tively, by examining specific code patterns for which a gigealysis variation produces
better results than other variations.

Context-sensitive analyses have been associated witHarggynumbers of contexts.
We wanted to also determine how many contexts each variafimontext sensitivity
actually generates, how the number of contexts relatesetgiécision of the analysis
results, and how likely it is that scalable context-sewmsitiepresentations are feasible.
These measurements can be done directly on the BDD repatisent

Our results show that although the effect on precision dépen the client analysis,
the benefits of context sensitivity are very significant fmme analyses, particularly cast
safety analysis. We also show that object-sensitivity bastly improves precision most
compared to the other variations studied, and that modeligap objects with context
does significantly improve precision.

The remainder of this paper is organized as follows. In 8acj, we provide back-
ground about the variations of context sensitivity that \@eehstudied. In Section 3, we
list the benchmarks included in our study. We discuss thebmurof contexts and its
implications on precision and scalability in Section 4. kcfon 5, we examine the ef-
fects of context sensitivity on the precision of the callgrawe evaluate opportunities
for static resolution of virtual calls in Section 6. In Sexcti7, we measure the effect of
context sensitivity on cast safety analysis. We briefly symelated work in Section 8.
Finally, we draw conclusions from our experimental resintSection 9.

2 Background

Like any static analysis, a points-to analysis models thssibpde run-time features of the
program using some chosen static abstraction. A conteditses points-to analysis re-
quires an abstraction of pointer targets, pointers, antiogdhvocations. We will denote
these three abstractiotiy P, andZ, respectively. Whenever it is possible for a run-time
pointerp to point to the run-time target, the may-point-to relation computed by the
analysis must contain the fa€t(o) € pt(P(p)). The specific choice of static abstrac-
tion is a key determining factor of the precision of the asayand this paper compares
several different abstractions.

Pointer Target Abstraction: In Java, the target of a pointer is always a dynamically
allocated object. A popular abstraction for a pointer taigéhe program statement at
which the object was allocated. We will write this abstractasO*.

Pointer Abstraction: Each run-time pointer corresponds to either some locahlsbei
or some object field in the program. Pointers correspondirigdal variables are often
statically abstracted by the local variable; we will writast abstraction a®v*". For
pointers corresponding to fields, we will consider only theédfisensitive abstraction in
this paper, because it is more precise than other alteasaftlescribed, for example,
in [13, 23]). The field-sensitive abstracti®t ¢ (o. f) of the field f of run-time objecb is
the pair[O(o), f], whereO(o) is our chosen static abstraction of the run-time object

Method I nvocation (Context) Abstraction: Because different invocations of a method
may have different behaviours, it may be useful to distisjgiome of them. A contextis



a static abstraction of a method invocation; an analystindigishes invocations if their
abstract contexts are different. In this paper, we compeogamilies of invocation ab-
straction (also called context abstraction), call sitek 25] and receiver objects [17,18].
In call-site context sensitivity, the contekt® (i) of an invocation is the program state-
ment (call site) from which the method was invoked. In reeeiwbject context sensi-
tivity, the context of an invocationis the static abstraction of the object on which the
method is invoked. That i€"°(i) = O(o0), whereo is the run-time object on which the
method was invoked.

In either case, the context abstraction can be made everbfinesing a string of con-
texts corresponding to the invocation frames on the rum-fimocation stack [18, 24].
That is, having chosen a base abstracfitfi¢, we can defin€**""9 (i) to be[Z?**¢(i),
Tbase(45), I%%¢(i3), . . .|, wherei; is the;’th top-most invocation on the stack during the
invocationi (soi = 41). Since the maximum height of the stack is unbounded, thiyana
sis must somehow ensure that the static abstraction is.fhganple, popular technique
is to limit the length of each context string to at most a fixedberk. A different tech-
nigue is used by the ZCWL algorithm. It does not limit the l#ngf a context string, but
it excludes from the context string all contexts correspogdo call edges that are part
of a cycle in the context-insensitive call graph. Thus, thmber of contexts is bounded
by the number of acyclic paths in the call graph, which is it

Orthogonal to the choice of context abstraction is the ahofcwhich pointers and
objects to model context-sensitively. That is, having emoa basic context-insensitive
pointer abstractio<’ and a context abstractidfy we can model a run-time pointgr
context-sensitively by defining(p) to be[Z(i,,), P<(p)], wherei, is the method invoca-
tion in whichp occurs, or context-insensitively by definifyp) to beP<(p). Similarly,
if we have chosen the allocation site abstractisti as the basic abstraction for objects,
we can model each objeatcontext-sensitively by definin@ (o) to be[Z(i,), 0% (0)],
wherei, is the method invocation during whiehwas allocated, or context-insensitively
by defining®(0) to be 0*: (o).

In the tables in the rest of this paper, we report resultsiferfollowing variations of
points-to analyses. In tables reporting call graph infdfoma the “CHA” column reports
baseline numbers obtained using Class Hierarchy Anal@$id he “insens.” column of
each table is a context-insensitive points-to analysisdbas not distinguish different
invocations of any method. The “object-sensitive” colunans analyses using receiver
objects as the context abstraction, while the “call sitduoms are analyses using call
sites as the context abstraction. Within each of these twtioss, in the 1, 2, and 3
columns, pointers are modelled with context strings of mmaxh length 1, 2, and 3,
but pointer targets are modelled context-insensitivelyhe 1H columns, both pointers
and pointer targets are modelled with context strings ofivex objects or call sites of
maximum length 1. The “ZCWL” column is the ZCWL algorithm, igh uses call sites
as the context abstraction, and allows context strings loitrary length. The ZCWL
algorithm models pointers with context but pointer targetiout context.

