
Dynamic Purity Analysis for Java Programs

Haiying Xu Christopher J. F. Pickett Clark Verbrugge
School of Computer Science, McGill University

Montréal, Qúebec, Canada H3A 2A7
{hxu31,cpicke,clump}@sable.mcgill.ca

Abstract
Thepuremethods in a program are those that exhibit functional or
side effect free behaviour, a useful property in many contexts. How-
ever, existing purity investigations present primarily static results.
We perform a detailed examination of dynamic method purity in
Java programs using a JVM-based analysis. We evaluate multiple
purity definitions that range from strong to weak, consider purity
forms specific to dynamic execution, and accomodate constraints
imposed by an example consumer application, memoization. We
show that while dynamic method purity is actually fairly consistent
between programs, examining pure invocation counts and the per-
centage of the bytecode instruction stream contained within some
pure method reveals great variation. We also show that while weak-
ening purity definitions exposes considerable dynamic purity, con-
sumer requirements can limit the actual utility of this information.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and ob-
jects; Procedures, functions, and subroutines; D.2.8 [Software
Engineering]: Metrics—Complexity measures; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program analysis; D.3.2 [Programming Languages]: Language
Classifications—Object-oriented languages; D.3.4 [Programming
Languages]: Processors—Optimization; Run-time environments

General Terms Measurement, Experimentation, Languages

Keywords Purity, Side Effects, Memoization, Escape Analysis,
Dynamic Analysis, Software Metrics, Java

1. Introduction
In most programming languages, methods can both mutate exter-
nally visible state, and access previously available state for input.
A pure method, depending on the particular definition, either has
no externally visible side effects when executed, or the extent of
these side effects is limited in some way; furthermore, the extent
to which it depends on previously available state may also be con-
strained. The concept ofpurity as a method property has been used
in a variety of contexts. It can be useful in program understand-
ing and analysis [13], isolating and examining functional orside
effect freefragments [30], and verification in model checking [8].
When optimizing, improved method purity information allows for
less conservative assumptions, and has been used to drive compiler
optimization [9, 19], novel hardware architectures [3], and caching
or memoizationof function calls [17].

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’07 June 13–14, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00

Although these applications demonstrate successful uses of var-
ious forms of purity and side effect data, the extent to which pro-
grams actually exhibit purity has not been fully investigated. Static
analyses have shown the existence of large classes of pure meth-
ods [30, 31], but precise definitions for purity vary. Moreover,
static analysis can be quite conservative with respect to runtime
behaviour, and the extent to which different kinds of purity are ob-
served dynamically is not clear, nor is it clear whether the different
classes of pure methods identified have practical value with respect
to application of the information.

We present a detailed examination of method purity in Java
programs. We consider several purity definitions that range from
strong to weak, and investigate both static and dynamic properties
of programs. Our results extend previous work on static analysis,
and show that the different forms of purity occur with differing
frequencies in a dynamic environment; for statically detectable
purity, our dynamic results are significantly more varied when
compared with previous data. Weaker forms of purity that allow for
some impure invocations of a method expose slightly more purity,
and we identify room for future work in this area. We explore
this space and show the impact of dynamically changing purity
properties, and also report the frequencies of different sources of
impurity. Although we find that in some cases a large percentage of
execution is pure, many methods are small or have other features
which make efficient exploitation difficult.

A purity-specific consumer optimization for purity informa-
tion provides constraints on the kind of purity data that is practi-
cally useful. To this end, we implement a prototype but non-trivial
method memoization optimization. Memoization maps method ar-
guments to return values, and allows for execution of reasonably
pure methods to be safely bypassed; we extend the traditional defi-
nition by also considering heap dependences as inputs. This practi-
cal and direct application exposes additional constraints that a more
abstract model of purity may not consider. It also serves as a useful
functional test, and we examine the impact of subtle language and
technical concerns on the use of purity information in a VM setting.

1.1 Contributions

We make the following specific contributions:

• The design and implementation of a dynamic purity analysis for
Java bytecode that is available online and offline. Our analysis
is scalable and handles SPECjvm98 at size 100 with acceptable
overhead.

• Support for several different purity definitions that roughly cor-
respond with previous work on static purity analysis, in order to
facilitate comparison of disparate approaches. We also identify
some forms of purity that are not observable statically.

• Three different metrics for evaluating the extent of dynamic
purity: method purity, invocation purity, and bytecode purity.
We apply these metrics to the results of a simple static analysis
and multiple dynamic analyses corresponding to our purity
definitions.

• A JVM implementation of the most traditional consumer of
purity information, memoization. Although it does not achieve
any speedup, it serves as a useful functional test module and a
good basis for future investigations.

In the next section we discuss related work. In Section 3 we
describe our static and dynamic analysis environments, present the
different forms of purity we investigate, and illustrate the design
of our memoization system. Section 4 provides experimental data,
and in Section 5 we conclude and describe future work.

2. Related Work
Purity definitions are based on the kinds of operations performed
in a method, and in particular which classes of data are read and
written. Detecting writes in precise detail is typically the task of a
side effect analysis, a well-known analysis in compiler optimiza-
tion [4]. Early work on side effect analysis concentrates on deter-
mining read and write sets in the context of functional or procedural
languages [7, 10, 18]. Modern object-oriented languages introduce
additional concerns through the use of virtual method dispatch and
intensive use of dynamic memory, but these works bring out many
of the core techniques, including interprocedural designs, and the
need for reference analysis.

More recently side effect analysis has been investigated specif-
ically in the context of Java programs. Razafimahefa presents an
interprocedural side effect analysis for Java based on apoints-to
analysis [29]. His algorithm is derived from Steensgaard’s points-to
analysis for C [34], and is flow and context insensitive. Milanovaet
al. explore the use of context sensitive points-to information on side
effect information [23]. They develop anobject-sensitivepoints-to
and side effect analysis, demonstrating the significant impact pre-
cise program information can have on side effect data. On the other
hand, Leet al.show that even reasonably simple points-to informa-
tion given to a side effect analysis is sufficient to achieve a useful
increase in performance, improving the effect of optimizations that
use side effect information [19]. These works all focus on precisely
identifying read and write sets, and not of course on identifying
different notions of purityper se.

A study that bridges some of the gaps between purity and side
effect analysis is one by Clausen [9]. His work is based on a con-
servative, static, side effect analysis of bytecode, identifying four
classes of instruction and therefore method, arranged in a partial or-
der:pure, neither reading nor writing data,read-only, only reading
data,write-only, only writing data, andread/writeas the least pure.
Purity classes are global, exploiting neither type nor points-to infor-
mation, although this is recognized as a limitation. Clausen demon-
strates the impact of this purity information on several standard
compiler optimizations. Importantly, Clausen also points out the
impact of practical concerns in purity analysis, including the over-
identification of pure methods due to language mechanisms such
as Java’s<clinit>, an empty inherited method in most classes.
We further discuss these concerns, particularly in the context of dy-
namic execution. We also provide a new analysis of impure instruc-
tions, informed by our previous work on speculative multithreading
for Java [26].

Method purity criteria have also been considered in the con-
text of program specification and verification. The Java Modeling
Language (JML) is a behavioral interface specification language
for Java [6, 20]. JML provides a definition of a pure method as one
which does not: 1) perform I/O; 2) write to any pre-existing objects;
or 3) invoke any impure methods. However, JML is annotation-
based, requiring purity information be provided by users. Static
verifiers do exist, although current designs check purity informa-
tion conservatively [8].

Side effect freemethods are identified by a form of purity where
externally visible writes are not allowed, but reads are permitted.
Rountev develops a static analysis to detect side effect free meth-
ods, and evaluates the impact of different call graph construction
algorithms on detecting these methods [30]. He finds that 22% of
methods are side effect free. In comparison with the purity defi-
nition given by JML, Rountev’s purity definition is conservative.
Side effect free methods must guarantee matching pre- and post-
states, disallowing them from creating and returning new objects,
although they can allocate objects locally. Sălcianu and Rinard [31]
present a purity analysis based on a previous points-to and escape
analysis [36]. Their purity definition is much the same as the purity
definition given by JML: a pure method can read from or write to
local objects, and can also create, modify and return new objects
not present in the input state. This allows Sălcianu and Rinard to
identify more statically pure methods, 53–65% of methods in their
benchmark suite.

Our work here is partly motivated by an interest in finding the
extent to which static results for purity analysis are indicative of
dynamic behaviour. A large number of statically identified pure
methods suggests a significant optimization opportunity, but only
if these methods are both reached and well-exercised at runtime;
previous work on dynamic metrics has shown the importance of
observing actual runtime behaviour in Java programs [14].

Dallmeier et al. have examined dynamic purity analysis for
Java programs concurrently with this work [11]. Theirjdynpur
tool uses the ASM bytecode manipulation framework [5] to create
program traces, and identifies impure methods based on writes to
non-local objects. They also provide a means to compare static and
dynamic purity information. Interestingly, they can merge purity
information from across different program executions. As of this
writing, this related work is in an early phase.

Artzi et al. have examined in greater depth a closely related
topic that is also concurrent with this work, namely dynamic anal-
ysis of parameter mutability for Java programs [2]. Initially, ref-
erence parameters are classified asunknownwith respect to muta-
bility. A static analysis in Soot [35] provides a conservative clas-
sification of parameters asmutableor immutablewhere possible,
and then a dynamic analysis detects further parameter mutabil-
ity. Their work differs significantly from ours in that they com-
bine static analysis with dynamic analysis in various multi-stage
pipelines, and then evaluate the results using static accuracy met-
rics. Furthermore, although parameter immutability is one aspect of
method purity, there may be other factors involved, some of which
depend on the consumer.

We contribute one practical consumer of purity information
with an implementation of method memoization. Our JVM-based
design that interfaces with either an online or offline purity analy-
sis is novel, but the idea of memoizing or caching function results
is not. Similar techniques have been used for developing dynamic
algorithms [15, 24, 32], and also for incremental computation [27].
Several works have looked at improving function memoization or
caching efficiency [1, 17, 22] in the context of functional languages.
Our memoization design is inspired by some of our earlier work on
adapting memoization for use by Java-based return value predic-
tion [25].

3. Design
Our investigation into purity is roughly divided into static and dy-
namic experimental designs, with a strong bias toward dynamic
analysis as a means to complement existing static purity analy-
sis work. We first introduce our static implementation, which is
based on the Soot program analysis framework [35], and our dy-
namic evaluation of that static analysis. Then we describe our dy-
namic analysis implementation in the SableVM Java bytecode in-

terpreter [16], and finally present the design of our memoization
consumer application. In the first two subsections we also intro-
duce the main purity definitions that we analyse experimentally.

3.1 Static Purity Analysis

Previous work has established that statically, a significant number
of methods have fairly weak purity properties [30, 31]. Our static
work considers the existence ofstrong purity in Java programs;
a method isstrongly pureiff it does not change or depend on
any initial state beyond its primitive input values and returns the
same result for the same input in any context. For Java, this means
that a strongly pure method may not read from or write to heap
or static data, perform synchronization, allocate objects, invoke a
native method, throw explicit exceptions, or invoke any method not
itself identified as strongly pure.

Figure 1. Static purity analysis framework.

The left half of Figure 1 shows the framework used to iden-
tify strong static purity. Application and library Java class files are
used as input, and we perform a flow-insensitive analysis using
Soot [35]. We follow an analysis strategy similar to that used by
Clausen [9]. We first perform an intraprocedural scan of the in-
structions in each method. Instructions are classified as impure if
listed in Table 1, otherwise as pure. In this simple analysis any
method containing an impure instruction is treated as impure. We
assume that exceptions do not propagate unchecked; more com-
prehensive safety analyses [28] would enable better identification
of problematic code. Interprocedural analysis is then performed by
propagating impurity up from the leaves of a Class Hierarchy Anal-
ysis (CHA-based) call graph [12] constructed by Soot, and comput-
ing a least fixed point for recursive invocations.

impurity instructions
native code nativeINVOKE*
heap access NEW, NEWARRAY, ANEWARRAY, MULTIANEWARRAY,

GETFIELD, PUTFIELD, *ALOAD, *ASTORE
static access GETSTATIC, PUTSTATIC

synchronization synchronizedINVOKE*, synchronized*RETURN,
MONITORENTER, MONITOREXIT

exceptions ATHROW

Table 1. Impure instructions for strong purity.