In an analysis of an object-oriented language such as Ja® is a cyclic depen-
dency between call graph construction and points-to aisalysall variations except the
ZCWL algorithm, we constructed the call graph on-the-flyidgrthe points-to analy-
sis, since this maintains maximum precision. The ZCWL athor requires a context-
insensitive call graph to be constructed before it startsichvit then makes context-



sensitive, and uses to perform the points-to analysis. ismpurpose, we used the call
graph constructed by the context-insensitive analysikérfinsens.” column.

Interested readers can find additional information aboatahalysis variations, as
well as a detailed presentation of the analysis implemiamtan [12, Chapter 4].

3 Benchmarks

Total number of | Executed methods
Benchmark | classes methods app. +lib.
compress 41 476| 56 463
db 32 440| 51 483
jack 86 812 291 739
javac 209 2499 778 1283
jess 180 1482 395 846
mpegaudio 88 872| 222 637
mtrt 55 574 182 616
soot-c 731 3962| 1055 1549
sablecc-j 342 2309| 1034 1856
polyglot 502 5785| 2037 3093
antlr 203 3154 1099 1783
bloat 434 6125/ 138 1010
chart 1077 14966 854 2790
jython 270 4915| 1004 1858
pmd 1546 14086 1817 2581
ps 202 1147 285 945

Table 1. Benchmarks

We performed our study on programs from the SpecJVM 98 beadhsuite [26],
the DaCapo benchmark suite, version beta050224 [5], antidies benchmark suite [27],
as well as on the Polyglot extensible Java front-end [20]isésd in Table 1. Most of
these benchmarks have been used in earlier evaluationtegbiiacedural analyses for
Java. The middle section of the table shows the total numbelasses and methods
comprising each benchmark. These numbers exclude thetdadasd library (which is
required to run the benchmark), but include all other litmsthat must accompany the
benchmark for it to run successfully. All of the measureraéntthis paper were done
with version 1.3.1 01 of the Sun standard librafyThe right-most section of the table
shows the number of distinct methods that are executed in afrihe benchmark (mea-
sured using the *J tool [7]), both excluding and includingthegls of the Java standard
library, in the columns labelled “app.” and “+lib.”, respizely. About 400 methods of
the standard library are executed even for the smallestimeaiks for purposes such as
class loading; some of the larger benchmarks make heaweasfuke library.

4 Number of Contexts

Context-sensitive analysis is often considered intrdetatainly because, if contexts are
propagated from every call site to every called method, thaber of resulting context
strings grows exponentially in the length of the call chaifise purpose of this section
is to shed some light on two issues. First, of the large numbgcontexts, how many

8 Studying other standard library versions requires modetheir native methods. We aim to
write such models for a more recent version as future work.



are actually useful in improving analysis results? Secwiy,can BDDs represent such
seemingly large numbers of contexts, and how much hopetis that they can be rep-
resented with more traditional techniques?

4.1 Total number of contexts

We begin by comparing the number of contexts that appearanctmtext-sensitive
points-to relation when the analysis is performed with tHiieent context abstractions.
For this measurement, we treat the method invoked as pareafdntext. For example,
suppose we are using abstract receiver objects as the tabt#xaction; if two different
methods are called on the same receiver, we count them aspapade contexts, since
they correspond to two necessarily distinct invocationsther words, we are counting
method-context pairs, rather than just contexts.

The measurements of the total numbers of contexts are shoiabie 2. Each col-
umn lists the number of contexts produced by one of the vanatf context-sensitive
analysis described in Section 2. The column labelled “iaSetows the absolute number
of contexts (which is also the number of methods, since inrdecg-insensitive analy-
sis, every method has exactly one context). All the othewrools, rather than showing
the absolute number of contexts, which would be very langgtead show the number
of contexts as a multiple of the “insens.” colunire(they show the average number of
contexts per method). For example, for tieenpress benchmark, the total number of 1-
object-sensitive contexts 296 x 13.7 = 3.56 x 10%. The empty spots in the table (and
other tables throughout this paper) indicate configuratiarwhich the analysis did not
complete in the available memory, despite being implenteusing BDDs. We allowed
the BDD library to allocate a maximum of 41 million BDD nod&20 million bytes).

object-sensitive call site
Benchmark | insens.| 1 2 3 1H| 1 2 1H ZCWL (max.k)
compress 2596(13.7 113 1517 13.46.5 237 6.5 2.9 x 107 (21)
db 2613|13.7 115 1555 13.46.5 236 6.5 7.9 x 10* (22)
jack 2869|13.8 156 1872 13.26.8 220 6.8 2.7 x 107 (45)
javac 3780| 15.8 297 13289 15.68.4 244 8.4 (41)
jess 3216|19.0 305 5394 18.66.7 207 6.7 6.1 x 10° (24)
mpegaudio | 2793| 13.0 107 1419 12.Y6.3 221 6.3 4.4 x 10° (31)
mtrt 2738|13.3 108 1447 13.16.6 226 6.6 1.2 x 10° (26)
soot-c 4837|11.1 168 4010 10.98.2 198 8.2 (39)
sablecc-j 5608(10.8 116 1792 10.55.5 126 5.5 (55)
polyglot 5616(11.7 149 2011 11.27.1 144 7.1 10130 (22)
antlr 3897|15.0 309 8110 14.79.6 191 9. 4.8 x 10’ (39)
bloat 5237|14.3 291 14.08.9 159 8.9 3.0 x 10® (26)
chart 7069 22.3 500 21.97.0 335 (69)
jython 4401| 18.8 384 18.36.7 162 6.7/ 2.1 x 10%° (72)
pmd 7219| 13.4 283 5607 12.96.6 239 6.6 (55)
ps 3874|13.3 271 24967 13.19.0 224 9.0 2.0 x 10® (29)