A simple extension to this design allows for dynamic evaluation
of our strong static purity analysis. We use Soot to write out purity
information to Java class file attributes, and use the SableVM Java
virtual machine [16] to read it in during class loading, as shown in
the right half of Figure 1. The number of pure methods reached
at runtime, the frequency of pure method invocations, and the
percentage of bytecodes executed by pure methods all provide
indications as to how well static results correlate with dynamic
behaviour. We now consider performing the purity analysis itself
dynamically.

3.2 Dynamic Purity Analysis

Statically, a method is conservatively determined to be pure for
all possible executions, otherwise declared impure. However, for
a given program run, a method declared impure statically may ac-
tually exhibit only pure control flow. We use adynamic purity anal-
ysisto identify methods as pure or not based on their actual runtime
behaviour, increasing the number of pure methods identified.

Figure 2. Dynamic purity analysis framework.

Figure 2 shows our framework for performing, using, and eval-
uating dynamic purity analyses. Initially, class files are read into
SableVM, and method purity is determined by examining the exe-
cuting instruction stream. The purity analysis module employs an
online escape analysis sub-module that tracks writes to locally al-
located objects. Purity information can be used immediately in an
online analysis, or written out to a file for use by anoffline analysis
in a subsequent program run. Either kind of analysis can be used to
drive client applications; the latter provides analysis results with-
out analysis overhead, and is suitable for investigation of the upper
bounds on exploitation of dynamic purity. The clients we provide
include a memoization consumer that maps method inputs to out-
puts and looks up output based on current arguments, as discussed
in Section 3.3, and the same dynamic metrics module used by the
static purity analysis framework.

We consider four levels of dynamic purity which we term
strong, moderate, weak, andonce-impure. These represent a range
of exploitable properties of use to program analysis and optimiza-
tion. We now describe each kind of purity, along with the corre-
sponding implementation and runtime component requirements.

Strong Dynamic Purity. Strong dynamic purity has the same cri-
teria as strong static purity. However, we now consider only those
instructions that are actually executed, as opposed to the entire
static method body. Initially, all methods have an unknown pu-
rity status. As instructions are executed, the status of the contain-
ing method is updated if an impure instruction is encountered. Im-
pure designations are also propagated up the call stack to maintain
the property that pure methods do not invoke impure methods. A
method is marked as pure if it returns without encountering any im-
purity. At different points in time there will thus be different num-
bers of strongly pure methods identified. However, once identified
as impure, a method conservatively stays impure for the remainder
of execution.

Moderate Dynamic Purity. Some definitions of purity allow for
arbitrary method behaviour provided that the input state is not
altered [30]. Objects may be created and then altered in a pure
method, provided such objects do notescapethe method execution
context. Pure methods may also call impure methods, provided the
impurity is contained within the caller.

We use this to definemoderatelypure methods, with the addi-
tional constraint that they do not change behaviour based on the
input heap or global state; the result is that the behaviour of a mod-
erately pure method is determined exclusively by its primitive input
arguments. A moderately pure method may not: 1) invoke native
methods; 2) read from or write to static or previously existing heap
objects; 3) perform monitor operations; 4) throw exceptions; or 5)
call a moderately impure method, unless the only source of impu-
rity is that the callee method accesses and mutates objects local to
the caller, or allows an object to escape to the caller. We make spe-
cial exceptions for the nativejava.lang.System.arraycopy()
andjava.lang.Object.clone() methods, treating them as heap
access and allocation instructions respectively, as these methods
otherwise induce large amounts of impurity.

Our analysis must now examine the*NEW*, GETFIELD, PUT-
FIELD, *ALOAD and*ASTORE instructions more closely than was
necessary for strong dynamic purity. The*NEW* instructions are
used to determine object locality. Objects allocated in the current
method arelocal if they do not escape the current method; objects
allocated by some callee also become local if they escape to the
current method.

An online escape analysis module is used to monitor object lo-
cality. Each frame in the call stack has anobject tablethat stores
all currently local objects. Newly allocated objects are stored in the
table for the current frame, and any object allocated and returned
by a callee is merged into it. Furthermore, calleePUTFIELD instruc-
tions with a reference argument can allow objects local to the callee
to escape to the caller, requiring an update to its object table. The
GETFIELD, PUTFIELD, *ALOAD, and*ASTORE instructions can now
be easily classified depending on the contents of the object table for
the current frame. If a read or write occurs to a non-local object, the
stack is searched for that object, marking the current method and all
intermediate methods as impure; otherwise, the instruction is con-
sidered pure.

Given that external heap reads are disallowed, a moderately pure
method often does not have object parameters; if it does, it is unable
to make any use of them outside of object reference comparisons.
In a Java context, this can greatly reduce the observable purity, even
given the ability to access and mutate locally allocated objects:
many methods read input heap data, and object parameters are
common. We thus developed a third and weaker form of purity that
permits heap reads.

Weak Dynamic Purity. Weakening moderate purity by allowing
heap reads enables a method to inspect its object parameters and
any data structures reachable from them. This maintains the prop-
erty that the method is functional on its input, even if the input is
quite large and in the worst case constitutes the entire heap. For
weakdynamic purity, aGETFIELD operation is always safe, once
the associated class is loaded, althoughPUTFIELD must still be
considered in the context of our online escape analysis. This pu-
rity definition corresponds fairly closely with Rountev’s [30].