Note: columns after the second column show multiples of tmext-insensitive number.
Table 2. Total number of abstract contexts

The large numbers of contexts explain why an analysis thmesents each context
explicitly cannot scale to the programs that we analyze.Wgtele a 1-call-site-sensitive
analysis must store and process 6 to 9 times more data thamextinsensitive analysis,
the ratio grows to 1500 or more times for a 3-object-serestivalysis.



The ZCWL algorithm essentially performsiaCFA analysis in whichk is the max-
imum call depth in the original call graph after merging afgty connected components
(shown in parentheses in the ZCWL column). Becausadifferent for each benchmark,
the number of contexts is much more variable than in the athgations of context sen-
sitivity. On thejavac, soot-c, sablecc-j, chart, andpmd benchmarks, the algorithm failed
to complete in the available memory.

4.2 Equivalent contexts

Next, we consider that many of the large numbers of abst@auegts are equivalent in
the sense that the points-to relations computed in manyeoélistract contexts are the
same. More precisely, we define two method-context péirs, c1) and(ms, c2) to be
equivalent if m; = ms, and for every local pointer variabtan the method, the points-to
set ofp is the same in both contexts andcs.

When two contexts are equivalent, there is no point in distishing them, because
the resulting points-to relation is independent of the erntn this sense, the number of
equivalence classes of method-context pairs reflects hathwhile context sensitivity
is in improving the precision of points-to sets.

The measurements of the number of equivalence classes t#xt®mre shown in
Table 3. Again, the “insens.” column shows the actual nunobelquivalence classes of
contexts, while the other columns give a multiple of the &ns.” numberi(e. the average
number of equivalence classes per method).

object-sensitive call site
Benchmark | insens. 1 2 3 1H| 1 2 1H|ZCWL
compress 2597| 84 9.9 113 12124 39 49 3.3
db 2614| 85 9.9 114 12124 39 5.0 3.3
jack 2870| 8.6 10.2 116 11.924 39 5.0 3.4
javac 3781|10.4 17.7 33.8 14.32.7 5.3 5.4
jess 3217| 8.9 10.6 12.0 13.92.6 4.2 5.0 3.9
mpegaudio | 2794| 8.1 9.4 108 11524 3.8 4.8 3.3
mtrt 2739| 83 9.7 111 11.825 4.0 4.9 3.4
soot-c 4838| 7.1 13.7 184 9.82.6 4.2 4.8
sablecc-j 5609 6.9 84 96 9523 3.6 3.9
polyglot 5617| 7.9 9.4 10.8 10.22.4 3.7 4.7 3.3
antlr 3898| 9.4 12.1 13.8 13.225 4.1 5.2 4.3
bloat 5238|10.2 44.6 12928 4.9 5.2 6.7
chart 7070 10.0 17.4 18.22.7 4.8
jython 4402| 9.9 55.9 15425 43 4.6 4.0
pmd 7220 7.6 146 17.0 11.02.4 42 4.2
ps 3875| 87 9.9 110 12.02.6 4.0 5.2 4.4

Note: columns after the second column show multiples of tmtext-insensitive number.

Table 3. Number of equivalence classes of abstract contexts

The relatively small size of these numbers compared to tlaéniambers of contexts
in Table 2 explains why a BDD can effectively represent thedysis information, since it
automatically merges the representation of equal pomtstations, so each distinct re-
lation is only represented once. If we had some idea befasigdiag an analysis which
abstract contexts are likely to be equivalent, we could @éedimew context abstraction
in which these equivalent contexts are merged. Each egmgalclass of old abstract



contexts would be represented by a single new abstractxdostéh such a context ab-
straction, the context-sensitive analysis could be impleted without requiring BDDs.

It is interesting that in the 1-, 2-, and 1H-object-sensitanalysis, the number of
equivalence classes of contexts is generally about 3 tisibgya as in the corresponding
1-, 2-, and 1H-call-site-string analysis. This indicatest receiver objects better partition
the space of concrete calling contexts that give rise tindigpoints-to relations. That s,
if at run time, the run-time points-to relation is differémtwo concrete calls to a method,
it is more likely that the two calls will correspond to disttrabstract contexts if receiver
objects rather than call sites are used as the context atistrarhis observation leads us
to hypothesize that object-sensitive analysis should beemrecise than call-site-string
analysis; we will see more direct measurements of precisiopcoming sections.

In both object-sensitive and call-site-string analyseskimg the context string longer
increases the number of equivalence classes of contextslpyaemall amount, while it
increases the absolute number of contexts much more sigmtifjc Therefore, increasing
the length of the context string is unlikely to result in agllimprovement in precision,
but will significantly increase analysis cost.