Once-Impure Dynamic Purity. The preceding definitions require
purity over the entire course of execution. After examination of the
impure methods identified using the weak criteria, we found that
some of them are weakly pure, but only after the first invocation.
Once-impuredynamic purity is equivalent to weak dynamic purity,
except that the first invocation of the method during execution may
be impure.

3.3 Memoization

The forms of purity we define all ensure that pure methods have a
functional property: there is a unique result for any given input.
Even methods identified as weakly pure are thus candidates for
memoization, an optimization that caches argument to return value

mappings, jumping past actual method execution for repeated in-
vocations with the same arguments. In fact, as far as memoization
is concerned, our once-impure definition fits perfectly: a method
is always invoked at least once before being memoized. This has
the further benefit that mandatory class loading and initialization
during a first invocation does not spuriously cause methods to be
rejected as impure. One limitation of our current design is that after
an initial impure invocation, any future impurity will disable mem-
oization altogether. This could be remedied by an extension to the
online analysis that tracks purity on a per-input basis.

As a consumer application for purity information, memoization
imposes some additional constraints on its usage. The benefit ob-
tained from jumping past method execution must exceed the cost
of looking up the return value. In our case we use a few heuristic
rules: the method must execute for long enough to be worth opti-
mizing away, there must be a good hit rate after an initial warm up
period, and the amount of input data to be processed cannot be too
large.

Memoization is performed by associating hash tables with once-
impure methods. Each time a memoizable method is executed its
arguments are stored along with the return value. Primitive argu-
ments can be stored directly, whereas reference arguments are “flat-
tened”, recursively gathering object type and primitive field values
for all reachable types; circular data structures cannot presently be
memoized. The advantages of storing only the object type are that
garbage collection does not invalidate memoization tables and that
a deep copy of an object will suffice when a different object was the
original argument; the disadvantage is that direct object reference
comparisons cannot be safely memoized, and so we must add the
ACMP * bytecodes to our impure operation list. However, we can
still representnull object references, leavingIF(NON)NULL safe
for memoization.

For subsequent invocations, the current arguments are hashed
together, and a stored return value is simply substituted for the
invocation if a match is found. This process is driven by either
online or offline dynamic purity analysis information, as shown
on the right hand side of Figure 2. The offline analysis, while
unsound, eliminates the overhead of the purity analysis and allows
for better evaluation of the memoization client in isolation. Upper
bounds on memory consumption limit the number of methods
that can be effectively memoized; a more efficient but also more
complicated implementation would track the offsets of individual
fields accessed during the initial purity determination, as opposed
to entire objects.

4. Experimental Analysis
Experimental evaluation was conducted using the standard SPEC
JVM98 benchmark suite at input size 100 [33] on a 2 GHz Athlon
x86 64 machine running Linux. Our memoization system does not
yet support multithreading, and so we substitute the single-threaded
raytracebenchmark formtrt. Averages are computed as geometric
means. We evaluate each form of purity described in the previous
section using offline analyses, save for performance evaluation of
the online analysis module. As we developed our analysis with the
goal of identifying memoizable methods, we impose the additional
constraint thatACMP * are unsafe instructions in all dynamic purity
analysis experiments. We find that this has little bearing on overall
results, with a notable exception beingjess.

4.1 Metrics

Static method purityis calculated as the percentage of all methods
in the call graph that are pure, as reported by prior work on purity
and side effect analysis [30, 31].

We introduce three new dynamic purity metrics.Dynamic
method purity is calculated as the percentage of all methods

reached at runtime that are pure,dynamic invocation purityas
the percentage of all method invocations that are pure, anddy-
namic bytecode purityas the percentage of the executed bytecode
instruction stream that is contained within a pure method. There
are two complications involved in calculating dynamic bytecode
purity. First, only those instructions executedlocally in a given
method are counted towards the total number of impure or pure
bytecodes. Second, for an impure method executed within a pure
context such that under moderate or weak purity the execution is
actually pure, the instructions are counted towards the total number
of pure bytecodes. This requires propagating purity information on
method invocation. In these experiments, our dynamic invocation
purity metric does not account for impure methods called within a
pure context, for better comparison with dynamic method purity.

It is important to determine whether dynamic purity is present in
a non-trivial way, and in this respect we consider bytecode purity
a better indicator than invocation purity, and invocation purity a
better indicator than method purity.

4.2 Static Purity Analysis

We evaluate our strong static purity analysis using the standard
static method purity metric and our three dynamic purity metrics;
results are shown in Table 2. The analysis includes all methods in
both class library and application code that are found in the call
graph created by our conservatively-correct CHA-based whole pro-
gram analysis. A more precise analysis would analyse fewer meth-
ods in exchange for computation time [21]. On average, about 13%
of methods are found to be strongly pure under all possible execu-
tion scenarios, a value in line with the progression of results from
studies of weaker static purity forms. However, it is clear that not
all of these methods will be invoked at runtime, and dynamically
we find that only 5–6% of reached methods are statically identified
as pure.

metric comp db jack javac jess mpeg rt

static methods 14% 13% 13% 12% 13% 13% 13%
dynamic methods 6% 6% 6% 5% 5% 6% 5%
invocations ≈0% 2% 10% 10% 6% 16% 3%
bytecode ≈0% 2% 1% ≈0% ≈0% 2% ≈0%

Table 2. Strong static purity.The static methodsrow shows the
percentage of all methods in the call graph identified as statically
pure at compile time; thedynamic methodsrow shows the percent-
age of all methods reached at runtime that are statically pure; the
invocationsrow shows the percentage of all dynamic method in-
vocations that execute some statically pure method; thebytecode
row shows the percentage of the bytecode instruction stream that is
executed by some statically pure method.

Further examination of these methods reveals that all are small,
consisting of less than 20 bytecode instructions. We find that
many strongly pure methods are executed infrequently; others
are executed frequently but also trivially empty, examples being
<clinit> and<init>. This qualitative analysis of post-execution
purity data is borne out by our dynamic bytecode purity metric,
which finds that a very small percentage of bytecode execution is
pure, even when dynamic invocation purity is considerably higher
than dynamic method purity, as exhibited byjack, javac, andmpe-
gaudio.