It was initially rather surprising that in the analysis wgsithe ZCWL algorithm, the
number of equivalence classes of abstract contexts is siy siften even smaller than in
the 2-call-site-sensitive analysis. The algorithm esa#niperforms ak-CFA analysis,
wherek is the maximum call depth in the original call graghis always much higher
than 2. The number of equivalence classes of contexts wheg tiee ZCWL algorithm
is small because the algorithm merges strongly connectegeoents (SCCs) in the call
graph, and models all call edges in each such component imtextensensitive way.
In contrast, the 2-call-site-sensitive analysis moddisall edges context-sensitively,
including those in SCCs. Indeed, a very large number of nistlace part of some SCC.
The initial call graph for each of our benchmarks containsrgd SCC of 1386 to 2926
methods, representing 36% to 53% of all methods in the cafifyrin particular, this SCC
always includes many methods for which context-sensitinadyeis would be particularly
useful, such as the methods of the String class and the sthoaoléections classes. These
methods are used extensively within the Java standardyitaad contain many calls to
each other. We examined this large SCC and found many distyrctes; there was no
single method that, if removed, would break the componargummary, the reason for
the surprisingly small number of equivalence classes dfadtscontexts when using the
ZCWL algorithm is that it models a large part of the call grapimtext-insensitively.

4.3 Distinct points-to sets

Finally, we measure the number of distinct points-to setd &ppear in the points-to
analysis result. This number is an indication of how diffigtuwould be to efficiently
represent the context-sensitive points-to sets in a noB-BBsed analysis implementa-
tion, assuming there was already a way to represent thextetieemselves. An increase
in the number of distinct points-to sets also suggests amase in precision, but the
connection is very indirect [10, Section 3.2]. We therefaresent the number of distinct
points-to sets primarily as a measure of analysis cost, emdde more direct measure-
ments of the precision of clients of the analysis later is thaper. In traditional, context-
insensitive, subset-based points-to analyses, the mteg®n of the points-to sets often
makes up most of the memory requirements of the analysikeltraditional analysis
stores points-to sets using shared bit-vectors as sugljegteleintze [9], each distinct



points-to set need only be stored once. Therefore, the nuafliiistinct points-to sets
approximates the space requirements of such a traditiepegsentation.

The measurements of the number of distinct points-to setmgmwith each context
abstraction are shown in Table 4. In this table, all numbegstlae absolute count of
distinct points-to sets, not multiples of the “insens.”woh.

object-sensitive call site

Benchmark | insens 1 2 3 1H 1 2 1H| ZCWL
compress 31783150 3240 3261 34353227 3125 38242 3139
db 3197(3170 3261 3283 346373239 3133 38375 3173
jack 3441|3411 3507 3527 37438497 3377 40955 3541
javac 4346|4367 4579 4712 551981424 4303 54866

jess 3834(4433 4498 4514 51452589 4426 42614 4644
mpegaudio | 4228|4179 4272 4293 365631264 4157 67565 4175
mtrt 3349(3287 3377 3396 35158387 3263 38758 3282
soot-c 4683|4565 4670 4657 45974722 4550 5293f
sablecc-j 5753|5777 5895 5907 5299%875 5694 59748
polyglot 5591(5556 5829 5925 505856682 5516 59837 5575
antlr 45205259 5388 5448 549424624 4535 54176 4901
bloat 5337|5480 5815 553095452 5342 49230 6658
chart 9608(9914 10168 2337239755 9520

jython 4669|5111 5720 742974968 4857 46280 8587
pmd 7368|7679 7832 7930 9440%671 7502 103990

ps 4610{ 4504 4639 4672 47244656 4521 58518 4802

Table 4. Total number of distinct points-to sets in points-to anislyssults

The numbers of distinct points-to sets are fairly constamost of the analysis varia-
tions, including object-sensitive analyses, call-sitéig analyses, and the analysis using
the ZCWL algorithm. Therefore, in a traditional points-teadysis implemented using
shared bit-vectors, representing the individual pointsdts should not be a source of
major difficulty even in a context-sensitive analysis. Fattesearch in traditional imple-
mentations of context-sensitive analyses should thezdfedirected more at the problem
of efficiently representing the contexts, rather than regméing the points-to sets.

However, when abstract heap objects are modelled corngesitvely, the elements
of each points-to set are pairs of abstract object and comtgker than simply abstract
objects, and the number of distinct points-to sets incieabeut 11-fold. In addition, it
is likely that the points-to sets themselves are signifigdatger. Therefore, in order to
implement such an analysis without using BDDs, it would betimwshile to look for an
efficient way to represent points-to sets of abstract objeith context.

5 Call Graph

We now turn our attention to the effect of context sensitiaih call graph construction.
For the purposes of comparison, we have constructed cesgesitive call graphs, pro-
jected away their contexts, and measured differences indbetext-insensitive projec-
tions. We adopted this methodology because context-saenséll graphs using different
context abstractions are not directly comparable. Eacle modhe graph represents a
pair of method and abstract context, but the set of posslidéract contexts is differ-
ent in each context variation. In the context-insensitikggrtion, each node is simply
a method, so the projections are directly comparable. Th&gbinsensitive projection



preserves the set of methods reachable from the prograyngmitits, as well as the set of
possible targets of each call site in the program; it is tlsese that we measure. The set
of reachable methods is particularly important becausecangervative interprocedural
analysis must analyze all of these methods, so a small seaohable methods reduces
the cost of other interprocedural analyses.