4.3 Dynamic Purity Analysis

Strong dynamic purity is a weaker form of purity than its static
equivalent, and the results in the first row of Tables 3, 4, and 5
improve on the runtime use of strong static purity in rows 2–4 of
Table 2. In Table 3, up to 4% more pure methods are reached using

strong dynamic purity. Some of these methods are also invoked
with significant frequency: 13% more pure invocations fordb are
shown in Table 4. Nevertheless, the overall impact remains small,
with Table 5 showing no more than 3% of all bytecode instructions
being executed in a pure context, and a maximum gain over strong
static purity of 1%.

Our moderate dynamic purity definition further relaxes purity
constraints. We observe marginal improvements to all runtime mea-
surements, but overall do not find any large gains. Recall that under
moderate dynamic purity, methods are not allowed to read heap
data from objects pre-existing the method call, preventing actual
use of object parameters; this constraint ensures a simple bounding
of the input state. Table 6 presents dynamic metrics for all methods
that accept or return references. All benchmarks have at least 53%
of reached methods executed in this context that is likely to be im-
pure, and with the exception ofcompress, at least 57% of bytecode
execution as well. However, even though compress exhibits a max-
imum of 4% of bytecode execution being impure due to reference
parameters and return values, in factcompressis highly impure for
other reasons, namely large amounts of execution within large and
hot methods that containPUTFIELD bytecodes.

Weak dynamic purity eliminates the restriction on moderate
dynamic purity that a method not inspect the reachable heap. This
allows significantly more purity to be identified, roughly doubling
the number of pure methods, and resulting in even larger gains
with respect to dynamic invocation purity and dynamic bytecode
purity, as shown in Tables 4 and 5. In particular,db and raytrace
execute a high percentage of the bytecode instruction stream within
a pure context. However, as we will show in our memoization
experiments, many of these methods are actually unsuitable for
profitable exploitation. For other benchmarks, weak purity does not
result in such large increases. We hypothesized that this might be
due to initialization requirements, leading to aggressive rejection
of methods as impure based on special operations performed only
on the first invocation. We now consider the impact of initialization
through once-impure data.

Once-impure results are shown in the last row of Tables 3, 4,
and 5. We observe small gains in dynamic method purity for all
benchmarks, and slightly larger gains for some benchmarks in the
context of dynamic invocation and bytecode purity, but negligible
gains for others. Although the changes are small, we still observe
a general trend in our dynamic metrics: dynamic method purity is
fairly similar between benchmarks, differences in dynamic invoca-
tion purity are greater, separating programs into two groups, and
differences in dynamic bytecode purity are greater still, separating
programs into three distinct groups. This tendency of our metrics
to polarize benchmarks is a useful property.

Of course, once-impure dynamic purity can be generalized: it
is possible that the purity of a given method is dynamically mani-
fest only aftern > 1 impure executions, that a pure method actu-
ally becomes impure after some number of executions, or that more
complex pure←→impure transitions occur. Table 7 provides a de-
tailed breakdown according to the number and kinds of methods
captured and ignored by our purity analysis. For all benchmarks,
less than 10% of methods change their purity status over the course
of execution, with the vast majority being always pure or always
impure. Once-impure does indeed capture the bulk of methods that
change state from impure to pure, with no more than≈2% of ul-
timately pure methods remaining impure for more than one exe-
cution. Interestingly, there are no methods that are initially always
pure that later permanently change to being always impure, as seen
in theP+I+ row. There are however fairly large numbers of meth-
ods that change state more than once, as seen in theremainderrow.
We analysed the extent of missed opportunities in the second sec-

purity comp db jack javac jess mpep rt

strong 7% 7% 6% 6% 9% 8% 6%
moderate 10% 9% 8% 8% 9% 8% 6%
weak 18% 18% 15% 19% 23% 18% 22%
once-impure 19% 19% 16% 21% 24% 19% 23%

Table 3. Dynamic method purity.Percentage of all reached meth-
ods reached that are pure for different dynamic purity definitions.

purity comp db jack javac jess mpeg rt

strong ≈ 0% 15% 13% 11% 10% 16% 8%
moderate ≈ 0% 15% 19% 17% 17% 16% 8%
weak 33% 87% 35% 27% 43% 31% 90%
once-impure 33% 87% 39% 29% 46% 31% 91%

Table 4. Dynamic invocation purity.Percentage of all method in-
vocations that are pure for different dynamic purity definitions.

purity comp db jack javac jess mpeg rt

strong ≈0% 3% 1% 1% 1% 2% 1%
moderate ≈0% 3% 1% 1% 1% 2% 1%
weak 5% 62% 17% 24% 13% 3% 53%
once-impure 6% 62% 20% 26% 16% 3% 56%

Table 5. Dynamic bytecode purity.Percentage of total bytecode
instruction stream that is contained in a pure method for different
dynamic purity definitions.

metric comp db jack javac jess mpeg rt

methods 62% 62% 53% 68% 54% 60% 62%
invocations 1% 51% 49% 46% 76% 33% 37%
bytecode 4% 60% 63% 57% 93% 92% 71%

Table 6. All methods with reference parameters or return values.

tion using our dynamic metrics, and found a surprising amount of
unaccounted for execution, particularly forjack, javac, andjess.

Methods themselves may be impure for multiple reasons or only
for a single reason. Tables 8, 9, and 10 give details as to which byte-
codes actually cause impurity under once-impure dynamic purity.
In Table 8, between 20% and 30% of reached methods are impure
entirely due to the use ofPUTFIELD on escaping objects, and well
over 50% of methods are marked impure after encountering other
disallowed bytecodes in addition toPUTFIELD. In the case of dy-
namic invocation impurity, shown in Table 9, this balance tips more
in the other direction:compress, db, andraytracefind PUTFIELD
alone a much more significant contributor than multiple impurity
reasons.jessis marked by the dominance ofACMP * bytecodes in
impurity decisions; these bytecodes are used extensively for the
implementation ofequals() methods in the different application
classes ofjess.