We have not included the ZCWL algorithm in our study of cathigin construction,
because the context-insensitive projection of the corgersitive call graph that it pro-
duces is the same as the context-insensitive call graplvihatiginally give it as input.
5.1 Reachable methods

Table 5 shows the number of methods reachable from the progrdry points when
constructing the call graph using different variations ohtext sensitivity, excluding
methods from the standard Java library. In Table 5 and aliegbent tables in this paper,
the most precise entry for each benchmark has been higatightoold. In the case of a
tie, the most precise entry that is least expensive to coetpag been highlighted.

object-sensitive call site actually
Benchmark | CHA | insens. 1 2 3 1H 1 2  1H| executed
compress 90 59 59 59 59 59 59 59 59 56
db 95 65| 64 64 64 64| 65 64 65 51
jack 348 317| 313 313 313 313 316 313 31§ 291
javac 1185| 1154|1147 1147 1147 11471147 1147 1147 778
jess 683 630| 629 629 629 623| 629 629 629 395
mpegaudio | 306 255| 251 251 251 251 251 251 251 222
mtrt 217 189| 186 186 186 186 187 187 187 182
soot-c 2395| 2273|2264 2264 2264 22642266 2264 2266 1055

sablecc-j 1904| 1744|1744 1744 17441731 | 1744 1744 1744 1034
polyglot 2540| 2421|2419 2419 24192416 | 2419 2419 2414 2037

antlr 1374| 1323|1323 1323 1323 13281323 1323 1323 1099
bloat 2879| 2464|2451 2451 2451 2451 2451 2451 138
chart 3227 2081|2080 2080 2031 | 2080 2080 854
jython 2007| 1695|1693 1693 1683 | 1694 1693 1694 1004
pmd 4997 | 4528|4521 4521 45214509 | 4521 4521 4521 1817
ps 840 835| 835 835 835 834 | 835 835 835 285

Table 5. Number of reachable benchmark (non-library) methods ihgraph

For the simple benchmarks likempress anddb, the context-insensitive call graph
is already quite precise (compared to the dynamic behayiand any further improve-
ments due to context sensitivity are relatively small. Bermore significant benchmarks,
call graph construction benefits slightly from 1-objectstvity. The largest difference
is 13 methods, in theloat benchmark. All of these methods are visit methods in an im-
plementation of the visitor design pattern, in the classefslvisitor. This class traverses
a parse tree from a starting node upwards toward the rooedfée, visiting each node
along the way. Some kinds of nodes have no descendants ¢hexexrrthe starting node
of a traversal, so the visit methods of these nodes can nevealled. However, in order
to prove this, an analysis must analyze the visitor dispatethod context-sensitively in
order to keep track of the kind of node from which it was call€derefore, a context-
insensitive analysis fails to show that these visit mettaydaunreachable.



In jess, sablecc-j, polyglot, chart, jython, pmd, andps, modelling abstract heap ob-
jects object-sensitively further improves the precisiéthe call graph. In theablecc-j
benchmark, 13 additional methods are proved unreachabéeb&nchmark includes an
implementation of maps similar to those in the standardhtiprThe maps are instanti-
ated in a number of places, and different kinds of objectplaeed in the different maps.
Methods such as toString() and equals() are called on some nd not others. Calling
one of the methods on a map causes it to be called on all eleroftiite map. Therefore,
these methods are called on some kinds of map elements, bathass. However, the
map elements are kept in generic map entry objects, whichll@ated at a single point
in the map code. When abstract heap objects are modelledwritontext, all map en-
tries are modelled by a single abstract object, and the nté all maps are conflated.
When abstract heap objects are modelled with context, thieemigies are treated as sep-
arate objects depending on which map they were created déte. that distinguishing the
map entries requires receiver objects to be used as coraéixer than call-site strings.
The code that allocates a new entry is in a method that is alwalfed from the same
call site, in another method of the map class. In generalbatih modelling abstract heap
objects with context improved the call graph for some beratksin an object-sensitive
analysis, it never made any difference in analyses usirlgsitalstrings as the context
abstractioni(e. the 1-call-site and 1H-call-site columns are the same).

Overall, object-sensitive analysis results in slightlyadler call graphs than call-
site-string analysis. The 1-object-sensitive call graphever larger than the 1-call-site-
sensitive call graph, and it is smaller dh, jack, mtrt, soot-c, andjython. On thedb,
jack, andjython benchmarks, the call-site-sensitive call graph can be raadamall as
the 1-object-sensitive call graph, but it requires 2-s#l-rather than 1-call-site analysis.

Even the most precise context-sensitive analyses prodougch bigger call graph
than the dynamic one, shown in the rightmost column of théetakhis difference is
largely due to unused but complicated features of the JaméiiRe Environment (such as
network class loading and Jar File signing) which are cdiedldy external configuration
parameters unknown to the analysis.

5.2 Call edges
Table 6 shows the size of the call graph in terms of call edaaer than reachable meth-
ods. Only call edges originating from a benchmark (nonalipy method are counted.

In general, context sensitivity makes little differencéte size of the call graph when
measured this way, with one major exception. In ¢hblecc-j benchmark, the number
of call edges is 17925 in a context-insensitive analysis,doly 5175 in a 1-object-
sensitive analysis. This could make a significant diffeesiocthe cost of a client analysis
whose complexity depends on the number of edges in the egdhgiThe large difference
is caused by the following pattern of code. T¢mblecc-j benchmark contains code to
represent a parse tree, with many different kinds of nodash kind of node implements
a method called removeChild(). The code contains a largebeuwr calls of the form
this.getParent().removeChild(this). In a context-irssi&re analysis, getParent() is found
to possibly return any of hundreds of possible kinds of notdliesrefore, each of these
many calls to removeChild(this) results in hundreds of gedlph edges. However, in a
context-sensitive analysis, getParent() is analyzederctintext of the this pointer. For
each kind of node, there is a relatively small number of kinflaodes that can be its
parent. Therefore, in a given context, getParent() is fdorrdturn only a small number



object-sensitive call site actually
Benchmark| CHA|insens 1 2 3 1H 1 2 1H|executed
compress 456 270 270 270 270 27p 270 270 27 118
db 940 434 427 427 427 427 434 427 434 184
jack 1936 1283 1251 1251 1251 1250| 1276 1251 1276 833
javac 13146 1036010296 10296 10296 102980318 10301 10318 2928
jess 4700 3626| 3618 3618 3618 3571| 3618 3618 3618 919
mpegaudio| 1182 858 812 812 812 812 812 812 812 400
mtrt 925 761 739 739 739 739 746 746 746 484
soot-c 20079 1461114112 14112 141123868|14185 14112 14185 2860
sablecc-j |24283 17925 5175 5140 51405072| 5182 5140 5182 2326
polyglot 19898 1176811564 11564 115641374|11566 11566 11566 5440
antlr 10769 9553| 9553 9553 9553 95539553 9553 9558 4196
bloat 36863 1858618143 18143 17722|18166 18143 18166 477
chart 24978 9526 9443 9443 9178| 9443 9443 2166
jython 13679 9382 9367 9367 9307| 9367 9365 936f7 2898
pmd 29401] 1878518582 18582 1858018263|18601 18599 18601 3879
ps 13610 1133811292 11292 112920451|11298 11292 11298 705

Table 6. Number of call edges in call graph originating from a benctafaon-library) method

of kinds of parent node, so each call site of removeChild@sazhly a small number of
edges to the call graph.

6 Virtual Call Resolution

Table 7 shows the number of virtual call sites for which th& geaph contains more

than one potential target method. Call sites with at mostpmiential target method can
be converted to cheaper static instead of virtual calls,thag can be inlined, possibly
enabling many other optimizations. Therefore, an analysitproves that call sites are
not polymorphic can be used to significantly improve runetiperformance.

object-sensitive call site
Benchmark | CHA | insens. 1 2 3 1H 1 2 1H
compress 16 3 3 3 3 3 3 3 3
db 36 5 4 4 4 4 5 4 5
jack 474 25| 23 23 23 22| 24 23 24
javac 908 737| 720 720 720 72Q 720 720 720
jess 121 45| 45 45 45 45 45 45 45
mpegaudio 40 27| 24 24 24 24, 24 24 24
mtrt 20 9 7 7 7 7 8 8 8
soot-c 1748 983| 913 913 913 913 938 913 938
sablecc-j 722 450 325 325 325 301| 380 325 38(Q
polyglot 1332 744| 592 592 592 585| 592 592 592
antlr 1086 843| 843 843 843 843 843 843 843
bloat 2503| 1079| 962 962 91| 962 962 962
chart 2782 254| 235 235 214| 235 235
jython 646 347| 347 347 346 | 347 347 347
pmd 2868| 1224|1193 1193 11931163 | 1205 1205 1204
ps 321 304| 303 303 303 300| 303 303 303

Table 7. Total number of potentially polymorphic call sites in benwrk (non-library) code



In the benchmarks written in an object-oriented style, bigtgvac, soot-c, sableccj,
polyglot, bloat, andpmd, many more call sites can be devirtualized using objecsitea
analysis than context-insensitive analysis. In some casdissite-string analysis gives
the same improvement, but never any more, arsdét-c andsablecc-j, the improvement
from 1-object-sensitive analysis is much greater than ftecall-site string analysis.

In sablecc-j, there are three sets of call sites that can be devirtualiged) context-
sensitive analysis. Any context-sensitive analysis ifigaft to devirtualize the first set
of call sites. Devirtualization of the second set of caksitequires an object-sensitive
analysis; an analysis using call sites as the context alistmacannot prove them to be
monomorphic. Devirtualization of the third set of call siteot only requires an object-
sensitive analysis, but it also requires that abstract bbggets be modelled with context.

The first set of call sites are the calls to the removeChild¢}hmnd mentioned in
Section 5.2. Object sensitivity reduces the number of piatilarget methods at each of
these call sites. At many of them, it reduces the number dovamé, so the calls can be
devirtualized. The same improvement is obtained with siédl-string context sensitivity.

The second set of call sites are calls to methods of iteratwaslists. Thesablecc-j
benchmark contains several implementations of lists aintil those in the standard Java
library. A call to iterator() on any of these lists invokeerdtor() on the AbstractList
superclass, which in turn invokes the listlterator() metbpecific to each list. The actual
kind of iterator that is returned depends on which listiterg was invoked, which in turn
depends on the receiver object of the call to iterator(} independent of the call site of
listiterator(), which is always the same site in iteratoff)erefore, calls to hasNext() and
next() on the returned iterator can be devirtualized ontyan object-sensitive analysis.