Bytecode execution data in Table 10 show the importance of
considering other method execution properties in evaluating purity.
Although ACMP * is a dominant factor forjess, in practice these
bytecodes are contained in small methods, and the executed byte-
code contribution to impurity is somewhat reduced when compared
with dynamic invocation impurity.PUTFIELD as a lone contribu-
tor is also less important in terms of bytecode execution; onlydb
continues to showPUTFIELD as a significant single source of impu-
rity, althoughPUTFIELD does maintain a large presence when there
are multiple impurity reasons. Clearly, further weakening of purity
to allow more purePUTFIELD operations will be of value, how-
ever measured. Nevertheless, the largest potential source of further,
weaker purity apparently lies in analysing and handling methods
marked impure due to execution of multiple kinds of impure byte-
codes.

state regexp comp db jack javac jess mpeg rt

P+ 130 135 152 299 281 158 198
I+ 559 602 795 1120 873 706 680
IP+ 10 10 11 33 11 12 12
II+P+ 0 0 0 3 6 1 1
P+I+ 0 0 0 0 0 0 0
remainder 22 23 36 109 42 24 22
method 3% 3% 4 7% 4% 3% 3%
invocation 21% 3% 16% 17% 13% 6% 1%
bytecode 12% 3% 25% 26% 30% 5% 6%

Table 7. Analysed and unanalysed methods.The first section
shows reached method counts accounted for by our analyses: those
that are either always pure, always impure, or once-impure. The
second section shows reached methods that are not accounted for:
those that are impure twice or more before becoming always pure,
those that are pure once or more before becoming always impure,
and those that change state more than once inremainder. The final
section provides dynamic purity metrics for the methods identified
in the second section.

impurity comp db jack javac jess mpeg rt

ACMP * 1% 1% 1% 1% 1% 1% 1%
PUTFIELD 27% 29% 21% 21% 23% 24% 28%
*STATIC 6% 6% 4% 3% 4% 5% 5%
ARETURN 1% 1% 1% 1% 1% 1% 1%
native 8% 8% 6% 5% 6% 7% 9%
PUTFIELD+ 52% 52% 58% 66% 61% 60% 53%
others 5% 3% 9% 3% 4% 2% 3%

Table 8. Reasons for dynamic method impurity.In the top section
each row shows methods rejected solely for encountering that byte-
code in our once-impure analysis, or a nativeINVOKE* in the case
of native. Methods rejected for encounteringPUTFIELD that also
encountered another impure bytecode are shown inPUTFIELD+.
Individually negligible sources of impurity not accounted for by
the other rows are summed inothers.

impurity comp db jack javac jess mpeg rt

ACMP * ≈0% ≈0% 12% 6% 54% ≈0% ≈0%
PUTFIELD 81% 82% 45% 25% 24% 40% 71%
*STATIC ≈0% ≈0% 2% ≈0% 3% ≈0% ≈0%
native ≈0% 1% 3% 10% ≈0% ≈0% 1%
PUTFIELD+ 19% 17% 37% 58% 19% 60% 28%
others 0% ≈0% 1% 1% 0% ≈0% ≈0%

Table 9. Reasons for dynamic invocation impurity.

impurity comp db jack javac jess mpeg rt

ACMP * ≈0% 2% 11% 7% 46% ≈0% ≈0%
PUTFIELD 21% 85% 38% 25% 8% 11% 33%
PUTFIELD+ 79% 13% 48% 66% 45% 89% 66%
others ≈0% ≈0% 3% 2% 1% ≈0% 1%

Table 10. Reasons for dynamic bytecode impurity.

4.4 Memoization

Our evaluation of memoization depends on a once-impure dy-
namic purity analysis. For efficiency, memoization is only applied
to methods for which it cost effective to do so. We investigated dif-
ferent limits on method size, and for each method used an input
size limit of 100 KB, a warm up period of 1000 cold start misses,
after that a minimum hit ratio of 10%, and a global size limit on
memoization data of 1 GB. As discussed in Section 3.3, we cannot
compare object addresses directly usingACMP *, and so the usable
purity information is a strict subset of what once-impure purity can
actually identify.

 0

 100

 200

 300

ex
ec

ut
io

n
tim

e
(s

)

comp db jack javac jess mpeg rt

vanilla
online

online + memo
offline + memo

Figure 3. Execution times.Shown are execution times for vanilla
SableVM, online purity analysis, online purity analysis with mem-
oization, and offline purity analysis with memoization. The mini-
mum method size for memoization is 50 bytecode instructions, and
all other parameters remain unchanged.

size comp db jack javac jess mpeg rt

20+ 15/42 15/45 18/49 33/106 18/54 27/60 24/62
50+ 13/42 12/45 16/49 30/106 16/54 24/59 22/62
100+ 12/42 12/45 15/49 26/106 16/54 23/58 21/62
200+ 11/42 12/45 14/49 22/106 14/54 22/58 18/61
400+ 8/41 9/41 11/48 19/104 11/53 19/57 15/60

Table 11. Memoized and memoizable methods.Minimum method
size is given in thesizecolumn, and each benchmark column shows
successfully memoized methods over total memoizable methods.

The impact of these constraints on memoization is significant.
Table 11 shows low absolute numbers of methods memoized un-
der our present cost constraints, and Table 12 shows the percentage
of normal execution that is successfully skipped. Even withdband
raytracecontaining a large amount of pure execution, memoization
cannot be effectively applied. In the case ofdb, this is due to the
fact that pure methods are simply not executed frequently enough
with the same arguments. In fact, onlyjack andjavacexhibit non-
negligible memoizability, despite that they also exhibit fairly low
amounts of pure bytecode execution in Table 5. For all benchmarks,
the success of memoization is inversely related to minimum method
size: although large memoizable methods provide significant ben-
efits, they are much less common than smaller methods. Ensuring
that a memoization system has low overhead is thus critical if nu-
merous smaller methods are to be efficiently memoized.