The third set of call sites are calls to methods such as tu)riand equals() on
objects stored in maps. As we explained in Section 5.1, disjeesitive modelling of
abstract heap objects is required to distinguish the iaterrap entry objects in each
separate use of the map implementation. The map entry shjagit be distinguished in
order to distinguish the objects that are stored in the nmiEperefore, devirtualization of
these calls to methods of objects stored in maps requirebjantesensitive analysis that
models abstract heap objects with context.

7 Cast Safety

We have used the points-to analysis results in a client aisathat proves that some
casts cannot fail. A given cast cannot fail if the pointet ih&s casting can only point to
objects whose type is a subtype of the type of the cast. Tadth@®s the number of casts
in each benchmark that cannot be statically proven safedogdhkt safety analysis.

Context sensitivity improves precision of cast safety gsialinjack, javac, mpegau-
dio, mtrt, soot-c, sablecc-j, polyglot, antlr, bloat, chart, jython, pmd, andps. Object sensi-
tive cast safety analysis is never less precise and oftaifis@ntly more precise than the
call-site-string context sensitive variations. The imgments due to context sensitivity
are most significant in thgolyglot andjavac benchmarks. lab, jack, javac, jess, soot-c,
sablecc-j, polyglot, antlr, bloat, chart, jython, pmd, andps, modelling abstract heap objects
with receiver object context further improves precisiorcas$t safety analysis.

The improvement is most dramatic in thelyglot benchmark, which contains a hier-
archy of classes representing different kinds of nodes iakmtract syntax tree. At the
root of this hierarchy is the Node class. This class implements a method called copy()



object-sensitive call site
Benchmark | insens. 1 2 3 1H 1 2 1H|zZCWwL
compress 18 18 18 18 18 18 18 18 18
db 27| 27 27 27 21 27 27 27 27
jack 146| 145 145 145 104 | 146 145 144 146
javac 405| 370 370 370 363| 391 370 391
jess 130 130 130 130 86| 130 130 130 130
mpegaudio 42| 38 38 38 38| 40 40 40 42
mtrt 31| 27 27 27 27| 27 27 27 29
soot-c 955| 932 932 932 878| 932 932 932
sablecc-j 375| 369 369 369 331| 370 370 370
polyglot 3539| 3307 3306 33061017 | 3526 3443 3526 3318
antlr 295 275 275 275 237| 276 275 27§ 276
bloat 1241|1207 1207 1160 | 1233 1207 1233 1234
chart 1097|1086 1085 934 | 1070 1070
jython 501| 499 499 471 | 499 499 499 499
pmd 1427|1376 1375 13751300| 1393 1391 1393
ps 641 612 612 612 421| 612 612 612 612

Table 8. Number of casts potentially failing at run time

which, like the clone() method of Object, returns a copy efriode on which it is called.
In fact, the copy() method first uses clone() to create the oéphe node, and then per-
forms some additional processing on it. The static retupe tyf copy() is Object, but
at most sites calling it, the returned value is immediatelgt¢o the static type of the
node on which it is called. In our analysis, the clone() rativethod is modelled as re-
turning its receiver; that is, the original object and theneld version are represented by
the same abstract object. Therefore, given a program thatabane() directly, the cast
safety analysis correctly determines that the run-time typthe clone is the same as
that of the original. However, ipolyglot, the call to clone() is wrapped inside copy(), and
the casts appear at sites calling copy(). When copy() isyaadlin a context-insensitive
way, it is deemed to possibly return any of the objects on vitics called throughout
the program, so the casts cannot be proven to succeed. Inj@et-ebnsitive analysis,
however, copy() is analyzed separately in the context ofi @aceiver object on which
it is called, and in each such context, it returns only an a@hjé the same type as that
receiver object. Therefore, the cast safety analysis pretatically that the casts of the
return value of copy() cannot fail.

The number of potentially failing casts in thelyglot benchmark decreases even
more dramatically between the 1-object-sensitive and hjdeat-sensitive columns of
Table 8, from 3307 to 1017. The majority of these casts ar@erparser generated by
JavaCUP. The parser uses a Stack as the LR parse stack. Gachpaipped from the
stack is cast to a Symbol. The generapet/glot parser contains about 2000 of these
casts. The Stack class extends Vector, which uses an ihtdemaentData array to store
the objects that have been pushed onto the stack. In ordeste the safety of the casts,
the analysis must distinguish the array implementing theeatack from the arrays of
other uses of Vector in the program. Since the array is aéacan one place, inside
the Vector class, the different array instances can onlyistnduished if abstract heap
objects are modelled with context. Therefore, modellingti@tt heap objects with object
sensitivity is necessary to prove that these 2000 castotéaih



8 Redated Work

The most closely related work is the evaluation of objects@i&ze analysis by Milanova,
Rountev, and Ryder [17, 18]. They implemented a limited farhobject sensitivity
within their points-to analysis framework based on anmatatonstraints [21] and built
on top of the BANE toolkit [2]. In particular, they selectedabset of pointer variables
(method parameters, the this pointer, and the method retlue) which they modelled
context-sensitively using the receiver object as the cartestraction. All other pointer
variables and all abstract heap objects were modelled ufitthantext. The precision of
the analysis was evaluated on benchmarks using versidghdf.the Java standard library,
and compared to a context-insensitive and to a call-sitéegtisensitive analysis, using
call graph construction, virtual call resolution, and mefl-analysis as client analyses.
Our BDD-based implementation has made it feasible to et@ligject-sensitive analy-
sis on benchmarks using the much larger version 1.311of the Java standard library.
Thanks to the better scalability of the BDD-based impleragon, we have performed a
much broader empirical exploration of the design space pfatsensitive analyses. In
particular, we have modelled all pointer variables contitsitively, rather than only a
subset, we have used receiver object strings of length uprée trather than only one,
and we have modelled abstract heap objects context-semgiti

Whaley and Lam [29] suggest several client analyses of thé&/Z@lgorithm, but
state that “in-depth analysis of the accuracy of the analyses beyond the scope of this
paper.” They do, however, provide some preliminary datauabiread escape analysis
and a “type refinement analysis” for finding variables whaseared type could be made
more specific. In this paper, we have compared the preciditineoZCWL algorithm
against object-sensitive and call-site-string contextsitive analyses using several client
analyses, namely call graph construction, virtual calbh&tson, and cast safety analysis.

Liang, Pennings and Harrold [16] evaluated the effect oftexinsensitivity on the
size of pointed-to-by sets (the inverse of points-to sat®malized using dynamic counts.
Instead of using BDDs to allow their analyses to scale to berarks using the large Java
standard library, they simulated the library with a handfterd model. Their results agree
with our findings that context sensitivity improves preaisfor some benchmarks, and
that a context-sensitive heap abstraction is importanpfecision. However, they found
that call sites are sometimes more precise than receivecishjThis difference could
be caused by several factors, including their differeni@hof benchmarks, their very
different precision metric (pointed-to-by sets), or trgémulation of the standard library.

Several context-sensitive points-to analyses other tiasubset-based analyses stud-
ied in this paper have been proposed. Wilson and Lam [30] céadsummary functions
summarizing the effects of functions, which they then ietinnto summaries of their
callers. Liang and Harrold [15] proposed an equality-basmutext-sensitive analysis;
its precision relative to subset-based context-sensinadysis remains to be studied.
Ruf [22] compared context-insensitive analysis to usirggtanption sets” as the context
abstraction, and concluded that on C benchmarks, contesitiséty had little effect on
the points-to sets of pointers that are actually derefe@nkcike object sensitivity, the
Cartesian Product Algorithm [1, 28] uses abstract objestha context abstraction, but
includes all method parameters as context, rather thantbelyeceiver parameter. In
the future, it would be interesting to empirically compédnege additional variations of
context-sensitive analysis with those studied in this pape



9 Conclusions

We have performed an in-depth empirical study of the effe€tgariations of context
sensitivity on the precision of Java points-to analysispadmticular, we studied object-
sensitive analysis, context-sensitive analysis usinbsii@ls as the context abstraction,
and the ZCWL algorithm. We evaluated the effects of thes@trans on the number of
contexts generated, the number of distinct points-to setstoucted, and on the precision
of call graph construction, virtual call resolution, andtcsafety analysis.

Overall, we found that context sensitivity improved caldgh precision by a small
amount, improved the precision of virtual call resolutigndbmore significant amount,
and enabled a major precision improvement in cast safetysiaa

Object-sensitive analysis was clearly better than theratiiéations of context sensi-
tivity that we studied, both in terms of analysis precisiod @otential scalability. Client
analyses based on object-sensitive analyses were neggrkssse than those based on
call-site-string context-sensitive analyses or on the ZGMorithm, and in many cases,
they were significantly more precise. As we increased thgtkeaf context strings, the
number of abstract contexts produced with object-semsdivalysis grew much more
slowly than with the other variations of context sensitiviéo object-sensitive analysis
is likely to scale better. However, the number of equivatéenlasses of contexts was
greater with object sensitivity than with the other vaoas, which indicates that object
sensitivity better distinguishes contexts that give risdifferences in points-to sets.

Of the object-sensitive variations, extending the lenditomtext strings caused very
few additional improvements in analysis precision com@aoel-object-sensitive anal-
ysis. However, modelling abstract heap objects with cdrdekimprove precision sig-
nificantly in many cases. Therefore, we conclude that 1atigensitive and 1H-object-
sensitive analyses provide the best tradeoffs betweernspre@nd analysis efficiency.
Our measurements of the numbers of abstract contexts amtt®ints-to sets suggest
that it should be feasible to implement an efficient non-Bbd¥ed 1-object-sensitive
analysis using current implementation techniques sucha®d bit vectors. Efficiently
implementing a 1H-object-sensitive analysis without BDAIE require new improve-
ments in the data structures and algorithms used to implepagmts-to analyses, and we
expect that our results will motivate and help guide thisifetresearch.

Although the ZCWL algorithm constructs call-site strindsadbitrary length, client
analyses based on it were never more precise than those drasdiject-sensitive anal-
ysis. In many cases, analyses based on the ZCWL algorithm ewen less precise than
those based on 1-call-site-sensitive analysis. The kegecafithe disappointing results
of this algorithm was its context-insensitive treatmentaifs within SCCs of the initial
call graph — a large proportion of call edges were indeediwi#CCs.
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