We examine the costs of both purity analysis and our memoiza-
tion optimization in Figure 3. We show the execution time for our
benchmarks under four scenarios: a base run with both purity and
memoization disabled, an online purity analysis run, an online pu-
rity analysis with memoization run, and an offline purity analysis
with memoization run. Memoization overhead is low, but this is in-
deed affected by our choice of minimum method size. For example,
when executed with a minimum size of 5 bytecodes, some bench-
marks required on the order of hours to complete. Purity analysis
overhead itself is significant, but we actually consider it fairly tol-
erable for non-optimization purposes, especially when compared
with heavyweight static analyses [31] that do not scale well [2].
Identifying weaker forms of purity involves an online escape anal-
ysis as well as inspection of potentially impure instructions; these
are expensive operations, and they further add to the burden of pro-
viding cost-effective memoization. However, our implementation is
not fully optimized, especially given that our prototype memoiza-
tion consumer tracks entire data structures and not their individual
fields. Accordingly, part of our future work involves improving the
efficiency of our purity analysis and the accuracy and breadth of
our memoization design.

size comp db jack javac jess mpeg rt

20+ ≈0% ≈0% 9% 5% ≈0% ≈0% ≈0%
50+ ≈0% ≈0% 6% 4% ≈0% ≈0% ≈0%
100+ ≈0% ≈0% 6% 4% ≈0% ≈0% ≈0%
200+ ≈0% ≈0% 6% 4% ≈0% ≈0% ≈0%
400+ ≈0% ≈0% ≈0% 4% ≈0% ≈0% ≈0%

Table 12. Memoized bytecode execution.Minimum method size is
given in thesizecolumn, and each benchmark column shows the
percentage of normal execution that was successfully memoized.

5. Conclusions & Future Work
Our dynamic purity analyses identify considerable amounts of pu-
rity, and evaluation shows that actual program behaviour is not pre-
dictable based on purely static observations. Statically pure meth-
ods are not always well-exercised dynamically, and opportunities
for the execution of pure code are correspondingly diminished. We
proposed three different metrics for evaluating dynamic purity, and
showed that while there was little variation in dynamic method
purity over our benchmark suite, examination of dynamic invoca-
tion purity and dynamic bytecode purity revealed significant dif-
ferences. This is despite the presence of many impure constructs:
impurity in general is often bounded in dynamic scope, and po-
tentially open to exploitation through appropriate dynamic purity
tests. However, we also showed that consumer applications can im-
pose strong constraints on usable purity information. In our mem-
oization experiments, only a minimal amount of purity was ex-
ploited, and it may be the case that memoization is of limited use
for non-functional languages. Nevertheless, our memoization client
is a prototype design that can be optimized in several ways, most
importantly by tracking individual fields instead of entire objects;
we still hope to demonstrate that automatic memoization can be an
effective optimization for Java programs.

Our dynamic purity metrics are not exhaustive. Java bytecodes
do not correlate well with machine instructions or CPU cycles, and
measuring these as well may provide more insight as to the true
extent of dynamic purity. It might also be interesting to consider
purity at finer granularities, such as loops, basic blocks, and indi-
vidual instructions. If a method spends most of its time executing
pure bytecodes inside a loop, and then executes an impure bytecode
after completion of the loop, our analysis presently counts the en-
tire execution as impure. As far as static metrics are concerned, it
may be useful to examinestatic invocation purity, the percentage
of call graph edges that have a pure method as a target, andstatic
bytecode purity, the percentage of all bytecode instructions in the
call graph contained in some pure method.

Our experimental framework is suitable for examining vari-
ous forms of purity, and we aim to continue exploring purity no-
tions. A fully parameterized analysis framework would faciliate
detailed comparative evaluations of different purity definitions,
and could be extended to analyse or even visualize theevolu-
tion of purity within a program. Additional manual analysis of na-
tive code beyondclone() andarraycopy() might identify more
strongly pure methods; however, our analysis of impurity reasons
showed that a small percentage of execution is impure due to native
methods alone. Our analyses were designed for memoization, and
thus do not allow pure methods to return new objects, in contrast
with Sălcianu’s static analysis [31]. However, in our experiments,
ARETURN is responsible for only 1% of dynamic method impurity,
and it will be interesting to fully evaluate whether allowing new ob-
jects to escape from a pure method provides any real benefit. Other
escape analyses that handle local impurities due to synchronization
and exceptions might also be useful in certain contexts.

It will be interesting to consider purity on a per-input basis, as
our analysis identified a fairly significant amount of unaccounted

for execution in methods that change purity state more than once.
Even weaker purity forms could be applied tospeculativeoptimiza-
tion [3, 26] as a means to identify semi-pure code that has reduced
potential to violate dependences and result in the roll-back of spec-
ulative computations. In general, we are optimistic about future op-
portunities for identifying and exploiting dynamic purity.

References
[1] U. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization.

In POPL’03: Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 14–
25, Jan. 2003.

[2] S. Artzi, A. Kieżun, D. Glasser, and M. D. Ernst. Combined static
and dynamic mutability analysis. Technical Report MIT-CSAIL-TR-
2007-020, Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA, Mar. 2007.

[3] S. Balakrishnan and G. S. Sohi. Program demultiplexing: Data-flow
based speculative parallelization of methods in sequentialprograms.
In ISCA’06: Proceedings of the 33rd International Symposium on
Computer Architecture, pages 302–313, June 2006.

[4] J. P. Banning. An efficient way to find the side effects of procedure
calls and the aliases of variables. InPOPL’79: Proceedings of the 6th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 29–41, Jan. 1979.

[5] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation
tool to implement adaptable systems. InJC’02: Proceedings of
the ACM SIGOPS France Journées Composants 2002: Systèmes
à Composants Adaptables et Extensibles, Nov. 2002. http:
//asm.objectweb.org/.

[6] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of JML tools and
applications. STTT: International Journal on Software Tools for
Technology Transfer, 7(3):212–232, June 2005.

[7] M. Burke. An interval-based approach to exhaustive and incremental
interprocedural data-flow analysis.TOPLAS: ACM Transactions on
Programming Languages and Systems, 12(3):341–395, July 1990.

[8] N. Catãno and M. Huisman. Chase: A static checker for JML’s
assignable clause. InVMCAI’03: Proceedings of the 4th Interna-
tional Conference on Verification, Model Checking, and Abstract
Interpretation, volume 2575 ofLNCS: Lecture Notes in Computer
Science, pages 26–40, Jan. 2003.

[9] L. R. Clausen. A Java bytecode optimizer using side-effect analysis.
Concurrency: Practice and Experience, 9(11):1031–1045, Dec. 1997.

[10] K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis
in linear time. InPLDI’88: Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation,
pages 57–66, June 1988.

[11] V. Dallmeier, C. Lindig, and A. Zeller. Dynamic purity analysis
for Java programs, Feb. 2007.http://www.st.cs.uni-sb.de/
models/jdynpur/.

[12] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. InECOOP’95:
Proceedings of the 9th European Conference on Object-Oriented
Programming, volume 952 ofLNCS: Lecture Notes in Computer
Science, pages 77–101, Aug. 1995.

[13] B. Demsky and M. Rinard. Role-based exploration of object-
oriented programs. InICSE’02: Proceedings of the 24th International
Conference on Software Engineering, pages 313–324, May 2002.

[14] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic
metrics for Java. InOOPSLA’03: Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 149–168, Oct. 2003.

[15] G. N. Frederickson. Ambivalent data structures for dynamic 2-
edge-connectivity and k smallest spanning trees.SIAM Journal on
Computing, 26(2):484–538, Apr. 1997.

[16] E. M. Gagnon.A Portable Research Framework for the Execution
of Java Bytecode. PhD thesis, School of Computer Science, McGill
University, Montŕeal, Qúebec, Canada, Dec. 2002.

[17] A. Heydon, R. Levin, and Y. Yu. Caching function calls using precise
dependencies. InPLDI’00: Proceedings of the ACM SIGPLAN 2000

Conference on Programming Language Design and Implementation,
pages 311–320, June 2000.

[18] P. Jouvelot and D. Gifford. Algebraic reconstruction of types and
effects. InPOPL’91: Proceedings of the 18th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
303–310, Jan. 1991.

[19] A. Le, O. Lhot́ak, and L. Hendren. Using inter-procedural side-effect
information in JIT optimizations. InCC’05: Proceedings of the 14th
International Conference on Compiler Construction, volume 3443
of LNCS: Lecture Notes in Computer Science, pages 287–304, Apr.
2005.

[20] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:
A behavioral interface specification language for Java.SIGSOFT
Software Engineering Notes, 31(3):1–38, May 2006.

[21] O. Lhot́ak and L. J. Hendren. Context-sensitive points-to analysis: Is it
worth it? InCC’06: Proceedings of the 15th International Conference
on Compiler Construction, volume 3923 ofLNCS: Lecture Notes in
Computer Science, pages 47–64, Mar. 2006.

[22] Y. A. Liu and T. Teitelbaum. Systematic derivation of incremental
programs. Science of Computer Programming, 24(1):1–39, Feb.
1995.

[23] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to analysis for Java.ACM Transactions on
Software Engineering and Methodology, 14(1):1–41, Jan. 2005.

[24] K. Mulmuley. Randomized multidimensional search trees (extended
abstract): Dynamic sampling. InSCG’91: Proceedings of the 7th
Annual Symposium on Computational Geometry, pages 121–131,
June 1991.

[25] C. J. F. Pickett and C. Verbrugge. Return value prediction in a Java
virtual machine. InVPW2: Proceedings of the 2nd Value-Prediction
and Value-Based Optimization Workshop, pages 40–47, Oct. 2004.

[26] C. J. F. Pickett and C. Verbrugge. Software thread levelspeculation
for the Java language and virtual machine environment. InLCPC’05:
Proceedings of the 18th International Workshop on Languages and
Compilers for Parallel Computing, volume 4339 ofLNCS: Lecture
Notes in Computer Science, pages 304–318, Oct. 2005.

[27] W. Pugh and T. Teitelbaum. Incremental computation via function
caching. InPOPL’89: Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
315–328, Jan. 1989.

[28] F. Qian, L. J. Hendren, and C. Verbrugge. A comprehensiveapproach
to array bounds check elimination for Java. InCC’02: Proceedings of
the 11th International Conference on Compiler Construction, volume
2304 ofLNCS: Lecture Notes in Computer Science, pages 325–342,
Apr. 2002.

[29] C. Razafimahefa. A study of side-effect analyses for Java. Master’s
thesis, School of Computer Science, McGill University, Montréal,
Québec, Canada, Dec. 1999.

[30] A. Rountev. Precise identification of side-effect-free methods in Java.
In ICSM’04: Proceedings of the 20th IEEE International Conference
on Software Maintenance, pages 82–91, Sept. 2004.

[31] A. Sălcianu and M. Rinard. Purity and side effect analysis for Java
programs. InVMCAI’05: Proceedings of the 6th International Con-
ference on Verification, Model Checking, and Abstract Interpretation,
volume 3385 ofLNCS: Lecture Notes in Computer Science, pages
199–215, Jan. 2005.http://jppa.sourceforge.net.

[32] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
In STOC’81: Proceedings of the 13th Annual ACM Symposium on
Theory of Computing, pages 114–122, May 1981.

[33] Standard Performance Evaluation Corporation. SPEC JVMClient98
benchmark suite, June 1998.http://www.spec.org/jvm98/.

[34] B. Steensgaard. Points-to analysis in almost linear time. In POPL’96:
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 32–41, Jan. 1996.

[35] R. Vallée-Rai. Soot: A Java bytecode optimization framework.
Master’s thesis, School of Computer Science, McGill University,
Montréal, Qúebec, Canada, July 2000.http://www.sable.
mcgill.ca/soot/.

[36] J. Whaley and M. Rinard. Compositional pointer and escapeanalysis
for Java programs. InOOPSLA’99: Proceedings of the 14th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 187–206, Nov. 1999.

